

Operator requirements and use cases for automated networking

Juan Pedro Fernandez-Palacios, Telefonica GCTIO.

NGON 2023, 1/06/2023

This project has received funding from the European Union's H2020 research and innovation programme under the grant agreement No. 101015857

First Step: Open and Standard interfaces

- Vendor agnostic Transport SDN
- Service NBI enabling abstraction and open network programmability
- Multivendor device configuration based on standard SBIs

Use cases

Use cases for automated optical networking

- Optical Multi-domain Inventory and Topology Discovery
- Partial Optical disaggregation
- IPoDWDM automation
- Optical Slicing
- Multilayer planning and optimization
- Cybersecurity

Optical - Multi-domain Inventory and Topology Discovery

* It dos not replace a centralized inventory system which hodls more functions like stock control, design&assign, etc. yet, it provides reliable active inventory to operational processes like provisioning, assurance, maintenance

UC ID	Use Cases	Category
+		ज
0a	Use case 0a: Context & Service Interface Points discovery (synchronous mode)	Discovery
Ob	Use case 0b: Topology discovery (synchronous mode)	Discovery
0c	Use case 0c: Connectivity Service discovery (synchronous mode)	Discovery
4a	Use case 4a: Introduction of references to external inventory model.	Inventory
4b	Use case 4b: Complete Inventory model for NBI Interface	Inventory

Partial Optical disaggregation

- Separation of the Open Terminal and Open Line System
- Automated control of disaggregated channels with open interfaces
- Already in production networks

IPoDWDM Automation

- Current management and SDN architectures deployed must be compatible with the introduction of the IPoDWDM paradigm shift.
- The SDN solutions foreseen must rely on standard an open interfaces.
- Out of sync problem
- Full management (provisioning, performance monitoring, troubleshooting, alarms, and inventory) of coherent pluggable in IP/MPLS routers over existing optical OLS networks (brownfield scenarios.

Optical Slicing

Physical Network Infrastructure (Partially disaggregated Optical Network)

IP and Optical Topology and Inventory Discovery

Multilayer "Read Only" use case, basis for <u>multilayer planning</u> IP and optical controllers are providing an abstracted topology and inventory view through Open APIs (TAPI and IETF)

(*) IETF RFC8466: Layer 2 Virtual Private Network Service Delivery IETF RFC9291: Network Data Model for Layer 2 VPNs

Cybersecurity

- A hybrid central and Edge ML architecture to benefit scalability and decrease latency problems
- Machine Learning (ML) to detect attacks at the optical, network and transport layers
- Protection against sophisticated attacks targeting ML components (adversarial networks)
- Reduce ML complexity using AutoML techniques

Conclusions

- Open and standard interfaces are enabling a wide variety of automation use cases in multivendor networks
- Network programmability is key to optimize network resources for new service demands and applications

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement TeraFlow No 101015857.