
Grant Agreement No.: 101015857
Research and Innovation action
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G

Secured autonomic traffic management for a Tera of SDN flows

D3.1: Preliminary Evaluation of Life-cycle Automation and High Performance SDN Components

Deliverable type R

Dissemination level PU

Due date 31/12/2021

Submission date 29/12/2021

Lead editor Georgios P. Katsikas (UBITECH)

Authors Thanos Xirofotos, Dimitrios Klonidis (UBITECH), Ricard Vilalta, Lluis
Gifre, Ricardo Martínez (CTTC), Javier Moreno, Sergio González (ATOS),
Sami Petteri Valiviita (INF), Oscar Gonzalez de Dios (TID), Peer
Stritzinger (STR), Adrian Farrel, Daniel King (ODC)

Reviewers Ricard Vilalta (CTTC), Georgios P. Katsikas (UBITECH)

Quality check team Adrian Farrel, Daniel King (ODC)

Work package WP3

Abstract

This deliverable leverages MS2.1 and MS3.1 to provide (i) implementation aspects of the core
components of the TeraFlow operating system (OS) along with (ii) a preliminary evaluation of these
components. This preliminary evaluation will provide useful feedback on functional, performance, and
scalability aspects of these components; in turn, this feedback will result in (i) a revised TeraFlow
architecture with (ii) additional and/or revised requirements and (iii) a potentially improved TeraFlow
component design towards the final release (i.e., MS3.3) and the final evaluation (i.e., D3.2) of the
core TeraFlow OS components.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 2 of 105

Disclaimer

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may
not be reproduced or copied without permission.

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

CC BY-NC-ND 3.0 License – 2021 - 2023 TeraFlow Consortium Parties

Acknowledgment

The research conducted by TeraFlow receives funding from the European Commission H2020
programme under Grant Agreement No 101015857. The European Commission has no responsibility
for the content of this document.

Revision History

Revision Date Responsible Comment
0.1 16.07.2021 Editor Initial document structure
0.2 10.11.2021 UBITECH,

CTTC, ATOS,
INF, SIAE,
TID, ODC

First round of contributions including design
overview and interfaces for the core TeraFlow OS
components

0.3 10.12.2021 UBITECH,
CTTC, ATOS,
INF, SIAE,
TID, ODC,
STR

Second round of contributions with refined design
and interfaces per component as well as preliminary
results

0.4 17.12.2021 UBITECH,
CTTC

Internal review

0.5 23.12.2021 ODC,
UBITECH

Quality check and submission

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 3 of 105

EXECUTIVE SUMMARY
This deliverable summarizes the activities of WP3 during the first year of the project. The objective of
this document is to provide: (i) a detailed overview of each core TeraFlow OS component, including
internal architecture and adopted technologies; (ii) a set of interfaces per core TeraFlow OS
component with clear interactions both with other TeraFlow components and/or external entities;
(iii) preliminary results per core TeraFlow OS component gathered throughout the first year of the
project.

This document begins with an introductory section that highlights the purpose of this deliverable, its
relationship with other deliverables, and an outline of the structure of this document. The second
section maps partners to core TeraFlow OS components and presents a taxonomy of these core
components across key WP3 aspects detailed in Sections 3-6. Specifically, Section 3 tackles
components related to performance (T3.1), Section 4 describes components related to heterogeneous
hardware and multi-layer service integration (T3.2), Section 5 addresses components related to SDN
automation (T3.3), and Section 6 presents the slicing and multi-tenancy component (T3.4).

This document concludes with Section 7 which sketches an outline for the final WP3 milestone (MS3.3)
and deliverable (D3.2) as well as Section 8 which serves as an annex with technical details about
various components, such as data models for ONF TR-532 devices and RPC examples for OpenConfig
devices.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 4 of 105

Table of Contents
Executive Summary ... 3

Table of Contents .. 4

List of Figures .. 7

List of Tables ... 8

Abbreviations .. 9

1. Introduction .. 11

1.1. Objectives ... 11

1.2. Relation with Other Tasks and Deliverables ... 11

1.3. Deliverable Structure .. 12

2. Core TeraFlow OS Components’ Overview ... 13

3. High-Performance SDN Framework .. 14

3.1. Context Management Component ... 14

3.1.1. Design Overview .. 14

3.1.2. Interfaces ... 15

3.1.3. Preliminary Results... 18

3.2. Monitoring Component .. 19

3.2.1. Design Overview .. 19

3.2.2. Interfaces ... 22

3.2.3. Preliminary Results... 23

3.3. Traffic Engineering Component .. 25

3.3.1. Design Overview .. 25

3.3.2. Interfaces ... 26

3.3.3. Preliminary Results... 28

4. Hardware and L0/L3 Multi-layer Integration .. 30

4.1. Device Component ... 30

4.1.1. Design Overview .. 30

4.1.2. Device Plugins .. 31

4.1.3. Interfaces ... 48

4.1.4. Preliminary Results... 51

4.2. Service Component ... 52

4.2.1. Design Overview .. 52

4.2.2. Interfaces ... 53

4.2.3. Preliminary Results... 54

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 5 of 105

5. SDN Automation ... 55

5.1. Automation (ZTP) Component .. 55

5.1.1. Design Overview .. 55

5.1.2. Interfaces ... 56

5.1.3. Operational Workflows .. 57

5.1.4. Preliminary Results... 60

5.2. Policy Management Component .. 61

5.2.1. Design Overview .. 62

5.2.2. Interfaces ... 63

5.2.3. Operational Workflows .. 64

5.2.4. Preliminary Results... 65

6. Transport Network Slicing and Multi-tenancy .. 67

6.1. Slice Management Component .. 67

6.1.1. Design Overview .. 68

6.1.2. Interfaces ... 69

6.1.3. Preliminary Results... 69

7. Conclusions and Next Steps .. 73

8. ANNEX ... 75

8.1. ONF TR-532 model parameters .. 75

8.1.1. ONF TR-532 - air-interface parameters .. 75

8.1.2. ONF TR-532 - co-channel-profile model parameters ... 77

8.1.3. ONF TR-532 - core-model model parameters .. 78

8.1.4. ONF TR-532 - ethernet-container model parameters.. 87

8.1.5. ONF TR-532 - firmware model parameters .. 89

8.1.6. ONF TR532 - hybrid-mw-structure model parameters .. 90

8.1.7. ONF TR532 - ltp-augment model parameters .. 91

8.1.8. ONF TR532 - mac-interface model parameters ... 91

8.1.9. ONF TR532 - pure-ethernet-structure model parameters ... 93

8.1.10. ONF TR532 - tdm-container model parameters .. 94

8.1.11. ONF TR-532 - vlan-fc model parameters .. 94

8.1.12. ONF TR-532 - vlan-fd model parameters ... 95

8.1.13. ONF TR-532 - vlan-interface model parameters .. 96

8.1.14. ONF TR-532 - wire-interface model parameters .. 97

8.1.15. ONF TR-532 - wred-profile model parameters .. 98

8.2. OpenConfig Examples ... 99

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 6 of 105

8.2.1. OpenConfig query to get the inventory details for all the components 99

8.2.2. OpenConfig query to get details for all the interfaces ... 101

References .. 105

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 7 of 105

List of Figures
Figure 1: Architecture of the Context Management component. .. 14
Figure 2: Architecture of the Monitoring component. ... 19
Figure 3: Complete KPI monitoring exemplary workflow. .. 21
Figure 4: XML output of the unit tests implemented in the monitoring server. 24
Figure 5: Monitoring server logs when a KPI is registered in the Monitoring DB. 24
Figure 6: InfluxDB logs when Monitoring component executes a query to store a KPI point. 24
Figure 7: Overview of the TE component. .. 26
Figure 8: Flow diagram for the main RPCs of the TE component. .. 27
Figure 9: Virtual topology used for demonstrating Transport Engineering. ... 28
Figure 10: Performing Traffic Engineering from the Erlang PCE console. .. 29
Figure 11: Architecture of the Device component. .. 31
Figure 12: Architecture of the Device component’s Transport API. ... 32
Figure 13: Example TAPI Create Connectivity Service. ... 33
Figure 14: Overview of the interaction between TeraFlow and the MW SDN Controller. 35
Figure 15: Architecture of the Device component and how it interacts with DRX-30 IP/MPLS routers.
 .. 39
Figure 16: Architecture of the Device component’s P4 driver plugin. ... 46
Figure 17: Required steps for a P4 SDN controller to install a P4 program on a P4 device. 47
Figure 18: Sequence Diagram for Device component’s AddDevice operation. 50
Figure 19: Sequence Diagram for Device component’s ConfigureDevice operation. 51
Figure 20: Architecture of the Service component. .. 52
Figure 21: Unit tests passed for the Service component. ... 54
Figure 22: Automation (ZTP) component overview. ... 55
Figure 23: Zero-Touch Provisioning of a new device into TeraFlow OS (ztpAdd RPC). 58
Figure 24: Zero-Touch Update of a device into TeraFlow OS (ztpUpdate RPC). 59
Figure 25: Zero-Touch Deletion of a device from TeraFlow OS (ztpDelete RPC). 60
Figure 26: Unit tests for the Automation TeraFlow OS component. .. 61
Figure 27: Instantiation of the Automation gRPC server. ... 61
Figure 28: Invocation of the ztpAdd gRPC method for adding a new device in the network. 61
Figure 29: Policy component overview. .. 62
Figure 30: Generic Policy creation by an operator through the TeraFlow OS policyAdd RPC. 65
Figure 31: Unit tests for the Policy Management TeraFlow OS component. 65
Figure 32: Instantiation of the Policy Management gRPC server. .. 66
Figure 33: Abstracted Management Architecture for Network Slicing .. 68
Figure 34 IETF Transport Network Slice Isolation Levels .. 69
Figure 35 Slicing preliminary architecture .. 70
Figure 36 Proposed sequency diagram ... 71
Figure 37 Wireshark captures for deployment of a hard slice ... 71
Figure 38 Example of transport slice request ... 72

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 8 of 105

List of Tables
Table 1: Mapping of core TeraFlow components to WP3 tasks and the contributing partners. 13
Table 2: gRPC interface definition for Context Management component. .. 15
Table 3. REST-API interface definition for Context Management component. 16
Table 4. Database API Interface definition for Context Management component. 16
Table 5. Unit tests passed for the Context Management component. .. 18
Table 6: gRPC interface definition for Monitoring component. ... 22
Table 7: MMDBI definition for Monitoring component. .. 23
Table 8: SMMDBI definition for Monitoring component.. 23
Table 9: TE component interface methods. .. 26
Table 10: YANG data models corresponding to ONF TR-532 device models. 34
Table 11: OC data model parameters exposed by the Infinera NETCONF server. 40
Table 12: gRPC interface definition for Device component. ... 48
Table 13: SBI Driver API Interface definition for Device component. ... 49
Table 14: Unit tests passed for the Device component. ... 51
Table 15: gRPC interface definition for Service component. .. 53
Table 16: Service Handler Interface definition for Service component. ... 53
Table 17: Service interface definition for the Automation component. .. 56
Table 18: Events’ publish-subscribe interface for the Automation component................................... 57
Table 19: Service interface definition for the Policy component. .. 63
Table 20: Future development plans for the core TeraFlow OS components and the contributing
partners. .. 73

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 9 of 105

Abbreviations
5G Fifth Generation
5G-PPP 5G Infrastructure Public Private Partnership
ABNO Application Based Network Optimization
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
B5G Beyond 5G
BGP Border Gateway Protocol
BSS Business Support System
DB Database
E2E End-to-End
ECA Event-Condition-Action
FPGA Field-Programmable Gate Array
FRR Free-Range Routing
gNMI gRPC Network Management Interface
gNOI gRPC Network Operations Interface
gRPC gRPC Remote Procedure Call
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
I/O Input-Output
IP Internet Protocol
JSON JavaScript Object Notation
KPI Key Performance Indicator
L1 Layer 1
L2 Layer 2
L3 Layer 3
L3NM Layer 3 Network YANG Model
LSP Label Switched Path
MS Milestone
MW Microwave
NBI North-Bound Interface
NOS Network Operating System
OAS OpenAPI Specification
OC OpenConfig
OLS Open Line System
ONF Open Networking Foundation
ONOS Open Network Operating System
OS Operating System
OSPF Open Shortest Path First
OSS Operation Support System
P4 Programming Protocol-independent Packet Processors
PCE Path Computation Element
PCEP Path Computation Element Protocol
QoS Quality of Service
REST Representational State Transfer
RPC Remote Procedure Call
SBI South-Bound Interface
SDN Software-Defined Networking
SDO Standards Development Organization

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 10 of 105

SLA Service-Level Agreement
SLE Service-Level Expectation
SLI Service-Level Indicator
SLO Service-Level Objective
SQL Structured Query Language
SR Segment Routing
TAPI Transport API
TE Traffic Engineering
TED Traffic Engineering Database
VLAN Virtual Local Area Network
VPN Virtual Private Network
WP Work Package
XML eXtensible Markup Language
ZTP Zero-Touch Provisioning

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 11 of 105

1. Introduction
The TeraFlow operating system (OS) is a novel software-defined networking (SDN) controller
architecture, aiming at capabilities and deployments of beyond fifth generation (B5G) networks. In
this context, TeraFlow OS bridges key gaps in state-of-the art SDN controllers in four distinct areas
organized as WP3 tasks:

Focus Area 1 (T3.1): high-performance control plane operations through a revolutionary cloud-native
network operating system (NOS) design, based on distributed and fully disaggregated microservices.

Focus Area 2 (T3.2): native support for key transport technologies, such as Internet Protocol (IP),
optical, and microwave (MW), as well as emerging next-generation SDN technologies, such as the
programmable protocol-independent packet processors (P4).

Focus Area 3 (T3.3): automated, zero-touch provisioning (ZTP) of network services & NOS lifecycle
operations.

Focus Area 4 (T3.4): multi-tenant network slicing as a service coupled with service-level agreement
(SLA) requirements.

1.1. Objectives

The purpose of this deliverable (D3.1) is threefold. The first objective of the deliverable is to provide
core TeraFlow OS components for addressing the four areas introduced above. This is done by
mapping all core TeraFlow OS components to the various WP3 tasks (each task corresponds to a
section between Section 3 and Section 6 of this document), while providing basic concepts and a
detailed design overview per component. The second objective is to position all core TeraFlow OS
components within the same ecosystem, thus prescribing how they communicate with each other as
well as how they communicate with external entities and systems. This is achieved by associating each
component description with a dedicated sub-section in this document describing its interfaces. The
third objective of this deliverable is to provide a preliminary evaluation of the features of the core
TeraFlow OS components through another sub-section per component outlining unit and functional
tests, as well as deployment examples per component.

1.2. Relation with Other Tasks and Deliverables

This deliverable takes inputs from MS2.1, where the preliminary architecture of the TeraFlow OS was
introduced. It also takes input from the initial WP3 milestones, i.e., MS3.1 “Study of technical aspects
of relevant SDN, Cloud-native and SDO solutions” [8] and MS3.2 “Code freeze for TeraFlow OS
components (v1)” [9]. MS3.1 provided the necessary key performance indicators (KPIs) for selecting
the proper high-performance cloud-native framework to program TeraFlow micro-services, while
MS3.2 captures all TeraFlow OS component development activities throughout the first year of the
project through a project-level software repository and installation guidelines.

In turn, this deliverable acts as an outlook for the forthcoming features of the core TeraFlow OS
components in the final release, which will be documented in the final deliverable of WP3, i.e., D3.2
“Final evaluation of Life-cycle automation and high performance SDN components”. At the same time,
the core TeraFlow OS components documented in this deliverable will provide key services and

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 12 of 105

interfaces to the TeraFlow netapps designed and developed in the context of WP4 and documented
in D4.1 “Preliminary evaluation of TeraFlow security and B5G network integration”. Finally, the
combination of core and netapp TeraFlow components will be put together onto a set of testbeds,
forming an integrated TeraFlow OS prototyping environment documented in D5.1 “Testbed setup and
prototype integration report”.

1.3. Deliverable Structure

In the rest of this deliverable, Section 2 presents an overview of the core TeraFlow OS components
that comprise the entire WP3. Sections 3, 4, 5, and 6 highlight the design overview, interfaces, and
preliminary results of the various core TeraFlow OS components across the four tasks in WP3
respectively. Section 7 concludes this work, while laying out a development strategy towards the final
evaluation of life-cycle automation and high performance SDN components, which will be reported in
the context of D3.2. Finally, Section 8 (Annex) reports data models and example RPCs for certain
TeraFlow OS device driver plugins.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 13 of 105

2. Core TeraFlow OS Components’ Overview
This section provides an overview of the core TeraFlow OS components in the context of WP3. Table
1 shows how these components are mapped to the various WP3 tasks and the corresponding partners
that have been carrying out their design, implementation, and preliminary evaluation during the first
year of the project.

Table 1: Mapping of core TeraFlow components to WP3 tasks and the contributing partners.

WP3 Task Component Name Involved Partners
T3.1 Context Management CTTC

Monitoring ATOS
Traffic Engineering STR
Auto Scaling Features covered by

Kubernetes Orchestrator
(see MS3.2)

Load balancing

T3.2 Device CTTC, TID, SIAE, INF, UBI
Service CTTC

T3.3 Automation (ZTP) UBI
Policy Management UBI, ODC

T3.4 Slice Management ODC

In the following technical sections:

• Section 3 deals with components related to SDN performance, specifically the context
management (Section 3.1), monitoring (Section 3.2), and traffic engineering (Section 3.3). As
noted in Table 1 and MS3.2 [9], auto-scaling and load-balancing components are provided by
the Kubernetes orchestrator framework, which serves as a deployment engine for the
TeraFlow microservices;

• Section 4 presents hardware and multi-layer service integration components, namely the
Device component with various driver plugins for different SDN devices, such as emulated
devices, open line system (OLS) transport API (TAPI) switches, OpenConfig (OC) routers,
microwave devices, and P4 whiteboxes, and the Service component;

• Section 5 introduces the automation zero-touch provisioning (ZTP) component as well as the
policy management component; and

• Section 6 presents the slice management component.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 14 of 105

3. High-Performance SDN Framework
This section provides a design overview, the northbound and southbound interfaces, and preliminary
results of the core TeraFlow OS components of T3.1, i.e., the Context Management component (see
Section 3.1), the Monitoring component (see Section 3.2), and the Traffic Engineering (TE) component
(see Section 3.3).

3.1. Context Management Component

In this section, we describe the Context Management component in charge of storing the
configurations and attributes of the different network elements managed by the TeraFlow OS.I In
particular, it stores the active contexts, topologies, devices, links, and the services created. For
scalability purposes, it makes use of a No-SQL database to optimize the concurrent access into the
same storage infrastructure. In the following subsections, we describe the architectural design of the
Context Management component, the interfaces it exposes, and we provide some preliminary results
of its operation.

3.1.1. Design Overview

The architectural design of the Context Management component is depicted in Figure 1. The
component consists of two NBIs, namely a gRPC interface exposed to the rest of the TeraFlow OS
components, and a REST interface exposed to external systems, such as Operations Support System
(OSS) or Business Support System (BSS), that might have to retrieve the internal status of the resources
managed by the TeraFlow OS. Both interfaces rely on a Context Servicer that dispatches the incoming
requests and interacts with the Database API used to interact with a No-SQL database. The Database
API enables the Context Management component to use different database backends depending on
the needs of the users. Currently, a pure in-memory database backend and a Redis database backend
are available. The Context Management component also incorporates publish-subscribe mechanisms
over gRPC to broadcast context change events to the rest of the TeraFlow OS components.

Figure 1: Architecture of the Context Management component.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 15 of 105

3.1.2. Interfaces

In this section, we specify the relevant interfaces for the Context Management component. We specify
the gRPC interface, the REST interface, and the Database interface.

• gRPC Interface

The gRPC interface is offered to the rest of Teraflow OS components to enable them to interact with
the Context Management component and get/set/delete information from/into the database, as well
as to receive asynchronous events reporting on changes made by other components to the elements
stored in the database. The RPC methods exposed by this interface are summarized in Table 2. In
short, the interface offers methods to handle the Context, Topology, Device, Link, and Service objects;
for each kind of object, the methods provided enable the interface to be used to list identifiers and
objects, retrieve, update, and delete objects, and subscribe to receive a stream of change events
(create/update/delete event types are supported) per object type.

Table 2: gRPC interface definition for Context Management component.

RPC Method Name Parameters Results
ListContextIds --- ContextIdList
ListContexts --- ContextList
GetContext ContextId Context
SetContext Context ContextId
RemoveContext ContextId ---
GetContextEvents --- stream ContextEvent
ListTopologyIds ContextId TopologyIdList
ListTopologies ContextId TopologyList
GetTopology TopologyId Topology
SetTopology Topology TopologyId
RemoveTopology TopologyId ---
GetTopologyEvents --- stream TopologyEvent
ListDeviceIds --- DeviceIdList
ListDevices --- DeviceList
GetDevice DeviceId Device
SetDevice Device DeviceId
RemoveDevice DeviceId ---
GetDeviceEvents --- stream DeviceEvent
ListLinkIds --- LinkIdList
ListLinks --- LinkList
GetLink LinkId Link
SetLink Link LinkId
RemoveLink LinkId ---
GetLinkEvents --- stream LinkEvent
ListServiceIds ContextId ServiceIdList
ListServices ContextId ServiceList
GetService ServiceId Service
SetService Service ServiceId
RemoveService ServiceId ---
GetServiceEvents --- stream ServiceEvent

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 16 of 105

• REST Interface

The REST interface is offered to external systems, such as an OSS/BSS, that need to track the status of
the different TeraFlow OS context objects. For this reason, this interface provides only read-only
methods to list and retrieve the TeraFlow OS context objects using a JSON-encoded REST-API. The
methods available in this interface are summarized in Table 3.

Table 3. REST-API interface definition for Context Management component.

Method Endpoint URL Results
GET /api/context_ids ContextIdList
GET /api/contexts ContextList
GET /api/context/<context_uuid> Context
GET /api/context/<context_uuid>/topology_ids TopologyIdList
GET /api/context/<context_uuid>/topologies TopologyList
GET /api/context/<context_uuid>/topology/<topology_uuid> Topology
GET /api/device_ids DeviceIdList
GET /api/devices DeviceList
GET /api/device/<device_uuid> Device
GET /api/link_ids LinkIdList
GET /api/links LinkList
GET /api/link/<link_uuid> Link
GET /api/context/<context_uuid>/service_ids ServiceIdList
GET /api/context/<context_uuid>/services ServiceList
GET /api/context/<context_uuid>/service/<service_uuid> Service

• Database Interface

The Database interface provides a list of methods to be implemented in case a developer wants to
adapt the TeraFlow OS Context Management component to use a different No-SQL database backend.
Right now, backends for an in-memory database, as well as a Redis database are available. The
methods required by the Database API are listed in Table 4.

Table 4. Database API Interface definition for Context Management component.

Method Description
Lock(

keys : List[List[str]],
owner_key : Optional[str] = None

) -> Tuple[bool, str]

Locks/unlocks database objects pointed to by the keys
parameter. Each key is a list of strings to enable
hierarchical representations of data. The owner_key
parameter is a randomly generated string key to tag the
locks. If not specified in the lock method, a random
owner_key is generated. Only the owner of the lock that
knows the owner_key can unlock their locked objects.
The lock method returns a Boolean value indicating if
the lock was acquired for all requested keys or for none
of them, and the owner key used. The unlock method
returns a Boolean value indicating if the lock was
released correctly for all the keys requested.

Unlock(
keys : List[List[str]],
owner_key : str

) -> bool

Keys() -> List[str] Lists the available keys in the database.
NOTE: this method traverses the entire database; it
should only be used for debug purposes.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 17 of 105

Exists(key : List[str]) -> bool Returns a Boolean value indicating if a key exists in the
database.

Delete(key : List[str]) -> bool Deletes the specified key and returns a Boolean value
indicating if the key was properly deleted. If the object
does not exist, the error is silently ignored.

Dict_get(
key : List[str],
fields : List[str] = []

) -> Dict[str, str]

Returns the dictionary pointed to by the key parameter.
If the fields parameter is specified, it should contain a
subset of the fields in the dictionary to be retrieved. If
empty, all fields are retrieved. If a field does not exist,
only the existing fields are retrieved. If the dictionary
does not exist, the error is silently ignored, and an
empty dictionary is returned.

Dict_update(
key : List[str],
fields : Dict[str, str] = {}

) -> None

Updates the dictionary pointed to by the key
parameter. In particular, it updates the fields specified
with the new values provided. If the dictionary does not
exist, a new one is created.

Dict_delete(
key : List[str],
fields : List[str] = []

) -> None

Deletes the fields specified by the fields parameter in
the dictionary pointed to by the key parameter. If a field
does not exist, the error is silently ignored. If the
dictionary does not exist, the error is silently ignored.

List_get_all(key : List[str]) -> List[str] Retrieves all the items in the list pointed to by the key
parameter.

List_push_last(
key : List[str],
item : str

) -> None

Pushes a new item at the end of the list pointed to by
the key parameter. If the list does not exist, a new one
is created.

List_remove_first_occurrence(
key : List[str],
item: str

) -> None

Removes the first occurrence of the item in the list
pointed to by the key parameter. If the list does not
exist, the error is silently ignored.

Set_add(
key : List[str],
item : str

) -> None

Adds a new item to the set pointed to by the key
parameter. If the item already exists, nothing is done. If
the set does not exist, a new one is created.

Set_has(
key : List[str],
item : str

) -> bool

Returns a Boolean value indicating if the item specified
exists in the set pointed to by the key parameter. If the
set does not exist, it assumes it is an empty set and False
is returned.

Set_get_all(
key : List[str]

) -> Set[str]

Retrieves all the items in the set pointed to by the key
parameter.

Set_remove(
key : List[str],
item : str

) -> None

Removes the item specified in the item parameter from
the set pointed to by the key parameter. If the item does
not exist in the set, the error is silently ignored. If the
set does not exist, the error is silently ignored.

Dump() -> List[Tuple[str, str, Any]] Dumps the content of the database as a list of tuples,
each containing the object key, the object type, and the
object value.
NOTE: this method traverses the entire database; it
should only be used for debug purposes.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 18 of 105

3.1.3. Preliminary Results

Many unit tests have been implemented for the Context Management component. In this section, we
report the results of these tests illustrating that all the operations are properly implemented. The
results of the tests passed for the “in-memory” and the “Redis” backend, and for the gRPC and REST
interfaces are summarized in Table 5. Note that for gRPC tests, each test involves the listing and
retrieval of non-existing objects, the creation and update of the objects, the retrieval of existing
objects, and the removal of the objects. In all cases, the appropriate constraints (existence of
dependencies, correctness of data types, etc.) are checked. Moreover, all the operations tested are
interleaved with the testing of the publish-subscribe mechanism used to retrieve notifications when
the database objects are created, updated, or deleted.

Table 5. Unit tests passed for the Context Management component.

$ docker exec -i $IMAGE_NAME bash -c "pytest --log-level=DEBUG --verbose
$IMAGE_NAME/tests/test_unitary.py"
130============================= test session starts ==============================
131platform linux -- Python 3.9.6, pytest-6.2.4, py-1.10.0, pluggy-0.13.1 -- /usr/local/bin/python3
132cachedir: .pytest_cache
133benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005
max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)
134rootdir: /var/teraflow
135plugins: benchmark-3.4.1
136collecting ... collected 43 items
137context/tests/test_unitary.py::test_grpc_context[all_inmemory] PASSED [2%]
138context/tests/test_unitary.py::test_grpc_topology[all_inmemory] PASSED [4%]
139context/tests/test_unitary.py::test_grpc_device[all_inmemory] PASSED [6%]
140context/tests/test_unitary.py::test_grpc_link[all_inmemory] PASSED [9%]
141context/tests/test_unitary.py::test_grpc_service[all_inmemory] PASSED [11%]
142context/tests/test_unitary.py::test_rest_populate_database[all_inmemory] PASSED [13%]
143context/tests/test_unitary.py::test_rest_get_context_ids[all_inmemory] PASSED [16%]
144context/tests/test_unitary.py::test_rest_get_contexts[all_inmemory] PASSED [18%]
145context/tests/test_unitary.py::test_rest_get_context[all_inmemory] PASSED [20%]
146context/tests/test_unitary.py::test_rest_get_topology_ids[all_inmemory] PASSED [23%]
147context/tests/test_unitary.py::test_rest_get_topologies[all_inmemory] PASSED [25%]
148context/tests/test_unitary.py::test_rest_get_topology[all_inmemory] PASSED [27%]
149context/tests/test_unitary.py::test_rest_get_service_ids[all_inmemory] PASSED [30%]
150context/tests/test_unitary.py::test_rest_get_services[all_inmemory] PASSED [32%]
151context/tests/test_unitary.py::test_rest_get_service[all_inmemory] PASSED [34%]
152context/tests/test_unitary.py::test_rest_get_device_ids[all_inmemory] PASSED [37%]
153context/tests/test_unitary.py::test_rest_get_devices[all_inmemory] PASSED [39%]
154context/tests/test_unitary.py::test_rest_get_device[all_inmemory] PASSED [41%]
155context/tests/test_unitary.py::test_rest_get_link_ids[all_inmemory] PASSED [44%]
156context/tests/test_unitary.py::test_rest_get_links[all_inmemory] PASSED [46%]
157context/tests/test_unitary.py::test_rest_get_link[all_inmemory] PASSED [48%]
158context/tests/test_unitary.py::test_grpc_context[all_redis] PASSED [51%]
159context/tests/test_unitary.py::test_grpc_topology[all_redis] PASSED [53%]
160context/tests/test_unitary.py::test_grpc_device[all_redis] PASSED [55%]
161context/tests/test_unitary.py::test_grpc_link[all_redis] PASSED [58%]
162context/tests/test_unitary.py::test_grpc_service[all_redis] PASSED [60%]
163context/tests/test_unitary.py::test_rest_populate_database[all_redis] PASSED [62%]
164context/tests/test_unitary.py::test_rest_get_context_ids[all_redis] PASSED [65%]
165context/tests/test_unitary.py::test_rest_get_contexts[all_redis] PASSED [67%]
166context/tests/test_unitary.py::test_rest_get_context[all_redis] PASSED [69%]
167context/tests/test_unitary.py::test_rest_get_topology_ids[all_redis] PASSED [72%]
168context/tests/test_unitary.py::test_rest_get_topologies[all_redis] PASSED [74%]
169context/tests/test_unitary.py::test_rest_get_topology[all_redis] PASSED [76%]
170context/tests/test_unitary.py::test_rest_get_service_ids[all_redis] PASSED [79%]
171context/tests/test_unitary.py::test_rest_get_services[all_redis] PASSED [81%]
172context/tests/test_unitary.py::test_rest_get_service[all_redis] PASSED [83%]
173context/tests/test_unitary.py::test_rest_get_device_ids[all_redis] PASSED [86%]
174context/tests/test_unitary.py::test_rest_get_devices[all_redis] PASSED [88%]
175context/tests/test_unitary.py::test_rest_get_device[all_redis] PASSED [90%]
176context/tests/test_unitary.py::test_rest_get_link_ids[all_redis] PASSED [93%]
177context/tests/test_unitary.py::test_rest_get_links[all_redis] PASSED [95%]
178context/tests/test_unitary.py::test_rest_get_link[all_redis] PASSED [97%]
179context/tests/test_unitary.py::test_tools_fast_string_hasher PASSED [100%]
180============================== 43 passed in 5.97s ==============================

https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L130
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L131
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L132
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L133
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L134
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L135
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L136
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L137
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L138
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L139
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L140
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L141
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L142
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L143
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L144
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L145
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L146
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L147
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L148
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L149
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L150
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L151
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L152
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L153
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L154
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L155
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L156
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L157
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L158
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L159
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L160
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L161
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L162
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L163
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L164
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L165
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L166
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L167
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L168
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L169
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L170
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L171
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L172
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L173
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L174
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L175
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L176
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L177
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L178
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L179
https://gitlab.com/teraflow-h2020/controller/-/jobs/1728670319#L180

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 19 of 105

3.2. Monitoring Component

The Monitoring component manages the monitoring processes in the TeraFlow OS controller where
external agents (subscribers) can subscribe to be able to include or receive information, i.e., metrics
or composite key performance indicators (KPIs), coming from different parts of the system depending
on their nature, such as the lifecycle of microservices, the connectivity of network services/slices or
network devices. In this sense, we assume that a KPI can be composed of one or more metrics available
for one or more subscribers. In this regard, for instance, the aggregate outgoing traffic on a switch
device can be assumed as a KPI, and the traffic leaving each port of the switch will be established as
individual metrics.

The set of functions offered by the Monitoring component will be updated during the project. Some
of the functions to be added later in the project include:

• To provide multiple metrics and KPIs
• To manage multiple external subscriptions
• To generate alarms and notifications to the subscribers
• To allow subscribers to add, modify, and visualize metrics and KPIs.

3.2.1. Design Overview

The architecture of the Monitoring component is composed of two main blocks, the Monitoring Core
and the Metrics Database, as depicted in Figure 2.

Figure 2: Architecture of the Monitoring component.

• Monitoring Core

This is the main block of the Monitoring component. It implements subscription management and
the necessary features to be offered by its server. Likewise, the Monitoring Core can be
decomposed in four main sub-blocks according to its functionality:

o Subscription Manager is responsible for managing the information of the subscribers,
and for coordinating the actions inside the Monitoring Core among the different sub-
components.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 20 of 105

o Management Database is used to support the Subscription Manager by storing and
managing information associated with subscribers, metrics, and KPIs. Here, the
metrics and KPIs will have a concrete structure to be in line with the monitoring
information models.

o Retriever interfaces with external entities to retrieve the necessary information
(metrics) requested by the subscribers. Such information is divided into three main
groups: microservice life cycle, network service/slice connectivity, and device metrics.
Each group will be handled independently within the Retriever.

o Exporter provides metrics and KPIs to the subscribers. Additionally, it handles the
alarms defined to notify the subscribers according to some specified metrics/KPIs
threshold or ranges.

• Metrics Database

The Metrics Database stores and manages the information related to the metrics/KPIs. The
structure of the samples to be stored must be mapped to fields in the monitoring information
model to provide full interoperability with the Monitoring Core block. Additionally, the Metrics
Database directly integrates with a data visualization tool; this way, not only is integration
complexity reduced, but the potential issues derived from low-level interoperability are also
minimized.

Figure 3 shows a diagram with an example of how to monitor a KPI (or metric) from its registration
request to its final delivery in the Data Viewer to be available to users. Such a workflow is divided into
five main stages: i) listen for new device events from the context service; ii) create a monitoring KPI;
iii) request to monitor the KPI from the Device Service; iv) collect KPI from devices; and v) plot the
data in the Data Viewer. For the sake of simplicity, in this example we assume a KPI with only one
metric, so KPI and metric terms in this example are interchangeable. These five stages are described
in more detail after the figure.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 21 of 105

Figure 3: Complete KPI monitoring exemplary workflow.

1. Listen for new device events from the context service:
o This workflow is triggered when the Monitoring component starts listening to the

context service about new device events.
o Once the EventQueue is returned as a non-empty list of events, each event will be

translated to KpiRequests according to its nature and processed individually by the
monitoring service.

o All the necessary information to define a skeleton (structure) for the KPI with some
specific fields is extracted from the event and forwarded to the KpiRequest, like the
Kpi Sample Type, Device ID, Service ID or Slice ID.

2. Create a Monitoring KPI:
o Each new KpiRequest is registered as a new KPI into the Monitoring component. To

do so, the Monitoring Core sends information to the Management DB to include a
new KPI by storing the KPI structure, and assigns a unique ID for this KPI request.

o Then, the KpiID assigned by the Management DB and is sent back to the Monitoring
Core where the new KPI is correctly registered in the system.

3. Request to monitor the KPI:
o Once a KPIs is registered with the Monitoring component, the Monitoring component

requests start monitoring the KPI. Note that this action can be executed automatically
by the Monitoring component in this workflow or manually requested by an external
subscriber via the monitoring client.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 22 of 105

o The Monitoring Core block receives the monitoring KPI request and queries the
Management DB about the associated KPI. The Management DB returns the complete
information about the KPI.

o The Monitoring component sends a notification to the device service (source
information from the monitoring perspective) with all the necessary information
about the KPI.

o The device service receives the KPI information and triggers a parallel workflow to
retrieve the actual device information from the system. This is the service responsible
for the interface between the TeraFlow OS and the SDN agents to communicate with
the actual devices.

4. Collect KPI data from Device:
o If the parallel procedure triggered by the device server is properly executed, the

device starts to send monitoring data related to the KPI to the device service. Once
data reaches the device service, it is forwarded to the Monitoring component by
sending a message with a KpiID, a timestamp of the sample as measured by the origin,
and a value for that measure attached to the message.

o Then, the Monitoring component uses the KpiID to retrieve all the structure defined
for the KPI to build its corresponding structure for the KPI sample by including the
timestamp and the KPI value.

o Finally, the complete KPI sample is stored into the Metrics DB.
5. Plot data in Data Viewer:

o The Metrics DB is configured to automatically export the stored data to other external
entities, such as a Data Viewer. This way, when KPI samples are available in the
Metrics DB, they are ready to be visualized by a user via the Data Viewer.

3.2.2. Interfaces

The Monitoring component has three main interfaces that enable connectivity with external entities
that permit it to perform its tasks. and the interfaces are grouped according to their functional nature
as presented in red font in Figure 2: the Monitoring-Data-Source Interface (MDSI), the Monitoring-
Subscribers Interface (MSI), and the Monitoring-MetricsDB Interface (MMDBI).

The information model of the Monitoring component is defined by using the Protocol Buffer syntax
that is inherently related to gRPC communications, so the MDSI and MSI are implemented using gRPC-
based connectivity. Thus, the Monitoring component provides a gRPC server that exports the methods
defined in the information models to be exploited by specific clients to be integrated into the
corresponding entities that want to communicate with the Monitoring component.

• gRPC Methods

The list of RPC methods defined in the Monitoring component information model is exposed by
the gRPC server is shown in Table 6. This list will be updated in the following versions of the
component.

Table 6: gRPC interface definition for Monitoring component.

RPC Method Name Parameters Results
CreateKpi KpiDescriptor KpiId
IncludeKpi Kpi -

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 23 of 105

MonitorKpi MonitorKpiRequest -
GetKpiDescriptor KpiId KpiDescriptor
GetStreamKpi KpiId stream Kpi
GetInstantKpi KpiId Kpi

• Monitoring-MetricsDB Interface

Both blocks that comprise the Monitoring component, i.e., the Monitoring Core and the Metrics
DB, are deployed in separate Docker containers that belong to the same pod deployed on a
Kubernetes cluster. In this case, InfluxDB v1.8 is chosen to act as the Metrics DB. Thus, the MMDBI
is built under the InfluxDB v1.8 API by using HTTP-based communication. Based on that, the
methods developed for the MMDBI are as shown in Table 7. Like the gRPC Interface, the list of
available methods in this interface will be upgraded in the following iterations.

Table 7: MMDBI definition for Monitoring component.

MMDBI Method Name Parameters Results
write_KPI time,kpi_id,device_id,kpi_sample_type,kpi_value -
read_KPI_points - List(points)

3.2.2.1. Internal Interface
Additionally, we also consider an internal interface within the Monitoring Core block to enable
connectivity between the Subscription Manager and the Management Database (SMMBDI). In our
implementation the database chosen is SQLite. The methods currently implemented for this interface
are presented in Table 8.

Table 8: SMMDBI definition for Monitoring component

SMMDBI Method Name Parameters Results
insert_KPI kpiDescription,device_id,kpi_sample_type KpiID
delete_KPI device_id,kpi_sample_type -
delete_kpid_id kpi_id -
get_KPI kpi_id Kpi
get_KPIs - List(Kpi)

3.2.3. Preliminary Results

It is worth mentioning that some of the functional blocks exposed by the Monitoring component are
only partially implemented at the time of this report. The component will be upgraded and completed
in the following iterations.

Here, we present the screenshots of some preliminary results achieved during the development and
testing of the Monitoring component regarding the parts that have been fully implemented.

First, Figure 4 shows the results of the unit tests passed related to the gRPC, SQLite, and InfluxDB
interfaces as well as the methods implemented in the monitoring server (Monitoring Core), for
instance, to retrieve and process new events.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 24 of 105

Figure 4: XML output of the unit tests implemented in the monitoring server.

Figure 5 shows the log output from the monitoring gRPC server. First, the server can be seen running
and listening on port 7070. In addition, the log shows the output of the monitoring server when a new
KPI is registered with the Monitoring component and shows the unique ID assigned to that KPI action
performed by the SQLite database. This action is initially triggered by an external entity through the
monitoring client when executing the CreateKPI RPC method.

Figure 5: Monitoring server logs when a KPI is registered in the Monitoring DB.

Figure 6 shows the log of the InfluxDB. The following results are presented: (i) the POST query
triggered to include a KPI point from the Monitoring component (teraflow name in the figure); and (ii)
a GET query associated to the read_KPI_points method defined in the MMDBI. This query is also
requested by the Monitoring Core block by using the InfluxDB v1.8 API.

Figure 6: InfluxDB logs when Monitoring component executes a query to store a KPI point.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 25 of 105

3.3. Traffic Engineering Component

The Traffic Engineering (TE) component is responsible for setting up and optimizing Segment Routing
(SR) paths in the infrastructure exposed by the Device component. It does so by building a Traffic
Engineering Database (TED) from the topology exposed by the Context component and synchronizing
all the SR Label Switched Path (LSP) known by the routers that connect to the Path Computation
Element (PCE) through the PCE Protocol (PCEP).

The path computation can be fine-tuned by a set of constraints:

• Desired/required path hop-count,
• Desired/required path minimum bandwidth, and
• Desired/required path maximum delay.

3.3.1. Design Overview

The TE component is composed of three sub-components, the TED service, the PCE service, and the
Smart Traffic Engineering service as shown in Figure 7.

• Traffic Engineering Database
This part of the component is responsible for building and maintaining a coherent view of the
topology.

• Path Computation Element
This part of the component is responsible for establishing PCEP communications with the
routers in order to establish new SR paths on request, and to optimise paths it owns (i.e.,
paths that have been delegated to it).

• Smart Traffic Engineering
This part of the component is the brain that calculates requested LSPs and optimises existing
LSPs to satisfy the required constraints.

These services are developed using the Erlang language. With the Erlang virtual machine, more than
a million processes can be spawned on modern hardware, with the main limitation being the memory
and the input/output (I/O), offering good vertical scaling. In addition, Erlang provides transparent
distribution and inter-process communication, making it possible for all these processes to run on
different physical machines, therefore scaling the system horizontally. Erlang is a functional language
where all the processes are isolated and communicate between each other with messages (i.e., there
is no shared memory). This makes Erlang applications reliable and fault-tolerant, as no state
corruption is ever propagated to the rest of the system. In addition, the native tools for process
monitoring and supervision allow the system to heal itself automatically by restarting any failing
process from a known working state.

The Erlang PCE spawns two processes per PCEP connection. The first one handles the TCP/IP
connection and the encoding and decoding of the PCEP messages from/to internal data structures.
The decoded PCEP messages are sent to the second process that manages the protocol state machine
and the cached context data. This second process presents a high-level API to the rest of the service
that is mostly PCEP-independent. The PCE itself is formed of a pool of processes each one owning a
shard of the flow space. The PCE processes are aware of the session processes with flows defined in
their managed space.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 26 of 105

Figure 7: Overview of the TE component.

3.3.2. Interfaces

The interface to the TE component is a set of gRPC calls for the Service component for the Segment
Routing LSPs. These calls are presented in Table 9, while their workflows are visualized in Figure 8.
This list will be updated in the following versions of the component.

RPC Method Name Parameters Results
RequestLSP Service ServiceState
UpdateLSP ServiceId ServiceState
DeleteLSP ServiceId -

Table 9: TE component interface methods.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 27 of 105

Figure 8: Flow diagram for the main RPCs of the TE component.

1. Building TED
When started, the TE component builds its view of the topology using the API of the
Context component.

2. Registering PCE
o The component then iterates over all the relevant devices and configures them to

connect to the PCE using PCEP.
o When the devices’ PCCs are configured, they connect to the PCE and start

synchronizing their LSPs through PCEP.
3. Requesting LSP

The Service component requests a computed path using the gRPC API. The TE
component computes the optimum path and initiates it on the head-end routers
connected through PCEP. The TE component monitors the status of the created LSP
and, when it is active, responds to the Service component with a status.

4. Deleting LSP

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 28 of 105

The Service component can delete a previously requested LSP through this gRPC API
method. This method removes the corresponding LSP from the relevant head-end
routers through PCEP.

3.3.3. Preliminary Results

The Traffic Engineering component has already been partially implemented, even though not yet
integrated as a fully-fledged TeraFlow Component. Most notably the PCE element was demonstrated
at the 2021 IEEE NFV-SDN conference.

The demonstration visualizes the Erlang PCE setting-up and performing Traffic Engineering over a
virtualized network composed of six interconnected routers as shown in Figure 9, where each head-
end router connects to the Erlang PCE through PCEP. The routers are instances of Free-Range Routing
(FRR) daemons running on a single desktop machine with a network virtualized using Linux
namespaces.

Figure 9: Virtual topology used for demonstrating Transport Engineering.

A flow of ICMP packets is initiated between the source and destination, and the flow is directed from
one side of the topology to the other side using the PCE console as shown in Figure 10. The
demonstration then validates whether flow migration is effective by using packet inspection.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 29 of 105

Figure 10: Performing Traffic Engineering from the Erlang PCE console.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 30 of 105

4. Hardware and L0/L3 Multi-layer Integration
This section provides a design overview, the northbound and southbound interfaces, and
preliminary results of the core TeraFlow OS components of T3.2, i.e., the Device component (see
Section 4.1) and the Service component (see Section 4.2).

4.1. Device Component

In this section, we describe the Device component in charge of interacting with the underlying network
equipment. Different protocols and data models might be needed to manage the network equipment;
for this reason, the Device component provides a Driver API that enables developers to implement
new drivers and integrate them into the TeraFlow OS. We describe the Device component’s
architectural design, the plugins’ framework, and the Driver interface, as well as the interface it
exposes to the rest of the TeraFlow OS components, while providing some preliminary results of its
operation.

4.1.1. Design Overview

The architectural design of the Device component is depicted in Figure 11. The component consists of
a gRPC-based NBI exposed to the rest of TeraFlow OS components, and a set of SBIs that interact with
different network equipment using appropriate protocols and data models. In between, the Device
Servicer block dispatches the incoming requests and interacts with the SBI Driver API to choose the
appropriate driver for each network device. Given that the Device component needs to know about
the state and details of the network devices, it makes use of the Context Management component to
store and retrieve up-to-date details about the devices using the Context Management gRPC interface.
The SBI Driver API enables the Device component to be extended to use different protocols and data
models to communicate with various types of programmable devices.

The available driver plugins are listed below, with a link to the corresponding subsection:

• An emulated driver plugin for testing purposes (see Section 4.1.2.1);
• An OLS ONF Transport API [TR547] driver plugin (see Section 4.1.2.2);
• An ONF TR-532 microwave driver plugin (see Section 4.1.2.3);
• A NETCONF [15]/OpenConfig [16] driver plugin for packet routers (see Section 4.1.2.4); and
• A P4 [4] driver plugin for next-generation white box switches (see Section 4.1.2.5).

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 31 of 105

Figure 11: Architecture of the Device component.

4.1.2. Device Plugins

Depending on the device to be managed, the TeraFlow OS Device component loads and uses the
respective device plugin to translate abstract device operations into device-specific operations. The
implemented drivers follow the Driver API described in Section 4.1.3. In the rest of this section, a
variety of device plugins are presented.

4.1.2.1. Emulated Device Driver Plugin
Introduction

This section describes the Emulated Device Driver Plugin. This driver is used only for testing purposes
in order to avoid strict dependencies on actual (physical or virtual) devices connected to the Device
component for testing.

Supported Function

The function of this driver is very simple; it operates like a normal driver but, instead of interacting
with physical/virtual devices, it uses internal memory for storing the configuration values provided.
The driver implements all the methods described in the Device Driver API (see Section 4.1.3):

• Initialization of the Emulated Driver provides a setting named as “endpoints” to define the
endpoints that will be exposed by the emulated device.

• Connect and Disconnect methods do nothing, since the emulated driver does not need to
connect to any external device.

• GetInitialConfig and GetConfig retrieve an initial configuration and the current configuration
set for the emulated device. GetConfig supports filtering of the resources according to the
parameters specified for the method.

• SetConfig and DeleteConfig update and delete the configured resources for the emulated
driver.

• SubscribeState and UnsubscribeState activate and deactivate the monitoring of specific
resources previously configured.

• GetState periodically retrieves synthetic randomly generated values according to the
configured sampling durations and intervals.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 32 of 105

4.1.2.2. OLS ONF Transport API Driver Plugin
Introduction

This subsection describes the implementation of the TAPI Device Driver that serves as an SBI for the
TeraFlow OS inside the Device component. As depicted in Figure 12, we consider the use of the TAPI
Driver to interact with an Open Line System (OLS) Controllers in charge of managing underlying optical
transport networks. In that way, the entire optical domain managed by the OLS controller is exposed
to the TeraFlow OS as a single component with endpoints corresponding to the border endpoints in
the optical network.

Figure 12: Architecture of the Device component’s Transport API.

Supported Function

The goal of the TAPI Device Driver is to provide the function needed to establish basic communication
with an OLS controller that will, in turn, manage the optical nodes. The interface to be implemented
for TAPI-ready nodes is detailed in OpenAPI Specification (OAS) YAML files available in [17]. In
particular, the REST API URIs supported for the basic functionality of TAPI are described below:

• GET /restconf/data/tapi-common:context
This URI provides the client with the TAPI context of the server, i.e., the topology, connectivity
services, Service Interface Points (SIPs), as well as information about the name of the context
and its Universal Unique Identifier (UUID). This URI is used to retrieve information about the
TAPI server and to check effective connectivity with it.

• GET /restconf/data/tapi-common:context/tapi-connectivity:connectivity-
context/connectivity-service
This URI retrieves the connectivity services present in the TAPI server as well as the underlying
connections that support them.

• DELETE /restconf/data/tapi-common:context/tapi-connectivity:connectivity-
context/connectivity-service={uuid}

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 33 of 105

This URI enables deletion of the connectivity service associated with a certain UUID.
• POST /restconf/config/context/connectivity-service/{uuid}

This URI provides an endpoint for the creation of connectivity services. The data embedded in
the body of the POST request is formatted as a JSON message. The JSON snippet in Figure 13
shows an example of creating a unidirectional 50 GHz connectivity service between two
optical network endpoints.

Figure 13: Example TAPI Create Connectivity Service.

4.1.2.3. ONF TR-532 Microwave Driver Plugin
Introduction

This subsection gives a high-level description of the data models implemented to manage the
following MW device types through an external SDN Controller NBI:

• IETF Network (RFC 8345)
• IETF Network Topology (RFC 8345)
• IETF Eth-Tran Service

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 34 of 105

• ONF TR-532 Microwave Information Model (as supported by SIAE ALCplus2e MWV
equipment)

List of Supported ONF TR-532 Models

The ONF TR-532 Microwave Information Model is a collection of YANG modules managed as
augmentation of the main “core-model” module as shown in Table 10.

Table 10: YANG data models corresponding to ONF TR-532 device models.

ONF TR532 Model YANG model Revision Version Reference

air-interface air-interface-2-0.yang 2020-01-21 2.0 Section 8
co-channel-profile co-channel-profile-1-0.yang 2020-01-27 1.0 Section 8
core-model core-model-1-4.yang 2019-11-27 1.4 Section 8
ethernet-container ethernet-container-2-0.yang 2020-01-21 2.0 Section 8
Firmware firmware-1-0.yang 2021-04-01 1.0 Section 8
hybrid-mw-structure hybrid-mw-structure-2-0.yang 2020-01-22 2.0 Section 8
ltp-augment ltp-augment-1-0.yang 2020-08-26 1.0 Section 8
mac-interface mac-interface-1-0.yang 2020-01-23 1.0 Section 8
pure-ethernet-structure pure-ethernet-structure-2-0.yang 2020-01-22 2.0 Section 8
tdm-container tdm-container-2-0.yang 2020-01-23 2.0 Section 8
vlan-fc vlan-fc-1-0.yang 2021-02-07 1.0 Section 8
vlan-fd vlan-fd-1-0.yang 2021-01-26 1.0 Section 8
vlan-interface vlan-interface-1-0.yang 2021-01-04 1.0 Section 8
wire-interface wire-interface-2-0.yang 2020-01-23 2.0 Section 8
wred-profile wred-profile-1-0.yang 2020-01-24 1.0 Section 8

The detailed information for ONF TR532 modules is publicly available [10]. Section 8 reports a list of
parameters available in the models and supported by SIAE ALCplus2e MWV equipment. In the SIAE
SDN Controller implementation, the TR-532 model is grafted under the entity “node” of the IETF-
Network-Topology to provide a complete view of the microwave network in case a discovery of
topology is needed by an E2E service manager. The Driver instance for MW devices does not interact
directly with managed network elements, but with the SIAE SDN MW-Domain Controller as a network-
level view of the underlying MW domain. This architecture, shown in Figure 14, has two consequences:

1) The MW devices can be still managed individually, but device driver function interfaces must be
slightly modified to make explicit the specific device to be managed (via the extra parameter
‘ne_instance’).

2) Additionally, the Device component manages the state and configuration of MW-Domain related
attributes, namely: MW Network Topology, MW Link Inventory, and MW End-to-End Ethernet (VLAN)
Services. The related data can be exported to/from other TeraFlow OS Core components via suitable
data models.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 35 of 105

Figure 14: Overview of the interaction between TeraFlow and the MW SDN Controller.

In the following, we describe the list of MW Device Driver APIs supported by the SIAE
implementation:

def Connect(self, ne_instance : str) -> bool:
" Connect to the Device indicated by the argument ne_instance,
which contains the IP address of the Device. Create the NE instance
in the SIAE SDN Controller, read configuration data and alarm
status from device and store them internally.

Returns:
 succeeded : bool

Boolean variable indicating if connection succeeded.

 "

def Disconnect(self, ne_instance : str) -> bool:

" Disconnect from the Device indicated by the argument ne_instance
(IP address). Disconnect and delete NE instance from SIAE SDN
Controller, removing all stored information.

Returns:
 succeeded : bool

Boolean variable indicating if disconnection succeeded.
 "

def GetConfig(self, resource_keys : List[str], ne_instance : str) ->
List[Union[Any, None, Exception]]:

" Retrieve running configuration of a Device (either entire or
selected resource keys), or retrieve the MW-domain configuration as
network topology, link inventory, or Ethernet (VLAN) services.

Parameters:
 resource_keys : List[str]

List of keys pointing to the resources to be retrieved.
Each key can be a configuration attribute to be retrieved
from a specific Device (see 8.ANNEX for the list of
available attributes) or one of the following keywords:

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 36 of 105

 ‘NetworkTopology’
Return the list of all MWV devices managed by
SIAE SDN Controller,

 ‘LinkInventory’
Return the list of all the physical links
(Radio and Ethernet wired) connecting managed
MWV devices,

 ‘VLAN’
Return the list of all the Ethernet services
(VLAN) configured into MWV device network

 ne_instance : str
Specific Device from which the configuration must be
retrieved.

Returns:
 values : List[Union[Any, None, Exception]]

List of values for resource keys requested. Return values
must be in the same order that the resource keys were
requested. If a resource is found, the appropriate value
type must be retrieved, if a resource is not found, None
must be retrieved in the List for that resource.

 "

def SetConfig(self, resources : List[Tuple[str, Any]], ne_instance : str) -
> List[Union[bool, Exception]]:

" Create/Update configuration for a list of resources of a specific
Device, or for MW-domain Ethernet (VLAN) services.

 Parameters:
 resources : List[Tuple[str, Any]]

List of tuples, each containing either:
a resource_key pointing the attribute to be modified
or created in the specific Device (see 8.ANNEX for
the list of available attributes), and a
resource_value containing the new value to be set;

or:
the keyword ‘VLAN’ to configure an Ethernet service,
with configuration parameters encoded in the second
element of the tuple.

 ne_instance : str
Specific Device which must be configured.

 Returns:
 results : List[Union[bool, Exception]]

List of results for resource key changes requested.
Return values must be in the same order that the resource
keys were requested.

 "

def DeleteConfig(self, resource_keys : List[str], ne_instance : str) ->
List[Union[bool, Exception]]:

" Delete configuration for a list of resource keys of a specific
Device, or for a MW-domain Ethernet (VLAN) service.

 Parameters:
 resource_keys : List[str]

List of keys pointing to the resources to be deleted in
the specific Device, or the keyword ‘VLAN:<service_id>’
indicating the deletion of the Ethernet service
identified by <service_id>.

 ne_instance : str
Specific Device from which the listed resources must be
deleted.

 Returns:

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 37 of 105

 results : List[bool]
List of results for resource key and/or Ethernet service
deletions requested. Return values must be in the same
order that the keys were requested.

 "

def SubscribeState(self, subscriptions : List[Tuple[str, float, float]],
ne_instance : str) -> List[Union[bool, Exception]]:

" Subscribe to state information of an entire Device, or selected
resources. Subscriptions are incremental. Driver should keep track of
requested resources.

 Parameters:
 subscriptions : List[Tuple[str, float, float]]

List of tuples, each containing a resource_key pointing
to the resource to be subscribed, a sampling_duration,
and a sampling_interval (both in seconds with float
representation) defining, respectively, for how long
monitoring should last, and the desired monitoring
interval for the resource specified.

 ne_instance : str
Specific Device from which the state subscription must be
set (see 8.ANNEX for the list of state parameters that
can be monitored).

 Returns:
 results : List[bool]

List of results for resource key subscriptions requested.
Return values must be in the same order than resource
keys requested.

 "

def UnsubscribeState(self, subscriptions : List[Tuple[str, float, float]],
ne_instance : str) -> List[Union[bool, Exception]]:

" Unsubscribe from state information for an entire Device, or
selected resources. Subscriptions are incremental. Driver should keep
track of requested resources.

 Parameters:
 subscriptions : List[str]

List of tuples, each containing a resource_key pointing
to the resource to be subscribed, a sampling_duration,
and a sampling_interval (both in seconds with float
representation) defining, respectively, for how long
monitoring should last, and the desired monitoring
interval for the resource specified.

 ne_instance : str
Specific Device from which the state subscription must be
unset (see 8.ANNEX for the list of state parameters that
can be monitored).

 Returns:
results : List[Union[bool, Exception]]

List of results for resource key unsubscriptions
requested. Return values must be in the same order that
the resource keys were requested.

 "

def GetState(self, blocking=False, ne_instance : str) ->
Iterator[Tuple[float, str, Any]]:

" Retrieve last collected values for subscribed resources of a
specific Device.

 Parameters:
 blocking : bool

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 38 of 105

Select the driver behaviour. In both cases, the driver
will first retrieve the samples accumulated and available
in the internal queue. Then, if blocking, the driver does
not terminate the loop and waits for additional samples
to come, thus behaving as a generator. If non-blocking,
the driver terminates the loop and returns. Non-blocking
behaviour can be used for periodically polling the
driver, while blocking can be used when a separate thread
is in charge of collecting the samples produced by the
driver.

 ne_instance : str
Specific Device from which the last collected values must
be retrieved.

 Returns:
 results : Iterator[Tuple[float, str, Any]]

Sequences of state samples. Each State sample contains a
float Unix-like timestamp of the sample in seconds with
up to microsecond resolution, the resource_key of the
sample, and its resource_value. Only resources with an
active subscription may be retrieved. Interval and
duration of the sampling process are specified when
creating the subscription using method SubscribeState().
Order of values yielded is arbitrary.

 "

4.1.2.4. OpenConfig Driver Plugin
Introduction

This subsection includes a high-level introduction of the OpenConfig parameters that are
implemented by the Infinera NETCONF server and supported by DRX-30 IP/MPLS routers. The goal of
this chapter is to provide a Device Driver interface for populating the configuration templates used to
create the requests and generate OC messages that are issued to the routers. The overall setup is
depicted in Figure 15, where the NETCONF server described in this section is part of DRX-30 router
implementation.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 39 of 105

Figure 15: Architecture of the Device component and how it interacts with DRX-30 IP/MPLS routers.

Supported OC functionality

The following OC functionality is supported in the CNOS2.4-SP2 release, which was released
November 26, 2021.

• Configure HW inventory
• Read HW-version, serial number, and manufacturing date
• Control fan speed
• Activate/deactivate power supplies
• Monitor power supply state and statistics (capacity, input/output current/voltage, and

output power)
• Control interface admin state, MTU, and loopback.
• Enable/disable optical transceiver
• Control interface speed and auto-negotiation mode
• Configure interface IP-address and prefix length
• Configure Link Aggregation (LAG)
• Configure sub-interfaces: VLAN ID
• Configure routing protocols (BGP, OSPF)
• Configure static routes.
• Port statistics

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 40 of 105

List of OC supported parameters

To provide further details on supported functionality, the OC parameters implemented in the
Infinera NETCONF server are listed in Table 11.

Table 11: OC data model parameters exposed by the Infinera NETCONF server.

OpenConfig path OpenConfig base model Revision Version

/components/component/config/name openconfig-platform.yang 16/04/2019 0.12.2
/components/component/fan/state/oc-fan:speed openconfig-platform.yang 16/04/2019 0.12.2
/components/component/name openconfig-platform.yang 16/04/2019 0.12.2
/components/component/oc-linecard:linecard/oc-linecard:config/oc-
linecard:power-admin-state

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/oc-linecard:linecard/oc-linecard:state/oc-
linecard:power-admin-state

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/oc-linecard:linecard/oc-linecard:state/oc-
linecard:slot-id

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/oc-transceiver:transceiver/oc-
transceiver:config/oc-transceiver:enabled

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/oc-transceiver:transceiver/oc-
transceiver:state/oc-transceiver:enabled

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/port/oc-port:breakout-mode/oc-
port:config/oc-port:channel-speed

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/port/oc-port:breakout-mode/oc-
port:config/oc-port:num-channels

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/port/oc-port:breakout-mode/oc-
port:state/oc-port:channel-speed

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/port/oc-port:breakout-mode/oc-
port:state/oc-port:num-channels

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/config/oc-platform-
psu:enabled

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:capacity

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:enabled

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:input-current

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:input-voltage

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:output-current

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:output-power

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/power-supply/state/oc-platform-
psu:output-voltage

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/state/description openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/hardware-version openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/id openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/location openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/mfg-date openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/oper-status openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/parent openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/serial-no openconfig-platform.yang 16/04/2019 0.12.2
/components/component/state/type openconfig-platform.yang 16/04/2019 0.12.2
/components/component/subcomponents/subcomponent/config/na
me

openconfig-platform.yang 16/04/2019 0.12.2

/components/component/subcomponents/subcomponent/name openconfig-platform.yang 16/04/2019 0.12.2
/components/component/subcomponents/subcomponent/state/na
me

openconfig-platform.yang 16/04/2019 0.12.2

/interface/config/loopback-mode openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/description openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/enabled openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/loopback-mode openconfig-interfaces.yang 16/04/2019 0.12.2

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 41 of 105

/interfaces/interface/config/mtu openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/name openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/oc-vlan:tpid openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/config/type openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/oc-eth:ethernet/oc-eth:config/oc-eth:auto-
negotiate

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/oc-eth:ethernet/oc-eth:config/oc-eth:duplex-
mode

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/oc-eth:ethernet/oc-eth:config/oc-eth:port-
speed

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/oc-eth:ethernet/oc-eth:config/oc-
lag:aggregate-id

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/oc-eth:ethernet/oc-eth:state/oc-eth:port-speed openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/oc-lag:aggregation/oc-lag:config/oc-lag:lag-type openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/oc-lag:aggregation/oc-lag:config/oc-lag:min-
links

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/state/admin-status openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/enabled openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/name openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/oper-status openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/type openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/subinterfaces/subinterface/config/description openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/subinterfaces/subinterface/config/enabled openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/subinterfaces/subinterface/config/index openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/subinterfaces/subinterface/oc-ip:ipv4/oc-
ip:addresses/oc-ip:address/oc-ip:config/oc-ip:ip

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-ip:ipv4/oc-
ip:addresses/oc-ip:address/oc-ip:state/oc-ip:origin

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-ip:ipv4/oc-
ip:addresses/oc-ip:address/oc-ip:config/oc-ip:prefix-length

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-ip:ipv4/oc-
ip:config/oc-ip:mtu

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-vlan:vlan/oc-
vlan:config/oc-vlan:vlan-id

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-vlan:vlan/oc-
vlan:match/oc-vlan:double-tagged/oc-vlan:config/oc-vlan:inner-vlan-
id

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-vlan:vlan/oc-
vlan:match/oc-vlan:double-tagged/oc-vlan:config/oc-vlan:outer-vlan-
id

openconfig-interfaces.yang 16/04/2019 0.12.2

/interfaces/interface/subinterfaces/subinterface/oc-vlan:vlan/oc-
vlan:match/oc-vlan:single-tagged/oc-vlan:config/oc-vlan:vlan-id

openconfig-platform 16/04/2019 0.12.2

/interfaces/interface/state/counters/in-octets openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/in-pkts openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/in-errors openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/out-octets openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/out-pkts openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/out-discards openconfig-interfaces.yang 16/04/2019 0.12.2
/interfaces/interface/state/counters/out-errors openconfig-interfaces.yang 16/04/2019 0.12.2
/network-instances/network-instance/config/description openconfig-network-

instance.yang
28/11/2019 0.13.2

/network-instances/network-instance/config/enabled openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/config/name openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/config/route-distinguisher openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/config/type openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/encapsulation/config/encapsulation-type

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/inter-instance-policies/apply-
policy/config/export-policy

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-instance/inter-instance-policies/apply-
policy/config/import-policy

openconfig-network-instance 28/11/2019 0.13.2

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 42 of 105

/network-instances/network-instance/interfaces/interface/config/id openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/interfaces/interface/config/interface

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/interfaces/interface/config/subinterface

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/global/config/as

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/global/config/router-id

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/apply-
policy/config/export-policy

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/apply-
policy/config/import-policy

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/descript
ion

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/local-as

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/neighb
or-address

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/peer-as

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/peer-
type

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/config/remove
-private-as

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/ebgp-
multihop/config/enabled

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/bgp/neighbors/neighbor/ebgp-
multihop/config/multihop-ttl

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/config/enabled

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/config/identifier

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/config/name

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/config/identifier

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
config/authentication-

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
config/id

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
config/network-type

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
config/passive

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
interface-ref/config/interface

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/areas/area/interfaces/interface/
interface-ref/config/subinterface

openconfig-network-instance 28/11/2019 0.13.2

/network-instances/network-
instance/protocols/protocol/ospfv2/global/config/router-id

openconfig-network-
instance.yang

28/11/2019 0.13.2

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 43 of 105

/network-instances/network-instance/protocols/protocol/static-
routes/static/config/prefix

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/protocols/protocol/static-
routes/static/next-hops/next-hop/config/metric

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/protocols/protocol/static-
routes/static/next-hops/next-hop/config/next-hop

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/table-connections/table-
connection/config/address-family

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/table-connections/table-
connection/config/dst-protocol

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/table-connections/table-
connection/config/import-policy

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/table-connections/table-
connection/config/src-protocol

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/tables/table/config/address-
family

openconfig-network-
instance.yang

28/11/2019 0.13.2

/network-instances/network-instance/tables/table/config/protocol openconfig-network-
instance.yang

28/11/2019 0.13.2

/routing-policy/defined-sets/oc-bgp-pol:bgp-defined-sets/oc-bgp-
pol:ext-community-sets/oc-bgp-pol:ext-community-set/oc-bgp-
pol:config/oc-bgp-pol:ext-community-member

openconfig-routing-policy.yang 21/11/2018 3.1.1

/routing-policy/defined-sets/oc-bgp-pol:bgp-defined-sets/oc-bgp-
pol:ext-community-sets/oc-bgp-pol:ext-community-set/oc-bgp-
pol:config/oc-bgp-pol:ext-community-set-name

openconfig-routing-policy.yang 21/11/2018 3.1.1

/routing-policy/policy-definitions/policy-definition/config/name openconfig-routing-policy.yang 21/11/2018 3.1.1
/routing-policy/policy-definitions/policy-
definition/statements/statement/actions/config/policy-result

openconfig-routing-policy.yang 21/11/2018 3.1.1

/routing-policy/policy-definitions/policy-
definition/statements/statement/conditions/oc-bgp-pol:bgp-
conditions/oc-bgp-pol:match-ext-community-set/oc-bgp-
pol:config/oc-bgp-pol:ext-community-set

openconfig-routing-policy.yang 21/11/2018 3.1.1

/routing-policy/policy-definitions/policy-
definition/statements/statement/conditions/oc-bgp-pol:bgp-
conditions/oc-bgp-pol:match-ext-community-set/oc-bgp-
pol:config/oc-bgp-pol:match-set-options

openconfig-routing-policy.yang 21/11/2018 3.1.1

/routing-policy/policy-definitions/policy-
definition/statements/statement/config/name

openconfig-routing-policy.yang 21/11/2018 3.1.1

/vlan-tpid-config/tpid (equal to /interfaces/interface/config/oc-
vlan:tpid)

openconfig-vlan 16/04/2019 3.2.0

Node discovery

Node discovery defines a data model for representing the system inventory. The model reflects every
replaceable unit of the node. Every element in the inventory is termed a “component” with each
component having a unique name and type. The uniqueness is guaranteed by the system within the
node. Components have properties defined by the system that are modelled as a list of key-value
pairs. These may or may not be user configurable.

Each component also has a list of “subcomponents” which are references to other components.
Appearance in a list of subcomponents indicates a containment relationship as described above. For
example, a line card component is having a list of references to port components that reside on the
line card. The properties for each component may include dynamic values, e.g., in the “state” part of
the schema. Further details are provided in Section 8, as follows:

• OC query to get the inventory details for all the components
• OC query to get details for all the interfaces.

L3-VPN use case: Service provisioning scenarios to configure a L3-VPN using OC models

The following scenario lists the required steps to configure a L3-VPN in Infinera DRX-30 stacked node:

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 44 of 105

• Create L3-VPN network-instance
o <edit-config> - Create L3-VPN network-instance

• Define BGP Route Target for a L3-VPN network-instance
o <edit-config> "ext-community-set-name"
o <edit-config> "ext-community-member"

• Create BGP Routing Policies Import/Export for a L3-VPN
o <edit-config> create a routing-policy
o <editc-config> create BGP match conditions and action

• Apply BGP Import/export Policy (Route Target) to L3-VPN network instance
o <edit-config> Apply BGP policy to network-instance

• Configure interfaces/subinterfaces L1/L2 parameters (Ethernet)
o <edit-config> - Configure interfaces/subinterfaces L1/L2 parameters (Ethernet)

• Configure interfaces/subinterfaces L3 parameters (IP address & IP mask)
o <edit-config> - Configure interfaces/subinterfaces L3 parameters (IP address & IP

mask)
• Add interfaces (endpoint) to L3-VPN network instance

o <edit-config> - Add interfaces (endpoint) to L3-VPN network instance
• Define routing protocols used within L3-VPN network instance

o <edit-config> - Define routing protocols for network-instance
o <edit-config> - Defining OSPF routing protocol for L3 VRF network-instance

• Assign a routing table (RIB) for each protocol within a L3-VPN network instance
o <edit-config> network-instance routing tables

• Create protocol redistribution policies within a L3-VPN network instance
o <edit-config> Creating protocol redistribution from STATIC to BGP
o <edit-config> Creating protocol redistribution from OSPF to BGP
o <edit-config> Creating protocol redistribution DIRECTLY_CONNECTED to BGP

4.1.2.5. P4 Whitebox Switches Driver Plugin
Introduction

Network devices are typically designed “bottom-up”, with fixed-function chips (i.e., with no run-time
reconfigurability) being the heart of the system, thus determining how the device OS is realized and
what functionality it can offer. Adding a new feature set to a fixed-function switch is a complex process
that takes several months or even years as it requires hardware redesign.

The OpenFlow protocol [3] made a step forward by introducing an open interface to populate the
forwarding tables (i.e., hash tables for Ethernet address lookup, longest-prefix match tables for
IPv4/IPv6 and wildcard lookups for ACLs) in network switches, thus enabling software-based control
planes to control switches from a variety of different vendors. However, OpenFlow still assumes the
switches have a fixed behaviour (i.e., a fixed set of tables), which is typically described in the datasheet
of a switch ASIC. This means that OpenFlow is unable to change the switch behaviour, e.g., by adding
new protocols.

P4 [4] was introduced in 2014 with the purpose of addressing the limitations of the OpenFlow SDN
protocol as well as legacy networking paradigms. P4 is an open source, domain-specific programming
language for next-generation network devices, also known as whiteboxes, which focuses on describing
a “top-down” forwarding plane of programmable (non-fixed-function) switches. With programmable
switches, there is no need for fixed protocols, such as OpenFlow. Instead, P4 treats programmable

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 45 of 105

switches just like general purpose processors (e.g., CPUs or GPUs), allowing them to execute code
written in a specific programming language (i.e., the P4 language). The code is first compiled by a P4
compiler and then loaded into the processor of the whitebox switch. This way, P4 lets network
developers define what headers a switch should be able to parse (including custom or new headers),
how to match on each header, and what actions the switch may perform on each header. In P4,
OpenFlow is just another program, i.e., one of many possible ways to describe what a forwarding
plane does.

Stratum OS

Since the introduction of P4 in 2014, a large community has been established, initially around the
P4.org consortium, and since 2019 under the ONF umbrella [5]. In the same year (i.e., 2019), ONF
announced the release of the Stratum [6] project as an open-source silicon-independent switch OS for
SDN that runs on a variety of switching silicon and whitebox switch platforms. Stratum exposes a set
of next-generation SDN interfaces, including P4Runtime, OpenConfig, gRPC, gNMI, and gNOI, enabling
greater programmability of forwarding behaviours in interchangeable forwarding devices, thus
avoiding the vendor lock-in of today’s data planes through proprietary silicon interfaces and closed
software APIs.

ONOS SDN Controller

ONF has implemented several P4 device drivers on top of the Stratum OS (i.e., Barefoot, Mellanox,
BMv2) with P4Runtime support within the ONOS SDN controller [7] ecosystem. This way, ONOS uses
gRPC messages to deploy a compiled P4 program on a target switch and manage its forwarding tables
at run-time. ONOS, Stratum, and P4 are parts of a larger ONF project, titled Software-Defined Fabric
(SD-Fabric), which is a fully-programmable cloud-managed network fabric for the emerging edge cloud
systems (e.g., Industry 4.0 powered by 5G).

TeraFlow P4 device driver plugin

Rather than re-inventing the wheel, TeraFlow embraces the ONF initiatives around P4 by integrating
ONOS, Stratum, and P4 into the TeraFlow ecosystem. In the rest of this section, we describe how the
TeraFlow SDN controller will cooperate with ONOS to manage next-generation SDN whiteboxes based
on the P4 paradigm. Figure 16 shows a high-level overview of the P4 TeraFlow device driver plugin
and the way it interacts with P4 devices through ONOS and Stratum.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 46 of 105

Figure 16: Architecture of the Device component’s P4 driver plugin.

The ONOS P4 pipeline

The key interface for the TeraFlow P4 driver plugin is the ONOS NBI. For ONOS to manage P4 devices,
the process shown in Figure 17 must be realized.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 47 of 105

Figure 17: Required steps for a P4 SDN controller to install a P4 program on a P4 device.

Specifically, a desired P4 program needs to be written (step 1) and compiled (step 2) by a P4 compiler.
The P4 compiler generates two outputs:

(i) A “P4 Info” file (step 3a) which describes the “schema” of the P4 pipeline for runtime
control. This schema captures P4 program attributes such as tables, actions, parameters, etc,
in a target-independent format (I.e., same P4Info for a software switch, ASIC, etc.).

(ii) A target-specific “P4 bin” binary (step 3b) used to realize a switch pipeline, such as a binary
configuration for an application-specific integrated circuit (ASIC), a bitstream for a field-
programmable gate array (FPGA), etc. At runtime the P4 SDN controller uses the gRPC-based
P4Runtime interface to manage the match-action pipelines specified in the P4 program.

Early TeraFlow P4 Prototype

To begin this challenging integration with ONOS and Stratum, a minimum but essential subset of RPCs
of the TeraFlow device driver is required in order to “detect” a P4 device. This subset includes:

• Connect() RPC to initiate a connection with a given set of P4 devices. Since the Connect() RPC
requires an IP address and a port (and, optionally, some additional settings) to connect to the

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 48 of 105

target device, the TeraFlow P4 device driver plugin uses the ONOS IP address and port to fetch
the active connections with all the P4 devices under the ONOS umbrella. For ONOS to initiate
a connection with a P4 device, two actions are required:

o To register a new pipeconf.oar with a pipeconf ID to the Pipeconf Service through the
ONOS NBI.

o To register a new P4 device event using the device ID, the P4Runtime server address
and port, a pipeconf ID (from the previous step), and the P4 driver name (e.g., bmv2
for software P4 switches or Tofino/Mellanox for supported hardware P4 switches).

• GetConfig() RPC to fetch device configuration from a given P4 device.
• Disconnect() RPC to terminate a connection with a given (set of) P4 device(s). Similar to the

connect RPC, the disconnect method terminates the connection with ONOS, thus gets the
TeraFlow controller disconnected from the underlying P4 device(s).

As also noted in Section 7, most of the development effort for the P4 device driver plugin will be in
the second year of the TeraFlow project. The target set for this deliverable (D3.1) is to establish a
working P4 testbed using existing tools, such as Mininet (with software-based bmv2 P4 switches),
Stratum OS, and ONOS, and to use a primitive version of the TeraFlow P4 device driver to establish
connection with this testbed.

4.1.3. Interfaces

In this section, we specify the relevant interfaces for the Device component, which are the gRPC
interface and the SBI Driver interface. Moreover, we use sequence diagrams to describe how other
components interact with the Device component and the underlying network equipment.

• gRPC Interface

The gRPC interface is offered to the rest of components to enable them to interact with the Device
component. The RPC methods available in this interface are summarized in Table 12; these
methods enable the addition and removal of devices, for instance, through a user interface, or
automatically through future device auto-discovery methods. In addition, these methods enable
to configure the network devices. Besides, a method to retrieve the initial configuration of devices
has been added for components such as Automation that might need to know the initial
configuration settings to be provided for activating device bootstrapping procedures.

Table 12: gRPC interface definition for Device component.

RPC Method Name Parameters Results
AddDevice Device DeviceId
ConfigureDevice Device DeviceId
DeleteDevice DeviceId ---
GetInitialConfig DeviceId DeviceConfig

• SBI Driver Interface

The SBI Driver interface provides a list of methods to be implemented in case a developer wants
to extend the Device component to support new network equipment. The methods required by
the SBI Driver API are listed in Table 13.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 49 of 105

Table 13: SBI Driver API Interface definition for Device component.

Method Description
Connect() -> bool Connect to the Device. Returns a Boolean value

indicating if the connection succeeded. The driver
should keep the connection alive, when possible.

Disconnect() -> bool Disconnect from the Device. Returns a Boolean value
indicating if the disconnection succeeded.

GetInitialConfig() -> List[Tuple[str, Any]] Retrieve initial configuration of an entire device.
Returns a list of tuples each containing the pair
resource_key and resource_value.

GetConfig(
resource_keys : List[str]

) -> List[Tuple[str, Union[Any, None]]

Retrieve running configuration of an entire device, or
selected resource keys. Returns a list of tuples each
containing the pair resource_key and resource_value. If
a key is not found, either the key can be ignored in the
reply or retrieved with a None value.

SetConfig(
resources : List[Tuple[str, Any]]

) -> List[bool]

Create/Update a list of resources with new values. Each
resource change requested is a tuple containing the pair
resource_key and resource_value. Returns a list of
Boolean values indicating if the update for each
specified key succeeded.

DeleteConfig(
resource_keys : List[str]

) -> List[bool]

Delete a list of resource keys. Returns a list of Boolean
values indicating if the delete for each specified key
succeeded.

SubscribeState(
subscriptions : List[Tuple[str,

float, float]]
) -> List[bool]

Subscribe to/Unsubscribe from state information of an
entire device, or selected resources. Each subscription
is a tuple containing the key pointing to the resource to
be subscribed, a sampling_duration, and a
sampling_interval (both in seconds with float
representation). The methods return a Boolean value
for each subscription indicating the success in
subscribing or unsubscribing.

UnsubscribeState(
subscriptions : List[Tuple[str,

float, float]]
) -> List[bool]
GetState(

blocking=False
) -> Iterator[Tuple[float, str, Any]]

Retrieve the last collected values for subscribed
resources. The method should be called once and will
block until values are available. When values are
available, it should yield each of them and block again
until new values are available. When the driver is
destroyed, the method returns. The blocking parameter
enables selection of the driver behaviour. The driver
first retrieves the samples accumulated on its internal
queue. Then, if blocking is set, the driver does not
terminate the loop and waits for additional samples to
come; otherwise, the driver terminates the loop and
returns. Each returned sample is a tuple containing a
float Unix-like timestamp in seconds with up to
microsecond resolution, the resource_key of the
sample, and its resource_value.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 50 of 105

• Operational Workflows

In this subsection, we describe two relevant workflows related to the Device component. The first
one, illustrated in Figure 18, describes the process of adding a new network device into the Device
component. When a TeraFlow OS component issues an AddDevice request to the Device
component, the Device component interrogates the Context Management component and
retrieves the current configuration of the device (if any). That way, we ensure there is no other
instance of the Device component managing the new network equipment. Then, if the device is
not being managed by another instance of the Device component, it selects the appropriate driver
for the equipment depending on the supported drivers and the device type. Note that other filter
fields, such as the vendor, part number, or the serial number, could be considered in the future
to improve the driver selection procedure. Next, the driver is instantiated within the Device
component, and a request to connect to the SDN agent running within the network device is
issued. If the connection succeeds, the Device component requests to gather the current device
configuration through the Driver. Finally, the database provided by the Context Management
component is updated with the state of the device and the up-to-date configuration present on
the device.

Figure 18: Sequence Diagram for Device component’s AddDevice operation.

The second workflow, depicted in Figure 19, emphasizes how the device configuration is
applied to the network devices. When a TeraFlow OS component issues a ConfigureDevice
request to the Device component, the later interrogates the Context Management component
and retrieves the current configuration of the Device to gather the most up-to-date
configuration applied to the device. With the target configuration received in the
ConfigureDevice request, and the current configuration from the Context Management
component, the Device component composes a list of changes to be implemented in the
configuration (entries to be set and/or deleted from the configuration, and subscriptions to
be created and/or removed). Next, the Device component calls the
SetConfig/DeleteConfig/SubscribeState/Unsubscribe state methods with the appropriate
parameters to implement the configuration changes in the target network device. Finally, the

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 51 of 105

database at the Context Management component is updated with the up-to-date
configuration present on the device.

Figure 19: Sequence Diagram for Device component’s ConfigureDevice operation.

4.1.4. Preliminary Results

A set of unit tests has been defined for the Device component. In this section, we report the results of
the tests illustrating those operations and features for the released components that operate
correctly. Note that some of the drivers are work in progress, thus only the tests for the Device Driver
API, the Emulated Device Driver, and the OpenConfig Device Driver are reported. Note also that the
monitoring functionality of the Device Drivers is work in progress. For the tests, the Device component
makes use of an “in-memory” instance of Context Management component.

The results of the tests passed are summarized in Table 14. The tests for the Driver API consist of
validating the different methods by means of the Emulated Driver directly without using the gRPC
interface of the Device component. Then, the gRPC interface is added when testing the Device
component with the Emulated Driver. Finally, the last implemented test focuses on testing the
OpenConfig Device Driver, also through the gRPC interface of the Device component. In all cases, the
appropriate constraints (existence of dependencies, correctness of data types, confirmation of
retrieved values in the test cases, etc.) are checked.

Table 14: Unit tests passed for the Device component.

$ docker exec -i $IMAGE_NAME bash -c "pytest --log-level=DEBUG --verbose
$IMAGE_NAME/tests/test_unitary_driverapi.py $IMAGE_NAME/tests/test_unitary.py"
121============================= test session starts ==============================
122platform linux -- Python 3.9.6, pytest-6.2.5, py-1.11.0, pluggy-1.0.0 -- /usr/local/bin/python3
123cachedir: .pytest_cache
124benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005
max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)
125rootdir: /var/teraflow
126plugins: benchmark-3.4.1
127collecting ... collected 17 items
128device/tests/test_unitary_driverapi.py::test_device_driverapi_emulated_setconfig PASSED [5%]
129device/tests/test_unitary_driverapi.py::test_device_driverapi_emulated_getconfig PASSED [11%]
130device/tests/test_unitary_driverapi.py::test_device_driverapi_emulated_deleteconfig PASSED [17%]
131device/tests/test_unitary_driverapi.py::test_device_driverapi_emulated_subscriptions PASSED [23%]
132device/tests/test_unitary.py::test_prepare_environment[all_inmemory] PASSED [29%]
133device/tests/test_unitary.py::test_device_emulated_add_error_cases[all_inmemory] PASSED [35%]
134device/tests/test_unitary.py::test_device_emulated_add_correct[all_inmemory] PASSED [41%]
135device/tests/test_unitary.py::test_device_emulated_get[all_inmemory] PASSED [47%]

https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L121
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L122
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L123
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L124
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L125
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L126
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L127
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L128
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L129
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L130
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L131
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L132
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L133
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L134
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L135

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 52 of 105

136device/tests/test_unitary.py::test_device_emulated_configure[all_inmemory] PASSED [52%]
137device/tests/test_unitary.py::test_device_emulated_deconfigure[all_inmemory] PASSED [58%]
138device/tests/test_unitary.py::test_device_emulated_delete[all_inmemory] PASSED [64%]
139device/tests/test_unitary.py::test_device_openconfig_add_error_cases[all_inmemory] PASSED [70%]
140device/tests/test_unitary.py::test_device_openconfig_add_correct[all_inmemory] PASSED [76%]
141device/tests/test_unitary.py::test_device_openconfig_get[all_inmemory] PASSED [82%]
142device/tests/test_unitary.py::test_device_openconfig_configure[all_inmemory] PASSED [88%]
143device/tests/test_unitary.py::test_device_openconfig_deconfigure[all_inmemory] PASSED [94%]
144device/tests/test_unitary.py::test_device_openconfig_delete[all_inmemory] PASSED [100%]
145============================= 17 passed in 11.69s ==============================

4.2. Service Component

In this section, we describe the Service component in charge of managing the life-cycle of the
connectivity services established in the network. Different service types could be requested and
different protocols and data models might be used to configure the network equipment. For this
reason, the Service component implements a Service Handler API that enables network operators to
precisely define the service types they need to support and the behaviour for each of them. We
describe Service component’s architectural design, the Service Handler API, and the interface it
exposes to the rest of the TeraFlow OS components, and we provide some preliminary results of its
operation.

4.2.1. Design Overview

The architectural design of the Service component is depicted in Figure 20. The component consists
of a gRPC-based NBI exposed to the rest of TeraFlow OS components, a Service Servicer block that
dispatches the incoming requests and interacts with the Service Handler API to choose the appropriate
handler for each service type requested. Given that the Service component needs to know about the
state and details of the existing connectivity services and the devices supporting them, it makes use
of the Context Management component to store and retrieve up-to-date details about the devices
and the services using the Context Management gRPC interface. The Service Handler interface enables
network operators to extend the Service component to support different service types and use
different protocols and data models to configure the devices. Currently, a L3-VPN service using
OpenConfig (L3NM-OC) is under development.

Figure 20: Architecture of the Service component.

https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L136
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L137
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L138
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L139
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L140
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L141
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L142
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L143
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L144
https://gitlab.com/teraflow-h2020/controller/-/jobs/1778782569#L145

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 53 of 105

4.2.2. Interfaces

In this section, we specify the relevant interfaces for the Service component, which are the gRPC
interface and the Service Handler interface. Moreover, we use sequence diagrams to describe how
other components interact with the Service component.

• gRPC Interface

The gRPC interface is offered to the rest of the components to enable them to interact with the
Service component. The RPC methods available in this interface are summarized in Table 15; these
methods enable the creation, modification, and removal of services. A method to retrieve the list
of established connections for a service is also provided. To discover the available services, the
Context Management Database should be interrogated.

Table 15: gRPC interface definition for Service component.

RPC Method Name Parameters Results
CreateService Service ServiceId
UpdateService Service ServiceId
DeleteService ServiceId ---
GetConnectionList ServiceId ConnectionList

• Service Handler Interface

The Service Handler interface provides a list of methods to be implemented in case a developer
wants to extend the Service component to support new types of services or use different sets of
network device configuration protocols and data models. The methods required by the Service
Handler interface are listed in Table 16.

Table 16: Service Handler Interface definition for Service component.

Method Description
SetEndpoint(

endpoints : List[Tuple[str, str,
Optional[str]]]

) -> List[bool]

Sets/Deletes the service endpoints. Each endpoint to be
changed/deleted is defined as a tuple containing a
device_uuid, an endpoint_uuid, and, optionally, a
topology_uuid. Returns a list of Boolean values
indicating whether each addition/removal was
successful. Return values must be in the same order as
the endpoints requested.

DeleteEndpoint(
endpoints : List[Tuple[str, str,

Optional[str]]]
) -> List[bool]
SetConstraint(

constraints : List[Tuple[str, Any]]
) -> List[bool]

Sets/Deletes the service constraints. Each constraint to
be changed/deleted is defined as a tuple containing a
constraint_type and a constraint_value. In Set,
constraint_value is the new value to be set for the
constraint. In Delete, constraint_value contains
optional values that might be needed to locate the
constraint to be deleted. Returns a list of Boolean values
indicating whether each addition/removal was
successful. Return values must be in the same order as
the constraints requested.

DeleteConstraint(
constraints : List[Tuple[str, Any]]

) -> List[bool]

SetConfig(

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 54 of 105

resources : List[Tuple[str, Any]]
) -> List[bool]

Sets/Deletes the service configuration resources. Each
resource to be changed/deleted is defined as a tuple
containing a resource_key and a resource_value. In Set,
resource_value is the new value to be set for the
resource. In Delete, resource_value contains optional
values that might be needed to locate the resource to
be deleted. Returns a list of Boolean values indicating
whether each addition/removal was successful. Return
values must be in the same order as the resources
requested.

DeleteConfig(
resources : List[Tuple[str, Any]]

) -> List[bool]

4.2.3. Preliminary Results

A set of unit tests has been defined for the Service component. In this section, we report preliminary
results for the Service component skeleton. Note that Service Handlers are work in progress, so no
specific service is being tested right now.

The results of the tests passed are summarized in Figure 21. The tests for the Service Handler interface
consist of validating the different methods offered by the gRPC interface to create, update, and delete
the services. A reduced set of constraints is being checked at the moment.

$ docker exec -i $IMAGE_NAME bash -c "pytest --log-level=DEBUG --verbose
$IMAGE_NAME/tests/test_unitary.py"
84============================= test session starts ==============================
85platform linux -- Python 3.9.6, pytest-6.2.4, py-1.10.0, pluggy-0.13.1 -- /usr/local/bin/python3
86cachedir: .pytest_cache
87benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005
max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)
88rootdir: /var/teraflow
89plugins: benchmark-3.4.1
90collecting ... collected 5 items
91service/tests/test_unitary.py::test_prepare_environment[all_inmemory] PASSED [20%]
92service/tests/test_unitary.py::test_service_create_error_cases[all_inmemory] PASSED [40%]
93service/tests/test_unitary.py::test_service_create_correct[all_inmemory] PASSED [60%]
94service/tests/test_unitary.py::test_service_update[all_inmemory] PASSED [80%]
95service/tests/test_unitary.py::test_service_delete[all_inmemory] PASSED [100%]
96============================== 5 passed in 0.26s ===============================

Figure 21: Unit tests passed for the Service component.

https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L84
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L85
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L86
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L87
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L88
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L89
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L90
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L91
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L92
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L93
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L94
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L95
https://gitlab.com/teraflow-h2020/controller/-/jobs/1834897632#L96

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 55 of 105

5. SDN Automation
This section provides a design overview, the northbound and southbound interfaces, and
preliminary results of the core TeraFlow OS components of T3.3, i.e., the Automation Component
(see Section 5.1) and the Policy Management Component (see Section 5.2).

5.1. Automation (ZTP) Component

This section introduces the design overview, interfaces, and preliminary results of the TeraFlow OS
Automation component.

5.1.1. Design Overview

The goal of the Automation component, also abbreviated as ZTP, is to provide zero-touch device
onboarding, reconfiguration, and deletion functions to the TeraFlow OS as well as to similar SDN
controllers or overlay network management tools. To meet this objective, the Automation component
is designed according to Figure 22.

Figure 22: Automation (ZTP) component overview.

Northbound Interfaces: The Automation component presents two NBIs. The first interface, titled
“Service API” in Figure 22, exposes basic automation functions to the rest of the TeraFlow OS
components. The second interface, titled “Events API” in Figure 22, allows the Automation component
to register to, receive, thus react upon relevant events from key TeraFlow OS components. Both
interfaces are described in Section 5.1.2.

Automation Core: Upon receiving an incoming request from either of the northbound interfaces, the
Automation service (shown in Figure 22) realizes the core logic of the Automation component. As the
role of the Automation component is to provision initial or updated configuration to the underlying

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 56 of 105

devices in an automated fashion, it mainly interacts with the device and context TeraFlow OS
components. To abstract the communication with these components, the Automation component
relies on two internal blocks, namely the “Device Broker” and the “Context Broker”. These blocks take
instructions related to the underlying topology, devices, links, etc. and translate them to relevant
service calls towards the Device and Context components. This way, the Automation component
consumes certain services from these components, without dealing with device and/or context-
specific implementation details.

For the Automation component to provide truly zero-touch services, it requires a way to trigger its
control loops (i.e., automatically invoke its RPCs) without human intervention or external calls. To do
so, the automation services leverage the Event Condition Action (ECA) policy management model [2]:
ECA allows delegation of network management functions to the Automation component’s server,
which can take instant action when a trigger condition on the managed objects is met. To do so, the
Automation component subscribes to key events (e.g., an event that announces the association of a
new device with the TeraFlow OS) published by the Context component. In response to such an event,
the Automation component’s server automatically launches a relevant RPC to
provision/update/delete a device.

5.1.2. Interfaces

In this section, the interfaces (i.e., the “Service API” and the “Events API”) of the Automation
component are explained in detail.

• Automation Service API

Table 17 displays an overview of the RPC methods exposed by the Automation component.
Specifically, the main RPC methods provide a way to automatically (i) onboard a new device (i.e.,
ztpAdd), (ii) reconfigure an already onboarded device (i.e., ztpUpdate), and (iii) remove an
onboarded device (i.e., ztpDelete) or all of the onboarded devices (i.e., ztpDeleteAll). In addition
to those key functions, the Automation component also exposes two read-only RPCs that allow
other TeraFlow OS components to access the current state of device roles associated to the
various devices. Specifically, the Automation component allows querying a device role using a
device role ID as input (i.e., ztpGetDeviceRole), or querying a list of device roles associated with a
specific device ID (i.e., ZtpGetDeviceRolesByDeviceId).

Table 17: Service interface definition for the Automation component.

RPC Method Name Parameters Results
ztpGetDeviceRole DeviceRoleId DeviceRole
ZtpGetDeviceRolesByDeviceId DeviceId List<DeviceRole>
ztpAdd DeviceRole DeviceRoleState
ztpUpdate DeviceRole,

DeviceConfig
DeviceRoleState

ztpDelete DeviceRole DeviceRoleState
ZtpDeleteAll - List<DeviceDeletionResult>

• Automation Events API

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 57 of 105

Apart from the main Automation services, the Automation component exploits a publish-
subscribe TeraFlow OS mechanism to dynamically associate components with relevant events
that require immediate actions. This is the role of the “Events’ API”. The Automation
component relates its services with three basic events, as shown in Table 18.

Table 18: Events’ publish-subscribe interface for the Automation component.

Event Name Triggered
by

Triggers Results

DEVICE_ADD Context
component

Automation
component
ztpAdd RPC

New Device object with an associated:
• DeviceStatus = ENABLED
• DeviceRoleState =

ZTP_DEV_STATE_CREATED
DEVICE_UPDATE Policy

component
(or external
entity)

Automation
component
ztpUpdate RPC

Updated Device object with an associated:
• DeviceRoleState =

ZTP_DEV_STATE_UPDATED

DEVICE_DELETE Policy
component
(or external
entity)

Automation
component
ztpDelete RPC

Updated Device object with an associated:
• DeviceStatus = DISABLED
• DeviceRoleState =

ZTP_DEV_STATE_DELETED

5.1.3. Operational Workflows

In this section, detailed sequence diagrams are provided for the most important RPCs of the
Automation component, also highlighting the interaction of the Automation component with other
core TeraFlow OS components or external entities.

Automated device onboarding workflow

Upon issuing a policy to add a new device, the Policy component calls the Device component’s
AddDevice method. This method initiates a connection with the requested device, and if successfully
connected, the device driver obtains the device configuration. This configuration is turned into a
DeviceConfig object and pushed to the Context database. Upon success, a “DEVICE_ADD” event is
generated, notifying that a new device is associated with a TeraFlow OS device driver plugin. As a
result, the Context component generates a notification through the “Events API”. This event is
received by the Automation component, thus the ztpAdd RPC is automatically triggered as shown in
Figure 23. First, the Automation component requests the new Device object from the Context
database, which in turn results in a “getDevice” call to the Device component. Then, if this device is
not already configured, the Automation component requests this device’s initial configuration
parameters by issuing a “getInitialConfig” RPC to the Device component through the Context
component. Upon the receipt of an updated DeviceConfig object, the Automation component loops
through the configuration entries of its local object and updates the relevant entries according to the
newly fetched DeviceConfig object. Next, the updated device object is pushed to the Device
component and stored to the Context database via a “configureDevice” RPC. Upon success, the
Automation component flips the DeviceStatus bit of the Device object to “ENABLED” and the
respective ZTPDeviceState to “CREATED”, while also generating relevant events. Finally, these events
can be consumed by other TeraFlow OS components e.g., to begin monitoring routines for this device.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 58 of 105

Note that, if the DeviceStatus of the newly arrived device is already ENABLED, the device is already
provisioned, thus no action is taken by the ztpAdd RPC, while a relevant warning is issued.

Figure 23: Zero-Touch Provisioning of a new device into TeraFlow OS (ztpAdd RPC).

Automated device update workflow

Upon a “DEVICE_UPDATE” event, e.g., received by the Policy component or an external entity, the
Automation component receives a new candidate DeviceConfig object for a certain device, thus the
ztpUpdate RPC is automatically triggered as shown in Figure 24. First, the Automation component
requests the respective Device object from the Context database, which in turn results in a
“getDevice” call to the Device component. Then, if this device is enabled, the Automation component
loops through the configuration entries of its local object and updates the relevant entries according
to the newly fetched DeviceConfig object. Next, the updated Device object is pushed to the Device
component and stored to the Context database via a “configureDevice” RPC. Upon success, the
Automation component flips the ZTPDeviceState to “UPDATED”, while also generating a relevant
event. Note that, if the device to be updated is not enabled, the ztpUpdate RPC outputs an error
message indicating inability to update a disabled device.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 59 of 105

Figure 24: Zero-Touch Update of a device into TeraFlow OS (ztpUpdate RPC).

Automated device deletion workflow

Upon a “DEVICE_DELETE” event, e.g., received by the Policy component or an external entity, the
Automation component receives a DeviceId object for provisional deletion, thus the ztpDelete RPC is
automatically triggered as shown in Figure 25. First, the Automation component requests the
respective Device object from the Context database, which in turn results in a “getDevice” call to the
Device component. Then, if this device is enabled, the Device object is deleted from the Context
database via a “deleteDevice” RPC issued to the Device and Context components in turn. Upon
success, the Automation component flips the DeviceStatus bit of the Device object to “DISABLED” and
the respective ZTPDeviceState to “DELETED”, while also generating relevant events. Note that, if the
device to be deleted is not enabled, the ztpDelete RPC outputs an error message indicating inability
to delete an already disabled device.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 60 of 105

Figure 25: Zero-Touch Deletion of a device from TeraFlow OS (ztpDelete RPC).

5.1.4. Preliminary Results

In this section we show preliminary results stemming from the development of the Automation
component. These results focus on three aspects, namely (i) the realization of unit tests for testing
internal processes of the Automation component, (ii) the correct spawning of the Automation server
offering automation services to the TeraFlow OS, and (iii) an example invocation of a key automation
service (i.e., ztpAdd) which automatically adds a new device in the network.

Figure 26 shows the successful outcome of eight unit tests that were developed for the Automation
component in the course of the first TeraFlow OS release.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 61 of 105

Figure 26: Unit tests for the Automation TeraFlow OS component.

Once all unit tests have passed successfully, the Automation component can be deployed. Figure 27
shows the output of the gRPC Automation server upon the deployment of this component. The
Automation component is implemented in Java using the Apache Quarkus framework. From the logs
in Figure 27, we see that the Automation server is successfully started, listening on port 9999.

Figure 27: Instantiation of the Automation gRPC server.

To add a new device in the network, the ztpAdd method of the Automation component should be
invoked. Figure 28 shows such an example invocation for a device with ID 0f14d0ab-9699-7862-a9e4-
5ed26688389b.

Figure 28: Invocation of the ztpAdd gRPC method for adding a new device in the network.

5.2. Policy Management Component

Network policy may be defined as a collection of rules that dictate the behaviours of network
resources, which may include devices (physical or virtual) and functional components. Within the
TeraFlow project, we use policy rules for both:

• high-level objectives, which are often referred to as “intent” statements due to the declarative
nature of the request.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 62 of 105

• low-level objectives, applied to specific devices or when making network resource assignment
decisions. With often use imperative statements when processing “network policy”.

Our focus on the initial design of the TeraFlow Policy Management is to use “event-driven
management” [2]. Event-driven management provides a valuable method to monitor state change of
managed objects and resources and enable automatic triggering of responses to events based on an
established set of rules. The TeraFlow event-driven policy provides rapid autonomic responses to
specific conditions, enabling self-management behaviours, such as self-configuration, self-healing,
self-optimization, and self-protection.

The TeraFlow Policy Management Component utilises an emerging technical technique called “Event
Condition Action” (ECA) to provide event-driven benefits [2]. ECA Policy enables actions to be
automatically triggered based on when certain events in the network occur while certain conditions
hold. Thus, ECA facilitates limited logic to be delegated to network devices and functional components
for automating specific required behaviour.

5.2.1. Design Overview

The goal of the Policy Management component, also abbreviated as Policy component, is to translate
a network operator’s high-level network policy statements into a correct set of low-level instructions
that realize this policy across the various network elements. To meet this objective, the Policy
component is designed according to Figure 29.

Figure 29: Policy component overview.

Northbound Interfaces: The policy component presents two NBIs. The first interface, titled “Service
API” in Figure 29, exposes basic policy functions to the rest of the TeraFlow OS components as well as
network operator panels connected to the TeraFlow OS. The second interface, titled “Events API” in
Figure 29, allows the Policy component to register to receive, and thus react upon, relevant events
from key TeraFlow OS components. Both interfaces are described in Section 5.2.2.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 63 of 105

Core logic: Upon receiving an incoming request from either of the northbound interfaces, the Policy
service (shown in Figure 29) realizes the core logic of the Policy component. First, for any new policies
provided by an external entity, the Policy component’s core loop goes through the respective policy
events and subscribes to those events through the Events API. This way the Policy component will be
automatically triggered when such an event occurs, which will in turn trigger the policy enforcement
process. When such an event is triggered, the received notification (through the Event API) reaches
the Policy Service block and the triggered policy is identified. To apply this policy though, the ECA
model requires a policy condition to be met. Finally, once the condition is met, the Policy Service block
will apply a set of actions associated with this policy. Such list of actions could affect either a single
device (i.e., for device-level policy type) or a set of devices (i.e., network-wide policy type). To
exemplify an ECA policy, one may consider the following example of a monitoring policy:

• Event: Device with ID X is enabled (i.e., successfully finished bootstrapping and initial
configuration)

• Condition: Device with ID X is not monitored
• Action: Start monitoring of certain KPIs on device with ID X.

5.2.2. Interfaces

In this section, the interfaces (i.e., the “Service API” and the “Events API”) of the Policy component are
explained in detail.

• Policy Service API

Table 19 displays an overview of the RPC methods exposed by the Policy component. Specifically,
the main RPC methods allow a client to (i) express and add a new policy (i.e., policyAdd), (ii) update
an already applied policy (i.e., policyUpdate), and (iii) revoke an applied policy (i.e., policyDelete).
In addition to those key functions, the Policy component also exposes three read-only RPCs that
allow other TeraFlow OS components to access the current state of policies associated to the
various devices or services. Specifically, the Policy component allows a client to query a single
policy rule using a policy rule ID (GetPolicy), or to query a list of policy rules by device ID (i.e.,
GetPolicyByDeviceId) or service ID (i.e., GetPolicyByServiceId).

Table 19: Service interface definition for the Policy component.

RPC Method Name Parameters Results
PolicyAdd PolicyRule PolicyRuleState
PolicyUpdate PolicyRule PolicyRuleState
PolicyDelete PolicyRule PolicyRuleState
GetPolicy PolicyRuleId PolicyRule
GetPolicyByDeviceId DeviceId PolicyRuleList
GetPolicyByServiceId ServiceId PolicyRuleList

• Policy Events API

Apart from the main Policy services, the Policy component exploits a publish-subscribe TeraFlow
OS mechanism to dynamically associate components with relevant events that require immediate
actions. This is the role of the “Events API”. The current implementation of the Policy component

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 64 of 105

does not yet provide support for this API, this is work planned through the second year of the
TeraFlow project.

5.2.3. Operational Workflows

In this section, a detailed sequence diagram is provided for the most important RPC of the Policy
management component, i.e., the creation of a new policy. This highlights both the interaction of the
Policy component with other core TeraFlow OS components or external entities, as well as the
prominent effect of the ECA model in the design of the Policy component.

Policy add workflow

To apply a new policy to the network, a network operator needs to trigger the policyAdd RPC of the
Policy management component as shown in Figure 30. This call will provide the Policy component with
a Policy rule object which contains a triplet of internal objects, namely an event, a set of conditions,
and a set of actions. First, the Policy component parses the received policy, extracts the policy event,
and registers to this event via the Events API. When this event is triggered, a notification is received
by the Policy component, thus the given policy should be processed. This involves a check on whether
the given policy conditions are met or not. For this to happen, the Policy component executes a loop
across all conditions and marks a flag (i.e., ready = True) when a condition is met, otherwise
ready=False. If and only if all conditions are met, is the action part of the policy rule applied. For each
action in a list of actions, the Policy component fetches the affected device from the Context
component’s database, applies the action locally, and then invokes the Automation component’s
ztpUpdate RPC to enforce this policy to the device (see Section 5.1.2 above). Upon a successful policy
enforcement, a relevant event is generated, otherwise an error is sent back to the operator signifying
the inability of the Policy component to apply this policy.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 65 of 105

Figure 30: Generic Policy creation by an operator through the TeraFlow OS policyAdd RPC.

5.2.4. Preliminary Results

In this section we show preliminary results stemming from the preliminary development of the Policy
Management component. These results focus on two aspects, namely (i) the realization of unit tests
for testing internal processes of the Policy Management component, and (ii) the correct spawning of
the Policy server offering policy management services to the TeraFlow OS.

Figure 31 shows the successful outcome of six unit tests that were developed for the Policy
Management component during the first TeraFlow OS release.

Figure 31: Unit tests for the Policy Management TeraFlow OS component.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 66 of 105

Once all unit tests are successfully passed, the Policy component can be deployed. Figure 32 shows
the output of the gRPC Policy server upon the deployment of this component. Like the Automation
component, the Policy component is also implemented in Java using the Apache Quarkus framework.
From the logs in Figure 32, we see that the Policy server is successfully started, listening on port 8080.

Figure 32: Instantiation of the Policy Management gRPC server.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 67 of 105

6. Transport Network Slicing and Multi-tenancy
This section provides a design overview, the northbound & southbound interfaces, and preliminary
results of the core TeraFlow OS components of T3.4, i.e., the Slice Management component (see
Section 6.1). Prior to that, we clarify what a transport network slice means to TeraFlow.

Transport Network Slice definition

A transport network slice consists of a set of endpoints (e.g., CEs), a connectivity matrix between
subsets of these endpoints, and service level behaviours requested for each sender on the connectivity
matrix [11]. The connectivity between the endpoints might be point-to-point, point-to-multipoint, or
multipoint-to-multipoint. Often these slices will be used to satisfy network behaviour defined in a
Service Level Agreement (SLA) [11].

The SLA is an explicit or implicit contract between the customer and the provider of the slice. The
terms of the SLA will be expressed in a set of Service Level Indicators (SLIs), Service Level Objectives
(SLOs), and Service Level Expectations (SLEs), which are described below:

• Service Level Indicator
A quantifiable measure of an aspect of the performance of a network. It might be a measure
of throughput in bits per second or latency in milliseconds.

• Service Level Objective
A target value or range for the measurements returned by observation of an SLI, expressed
as "SLI <= target", or "lower bound <= SLI <= upper bound”. For example, a customer may
determine whether the provider is meeting the SLOs by measurements of the traffic.

• Service Level Expectation
Often an expression of an unmeasurable service-related request that a customer makes of
the provider. The customer has little way of determining whether the SLE is being met, but
there is still a contract for a service that meets the expectation.

A customer may also be defined as a tenant, and each slice will be associated with a tenant and may
control and operate the slices that have been provided. Furthermore, transport network slicing
supports multi-tenancy so that lower-layer infrastructure (often referred to as the “underlay”)
provides connectivity and resource guarantees to multiple tenants.

A transport slice may also be configured to be “soft” or “hard”. A “soft slice” might be a VLAN assigned
to a tenant to packet data traffic – such as VoIP – usually transported by a layer-specific VPN (LxVPN)
[12] over a shared underlay infrastructure. A “hard slice” provides a connectivity resource
underpinned by dedicated resources that may be virtual or physical.

6.1. Slice Management Component

This section presents the design overview (Section 6.1.1), interfaces (Section 6.1.2), and preliminary
results (Section 6.1.3) of the Slice Management component.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 68 of 105

6.1.1. Design Overview

Transport network slicing is facilitated using an abstracted management architecture shown in Figure
33.

Figure 33: Abstracted Management Architecture for Network Slicing

The TeraFlow slicing implementation uses the Network Slice Controller (NSC) to realise a transport
network slice, using physical and virtual network resources provided by the underlying network
controllers. In the TeraFlow project, these controllers manage both optical and packet resource
domains.

A transport network slice request will be sent to the NSC by high-layer OSS components. The slice
request will include a specific set of high-level requirements for transport connectivity parameters and
behaviour; this may include bandwidth, latency and reliability, requirements.

The method of the slice request via the “Network Slice Customer Service Interface” (NBI) is not
formally defined, but will typically use a model-driven protocol and slice template. For example, in the
TeraFlow project, we use a YANG data model, which is encoded and sent to the NSC using the
RESTCONF protocol.

Mapping the tenant transport network slice to the underlay resources and life-cycle management of
the service is managed by the NSC. During the initial transport network slice request, numerous
objectives may be requested, including:

• Disjoint paths to ensure slices are completely separated from other slices using Shared Risk
Link Groups (SRLGs). Thus, slices do not share the same underlay network path, including
physical or virtual resources.

• Specific SLA requirements for the service.

A further set of model-driven interfaces communicate between the NSC function and domain-specific
network controllers via the “Network Configuration Interface” (SBI). Within the NSC, policy
management plays an important role. For example, the NSC will instantiate slices based on the NBI
request it receives, adhering to the SLA requirements and facilitating the transport network slice
mapping to underlay network resources. Within TeraFlow additional YANG data model will be used to
define this policy enforcement behaviour [2].

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 69 of 105

6.1.2. Interfaces

Several data models for IETF Transport Network Slices might be considered, but our first
implementation and preliminary results will be obtained from [13].

An OSS/BSS may request that the deployed network slice is isolated from any other network slices or
different services delivered to the same customers. Naturally, other network slices or services must
not negatively impact the requested transport network slice's delivery. There are several possibilities
to provide this isolation, which can be provided at several degrees, such as dedicated allocation of
resources for a specific slice or sharing some network resources.

Figure 34 shows the multiple isolation options that range from a hard slice to a soft slice:

a) no-isolation, meaning that slices are not separated;
b) physical-isolation, where slices are completely physically separated, for example, in different

locations;
c) logical-isolation, where slices are logically separated, only a certain degree of isolation is

performed through QoS mechanisms;
d) process-isolation, where slices include process and threads isolation;
e) physical-network-isolation, where slices contain physically separated links;
f) virtual-resource-isolation, where slices have dedicated virtual resources;
g) network-functions-isolation, where Network Function (NF) are dedicated to a single network

slice;
h) service-isolation, where virtual resources and NFs are shared.

Figure 34 IETF Transport Network Slice Isolation Levels

6.1.3. Preliminary Results

This section provides preliminary results obtained with the support of an ABNO orchestrator to trigger
the multiple interfaces to deploy hard isolated slices. These preliminary results have allowed us to
decide the which data models to use for the TeraFlow OS implementation. They have been published
in [14].

Figure 35 shows a preliminary network architecture for network slicing in TeraFlow. It consists of three
main domains: SDN domain, IP domain, and optical domain. The Network Slice Controller (NSC)
realizes a transport network slice in the underlying transport infrastructure, and maintains and
monitors the state of its resources. The NSC will delegate to SDN Domain controllers to configure the
network resources. The NSC receives a transport network slice request from the Operation Support
System and Business Support System (OSS/BSS). The request is modelled using the YANG data model
defined in [13] by means of the RESTCONF protocol. Internal workflow for transport network slice life-

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 70 of 105

cycle management is prepared on top of L2/L3 service management (SM) workflows to interact with
underlying IP and Optical Domain controllers via a RESTCONF client.

Figure 35 Slicing preliminary architecture

Figure 36 shows the workflow to deploy hard and soft transport network slices. In the workflow, two
isolated network slices are deployed. The first one allocates a connectivity service to interconnect
both IP layer domains. This triggers the necessary optical configuration mechanism to each of the
underlying ROADMs. Once the connectivity service has been established, the NSC is responsible for
requesting the IP SDN domain controller to provision the necessary virtual routers (in the proposed
scenario two site-network-access are configured: one network instance on each site). Link Aggregation
Control Protocol (LACP) is configured for each network instance. Then interfaces are aggregated and
properly configured using dedicated VLAN or MPLS-TE mechanisms. When a new isolated slice is
requested, the NSC can request a dedicated and isolated connectivity service from the underlying
optical SDN controller. The connectivity constraint is provided using disjoint path selection with the
ONF Transport API. It consists of including a diversity exclusion constraint with the previous
connectivity service identifier. Later, at the IP layer, new virtual routers are deployed to provide the
requested degree of isolation.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 71 of 105

Figure 36 Proposed sequency diagram

To validate the sequence diagram depicted in Figure 37, we provide the captured Wireshark traces
from the complete system when deploying a complete hard slice request (the figure provides the
selected significant traces). In this figure the different protocols can be observed. Firstly, it shows the
request for the transport network slice. It is stored and answered at once, and it is processed after
response has been sent (a later a status update might be requested).

Figure 37 Wireshark captures for deployment of a hard slice

The transport network slice requests physical network isolation for the solicited link. Thus a T-API
connectivity service is requested including as connectivity constraints the diversity exclusion option.
For that, we provide the identifiers from the previously-established connectivity services, and we
obtain a disjoint path for the new requested slice, resulting in the requested physical network
isolation. It can be seen that the connectivity service setup time is 2.001s. Consider that the
ADRENALINE testbed already has the paths equalized.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 72 of 105

Figure 38 Example of transport slice request

Finally, the virtual routers (vRouter) are created and properly set up. The Wireshark capture shows
the internal gRPC protocol from Volta Networks, which is equivalent to OpenConfig calls, for the
vRouter deployment and configuration. It includes a call to create a new vRouter on top of Edgecore
hardware. Then, interfaces are incorporated to the vRouter and configured. Later, the virtual routing
and forwarding (VRF) table is set up, and finally interfaces are attached to the VRF. This setup delay
takes around 8.36s.

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 73 of 105

7. Conclusions and Next Steps
This deliverable serves as a reference document for the design, interface specification, and preliminary
evaluation of core TeraFlow OS components, touching upon important areas of modern network
operating systems, including (i) scalable high-performance SDN control plane, (ii) heterogeneous SDN
hardware integration, (iii) service and OS lifecycle automation, and (iv) network slice management.

The documented components are engineered as parts of a fully disaggregated cloud-native network
operating system, with the objective to address the above needs. The source code, mechanics,
documentation, and installation guidelines of the core TeraFlow OS components are provided in
MS3.2. The objective of this document is to provide additional context on the formal description,
component architecture, and basic concepts of these core TeraFlow OS components, document their
interactions (i.e., APIs) within the TeraFlow ecosystem but also externally, as well as provide a
preliminary evaluation of their basic features.

Towards the final version of the lifecycle automation and high performance SDN components in WP3
(i.e., D3.2), a set of updates and extensions are planned for all the core TeraFlow OS components.
Table 20 summarizes a list of expected extensions per component, while mapping the involvement of
partners to the development activities that will fulfil these extensions.

Table 20: Future development plans for the core TeraFlow OS components and the contributing partners.

WP3
Task

Component Name Component extensions Involved
Partners

T3.1 Context Management • Experiment with other
database backends.

• Review and extend gRPC
API, if required by other
components.

CTTC

Monitoring • Upgrade management and
metrics databases to
support high data
exchange and improve
scalability

• Extension of the event
listening procedure to
support all types of events

• Complete information
model and add new RPC
methods accordingly.

ATOS

Traffic Engineering • Integration with Service,
Device, and Context
components.

• TE workflow
demonstration using
emulated routers.

STR

Auto Scaling • Integration of the latest
auto-scaling features from
Kubernetes.

Features covered
by Kubernetes

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 74 of 105

• Export of KPI from multiple
components using
Prometheus API. HPA
decision based on
Prometheus obtained
metrics.

Orchestrator (see
MS3.2)

Load balancing • Integration of the latest
load-balancing features
from Kubernetes

T3.2 Device • Automated device
discovery through
interaction with the
Automation component.

• Complete implementation
of device monitoring
functions.

• Improve OpenConfig driver
templates.

• Validate and improve TAPI
driver.

• P4 driver extensions with
additional RPCs (e.g.,
support for P4 device
configuration)

CTTC, TID, SIAE,
INF, UBI

Service • Complete integration of
Service with Device,
Context, and Compute
components.

• Implement L3-VPN service.

CTTC

T3.3 Automation (ZTP) • Automated device
discovery in collaboration
with the Device
component.

• Automated device-level
policies (e.g., for
monitoring) in
collaboration with the
Policy component.

UBI

Policy Management • ECA policy model
implementation for device-
level policies with a focus
on monitoring cases.

UBI, ODC

T3.4 Slice Management • Initial version of Slice
Management component

ODC, CTTC

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 75 of 105

8. ANNEX

8.1. ONF TR-532 model parameters

8.1.1. ONF TR-532 - air-interface parameters

module: air-interface-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw air-interface-pac
 +--ro air-interface-capability
 | +--ro type-of-equipment? string
 | +--ro tx-frequency-min? int32
 | +--ro tx-frequency-max? int32
 | +--ro rx-frequency-min? int32
 | +--ro rx-frequency-max? int32
 | +--ro transmission-mode-list* [transmission-mode-name]
 | | +--ro transmission-mode-name string
 | | +--ro transmission-mode-rank? int32
 | | +--ro channel-bandwidth? int32
 | | +--ro modulation-scheme? int16
 | | +--ro code-rate? int8
 | | +--ro symbol-rate-reduction-factor? int8
 | | +--ro tx-power-min? int8
 | | +--ro tx-power-max? int8
 | | +--ro rx-threshold? int16
 | | +--ro am-upshift-level? int8
 | | +--ro am-downshift-level? int8
 | | +--ro xpic-is-avail? boolean
 | | +--ro supported-as-fixed-configuration? boolean
 | +--ro duplex-distance-is-freely-configurable? boolean
 | +--ro duplex-distance-list* int32
 | +--ro auto-freq-select-is-avail? boolean
 | +--ro adaptive-modulation-is-avail? boolean
 | +--ro atpc-is-avail? boolean
 | +--ro atpc-range? int8
 | +--ro supported-radio-signal-id-datatype? radio-signal-id-datatype-type
 | +--ro supported-radio-signal-id-length? int16
 | +--ro expected-equals-transmitted-radio-signal-id? boolean
 | +--ro encryption-is-avail? boolean
 | +--ro supported-loop-back-kind-list* loop-back-type
 | +--ro maintenance-timer-range? string
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 | +--ro direction-of-acm-performance-values? direction-type
 +--rw air-interface-configuration
 | +--rw air-interface-name? string
 | +--rw remote-air-interface-name? string
 | +--rw transmitted-radio-signal-id
 | | +--rw numeric-radio-signal-id? uint16
 | | +--rw alphanumeric-radio-signal-id? string
 | +--rw expected-radio-signal-id
 | | +--rw numeric-radio-signal-id? uint16
 | | +--rw alphanumeric-radio-signal-id? string
 | +--rw tx-frequency? int32
 | +--rw rx-frequency? int32
 | +--rw transmission-mode-min? -> /core-model:control-
construct/logical-termination-point/layer-protocol/air-interface:air-interface-pac/air-
interface-capability/transmission-mode-list/transmission-mode-name
 | +--rw transmission-mode-max? -> /core-model:control-
construct/logical-termination-point/layer-protocol/air-interface:air-interface-pac/air-
interface-capability/transmission-mode-list/transmission-mode-name
 | +--rw power-is-on? boolean
 | +--rw transmitter-is-on? boolean
 | +--rw receiver-is-on? boolean
 | +--rw tx-power? int8
 | +--rw adaptive-modulation-is-on? boolean
 | +--rw xpic-is-on? boolean
 | +--rw mimo-is-on? boolean
 | +--rw alic-is-on? boolean

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 76 of 105

 | +--rw atpc-is-on? boolean
 | +--rw atpc-thresh-upper? int16
 | +--rw atpc-thresh-lower? int16
 | +--rw atpc-tx-power-min? int8
 | +--rw auto-freq-select-is-on? boolean
 | +--rw auto-freq-select-range? int8
 | +--rw modulation-is-on? boolean
 | +--rw encryption-is-on? boolean
 | +--rw cryptographic-key? string
 | +--rw loop-back-kind-on? loop-back-type
 | +--rw maintenance-timer? int32
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw g-826-threshold-cross-alarm-list* [g-826-value-kind granularity-period]
 | | +--rw g-826-value-kind g-826-type
 | | +--rw alarm-raising-threshold? int32
 | | +--rw alarm-clearing-threshold? int32
 | | +--rw granularity-period granularity-period-type
 | +--rw xlts-threshold-cross-alarm-list* [level-threshold-second-kind granularity-
period xlts-threshold-cross-alarm-definition-number]
 | | +--rw level-threshold-second-kind xlevel-threshold-second-
kind-type
 | | +--rw xlts-level? int8
 | | +--rw amount-of-seconds? int16
 | | +--rw granularity-period granularity-period-type
 | | +--rw xlts-threshold-cross-alarm-definition-number int8
 | +--rw acm-threshold-cross-alarm-list* [acm-threshold-cross-alarm-definition-number
granularity-period]
 | | +--rw acm-threshold-cross-alarm-definition-number int8
 | | +--rw transmission-mode? -> /core-model:control-
construct/logical-termination-point/layer-protocol/air-interface:air-interface-pac/air-
interface-capability/transmission-mode-list/transmission-mode-name
 | | +--rw amount-of-seconds? int16
 | | +--rw granularity-period granularity-period-type
 | +--rw clearing-threshold-cross-alarms-is-on? boolean
 | +--rw performance-monitoring-is-on? boolean
 +--ro air-interface-status
 | +--ro interface-status? interface-status-type
 | +--ro tx-frequency-cur? int32
 | +--ro rx-frequency-cur? int32
 | +--ro transmission-mode-cur? -> /core-model:control-construct/logical-
termination-point/layer-protocol/air-interface:air-interface-pac/air-interface-
capability/transmission-mode-list/transmission-mode-name
 | +--ro received-radio-signal-id
 | | +--ro numeric-radio-signal-id? uint16
 | | +--ro alphanumeric-radio-signal-id? string
 | +--ro radio-power-is-up? boolean
 | +--ro link-is-up? boolean
 | +--ro xpic-is-up? boolean
 | +--ro mimo-is-up? boolean
 | +--ro alic-is-up? boolean
 | +--ro atpc-is-up? boolean
 | +--ro auto-freq-select-is-up? boolean
 | +--ro local-end-point-id? string
 | +--ro remote-end-point-id? string
 | +--ro loop-back-kind-up? loop-back-type
 | +--ro performance-monitoring-is-up? boolean
 | +--ro rx-level-cur? int8
 | +--ro tx-level-cur? int8
 | +--ro snir-cur? int8
 | +--ro xpd-cur? int8
 | +--ro rf-temp-cur? int8
 +--ro air-interface-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro air-interface-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro es? int32

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 77 of 105

 | | | +--ro ses? int32
 | | | +--ro cses? int32
 | | | +--ro unavailability? int32
 | | | +--ro tx-level-min? int8
 | | | +--ro tx-level-max? int8
 | | | +--ro tx-level-avg? int8
 | | | +--ro rx-level-min? int8
 | | | +--ro rx-level-max? int8
 | | | +--ro rx-level-avg? int8
 | | | +--ro time-xstates-list* [time-xstate-sequence-number]
 | | | | +--ro time-xstate-sequence-number int8
 | | | | +--ro transmission-mode? -> /core-model:control-
construct/logical-termination-point/layer-protocol/air-interface:air-interface-pac/air-
interface-capability/transmission-mode-list/transmission-mode-name
 | | | | +--ro time? int32
 | | | +--ro snir-min? int8
 | | | +--ro snir-max? int8
 | | | +--ro snir-avg? int8
 | | | +--ro xpd-min? int8
 | | | +--ro xpd-max? int8
 | | | +--ro xpd-avg? int8
 | | | +--ro rf-temp-min? int8
 | | | +--ro rf-temp-max? int8
 | | | +--ro rf-temp-avg? int8
 | | | +--ro defect-blocks-sum? int16
 | | | +--ro time-period? int32
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro air-interface-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro es? int32
 | | +--ro ses? int32
 | | +--ro cses? int32
 | | +--ro unavailability? int32
 | | +--ro tx-level-min? int8
 | | +--ro tx-level-max? int8
 | | +--ro tx-level-avg? int8
 | | +--ro rx-level-min? int8
 | | +--ro rx-level-max? int8
 | | +--ro rx-level-avg? int8
 | | +--ro time-xstates-list* [time-xstate-sequence-number]
 | | | +--ro time-xstate-sequence-number int8
 | | | +--ro transmission-mode? -> /core-model:control-
construct/logical-termination-point/layer-protocol/air-interface:air-interface-pac/air-
interface-capability/transmission-mode-list/transmission-mode-name
 | | | +--ro time? int32
 | | +--ro snir-min? int8
 | | +--ro snir-max? int8
 | | +--ro snir-avg? int8
 | | +--ro xpd-min? int8
 | | +--ro xpd-max? int8
 | | +--ro xpd-avg? int8
 | | +--ro rf-temp-min? int8
 | | +--ro rf-temp-max? int8
 | | +--ro rf-temp-avg? int8
 | | +--ro defect-blocks-sum? int16
 | | +--ro time-period? int32
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

8.1.2. ONF TR-532 - co-channel-profile model parameters

module: co-channel-profile-1-0

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 78 of 105

 augment /core-model:control-construct/core-model:profile-collection/core-model:profile:
 +--rw co-channel-profile-pac
 +--ro co-channel-profile-capability
 | +--ro xpic-is-avail? boolean
 | +--ro mimo-is-avail? boolean
 | +--ro number-of-mimo-channels-max? int8
 | +--ro alic-is-avail? boolean
 +--rw co-channel-profile-configuration
 +--rw profile-name? string
 +--rw kind-of-co-channel-group? kind-of-co-channel-group-type
 +--rw logical-termination-point-list* -> /core-model:control-construct/logical-
termination-point/uuid

8.1.3. ONF TR-532 - core-model model parameters

module: core-model-1-4
 +--rw control-construct!
 +--rw top-level-equipment* -> /control-construct/equipment/uuid
 +--rw equipment* [uuid]
 | +--rw connector* [local-id]
 | | +--rw connector? string
 | | +--rw orientation? connector-and-pin-orientation
 | | +--rw pin-layout? string
 | | +--rw connector-type? string
 | | +--rw role? string
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw contained-holder* [local-id]
 | | +--rw occupying-fru? -> /control-construct/equipment/uuid
 | | +--rw holder-location? dt-address
 | | +--rw expected-holder
 | | | +--rw spatial-properties-of-type
 | | | | +--rw height? string
 | | | | +--rw width? string
 | | | | +--rw length? string
 | | | +--rw environmental-rating
 | | | | +--rw thermal-rating
 | | | | | +--rw thermal-rating-name? string
 | | | | | +--rw maximum-temperature? decimal64
 | | | | | +--rw minimum-temperature? decimal64
 | | | | +--rw power-rating
 | | | | | +--rw power-rating-name? string
 | | | | | +--rw power-rating-value? string
 | | | | +--rw humidity-rating? string
 | | | +--rw position
 | | | | +--rw relative-position? string
 | | | +--rw holder-structure
 | | | | +--rw holder-category? holder-category
 | | | | +--rw is-captive? boolean
 | | | | +--rw is-guided? boolean
 | | | | +--rw is-quantised-space? boolean
 | | | +--rw local-id? string
 | | | +--rw name* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw label* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw extension* [value-name]
 | | | | +--rw value-name string

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 79 of 105

 | | | | +--rw value? string
 | | | +--ro operational-state? operational-state
 | | | +--rw administrative-control? administrative-control
 | | | +--ro administrative-state? administrative-state
 | | | +--rw lifecycle-state? lifecycle-state
 | | | +--rw address* dt-address
 | | +--rw actual-holder
 | | | +--rw spatial-properties-of-type
 | | | | +--rw height? string
 | | | | +--rw width? string
 | | | | +--rw length? string
 | | | +--rw environmental-rating
 | | | | +--rw thermal-rating
 | | | | | +--rw thermal-rating-name? string
 | | | | | +--rw maximum-temperature? decimal64
 | | | | | +--rw minimum-temperature? decimal64
 | | | | +--rw power-rating
 | | | | | +--rw power-rating-name? string
 | | | | | +--rw power-rating-value? string
 | | | | +--rw humidity-rating? string
 | | | +--rw position
 | | | | +--rw relative-position? string
 | | | +--rw holder-structure
 | | | | +--rw holder-category? holder-category
 | | | | +--rw is-captive? boolean
 | | | | +--rw is-guided? boolean
 | | | | +--rw is-quantised-space? boolean
 | | | +--rw local-id? string
 | | | +--rw name* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw label* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw extension* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--ro operational-state? operational-state
 | | | +--rw administrative-control? administrative-control
 | | | +--ro administrative-state? administrative-state
 | | | +--rw lifecycle-state? lifecycle-state
 | | | +--rw address* dt-address
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--ro is-field-replaceable? boolean
 | +--rw function-block* string
 | +--rw expected-equipment* [local-id]
 | | +--rw location
 | | | +--rw equipment-location? dt-address
 | | | +--rw geographical-location? dt-address
 | | +--rw structure
 | | | +--rw category? equipment-category
 | | +--rw swappability
 | | | +--rw is-hot-swappable? boolean
 | | +--rw physical-properties
 | | | +--rw temperature? string
 | | +--rw function-enablers
 | | | +--rw power-state? string
 | | +--rw mechanical-functions
 | | | +--rw rotation-speed? string
 | | +--rw physical-characteristics
 | | | +--rw weight-characeristics? string

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 80 of 105

 | | | +--rw fire-characteristics? string
 | | | +--rw materials? string
 | | +--rw mechanical-features
 | | +--rw spatial-properties-of-type
 | | | +--rw height? string
 | | | +--rw width? string
 | | | +--rw length? string
 | | +--rw environmental-rating
 | | | +--rw thermal-rating
 | | | | +--rw thermal-rating-name? string
 | | | | +--rw maximum-temperature? decimal64
 | | | | +--rw minimum-temperature? decimal64
 | | | +--rw power-rating
 | | | | +--rw power-rating-name? string
 | | | | +--rw power-rating-value? string
 | | | +--rw humidity-rating? string
 | | +--rw manufactured-thing
 | | | +--rw manufacturer-properties
 | | | | +--rw manufacturer-identifier? string
 | | | | +--rw manufacturer-name? string
 | | | +--rw equipment-type
 | | | | +--rw description? string
 | | | | +--rw model-identifier? string
 | | | | +--rw part-type-identifier? string
 | | | | +--rw type-name? string
 | | | | +--rw version? string
 | | | +--rw equipment-instance
 | | | | +--rw manufacture-date? yang:date-and-time
 | | | | +--rw serial-number? string
 | | | | +--rw asset-instance-identifier? string
 | | | +--rw operator-augmented-equipment-type
 | | | | +--rw asset-type-identifier? string
 | | | +--rw operator-augmented-equipment-instance
 | | | +--rw asset-instance-identifier? string
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw actual-equipment
 | | +--rw location
 | | | +--rw equipment-location? dt-address
 | | | +--rw geographical-location? dt-address
 | | +--rw structure
 | | | +--rw category? equipment-category
 | | +--rw swappability
 | | | +--rw is-hot-swappable? boolean
 | | +--rw physical-properties
 | | | +--rw temperature? string
 | | +--rw function-enablers
 | | | +--rw power-state? string
 | | +--rw mechanical-functions
 | | | +--rw rotation-speed? string
 | | +--rw physical-characteristics
 | | | +--rw weight-characeristics? string
 | | | +--rw fire-characteristics? string
 | | | +--rw materials? string
 | | +--rw mechanical-features
 | | +--rw spatial-properties-of-type
 | | | +--rw height? string
 | | | +--rw width? string
 | | | +--rw length? string
 | | +--rw environmental-rating
 | | | +--rw thermal-rating
 | | | | +--rw thermal-rating-name? string

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 81 of 105

 | | | | +--rw maximum-temperature? decimal64
 | | | | +--rw minimum-temperature? decimal64
 | | | +--rw power-rating
 | | | | +--rw power-rating-name? string
 | | | | +--rw power-rating-value? string
 | | | +--rw humidity-rating? string
 | | +--rw manufactured-thing
 | | | +--rw manufacturer-properties
 | | | | +--rw manufacturer-identifier? string
 | | | | +--rw manufacturer-name? string
 | | | +--rw equipment-type
 | | | | +--rw description? string
 | | | | +--rw model-identifier? string
 | | | | +--rw part-type-identifier? string
 | | | | +--rw type-name? string
 | | | | +--rw version? string
 | | | +--rw equipment-instance
 | | | | +--rw manufacture-date? yang:date-and-time
 | | | | +--rw serial-number? string
 | | | | +--rw asset-instance-identifier? string
 | | | +--rw operator-augmented-equipment-type
 | | | | +--rw asset-type-identifier? string
 | | | +--rw operator-augmented-equipment-instance
 | | | +--rw asset-instance-identifier? string
 | | +--rw local-id? string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw equipment-functional-boundary? string
 | +--rw external-managed-id
 | | +--rw manager-identifier? string
 | | +--rw external-managed-uuid? string
 | +--rw local-id? string
 | +--rw uuid universal-id
 | +--rw name* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw label* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw extension* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--ro operational-state? operational-state
 | +--rw administrative-control? administrative-control
 | +--ro administrative-state? administrative-state
 | +--rw lifecycle-state? lifecycle-state
 | +--rw address* dt-address
 +--rw logical-termination-point* [uuid]
 | +--rw server-ltp* -> /control-construct/logical-termination-point/uuid
 | +--rw client-ltp* -> /control-construct/logical-termination-point/uuid
 | +--rw layer-protocol* [local-id]
 | | +--rw layer-protocol-name? layer-protocol-name-type
 | | +--rw configured-client-capacity? string
 | | +--rw lp-direction? termination-direction
 | | +--rw termination-state? termination-state
 | | +--rw configuration-and-switch-control* string
 | | +--rw is-protection-lock-out? boolean
 | | +--rw fc-blocks-signal-to-lp? string
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 82 of 105

 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw connected-ltp? -> /control-construct/logical-termination-point/uuid
 | +--rw peer-ltp? -> /control-construct/logical-termination-point/uuid
 | +--rw physical-port-reference* -> /control-construct/equipment/uuid
 | +--rw ltp-in-other-view* -> /control-construct/logical-termination-point/uuid
 | +--rw ltp-direction? termination-direction
 | +--rw transfer-capacity-pac? string
 | +--rw fd-rule-group* -> /control-construct/forwarding-domain/uuid
 | +--rw embedded-clock* [local-id]
 | | +--ro run-mode? run-mode
 | | +--rw encompassed-clock* -> /control-construct/logical-termination-
point/embedded-clock/local-id
 | | +--rw encapsulated-fc* [uuid]
 | | | +--rw layer-protocol-name? layer-protocol-name-type
 | | | +--rw lower-level-fc* -> /control-construct/forwarding-
domain/fc/uuid
 | | | +--rw fc-route? string
 | | | +--rw fc-port* [local-id]
 | | | | +--rw logical-termination-point* -> /control-construct/logical-
termination-point/uuid
 | | | | +--rw role? port-role
 | | | | +--rw fc-port-direction? port-direction
 | | | | +--rw is-protection-lock-out? boolean {fcportisprotectionlockout}?
 | | | | +--rw selection-priority? int64
 | | | | +--ro is-internal-port? boolean
 | | | | +--rw fc-route-feeds-fc-port-egress* string
 | | | | +--rw fc-port* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | +--rw port-of-internal-fc* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | +--rw local-id string
 | | | | +--rw name* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw label* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw extension* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--ro operational-state? operational-state
 | | | | +--rw administrative-control? administrative-control
 | | | | +--ro administrative-state? administrative-state
 | | | | +--rw lifecycle-state? lifecycle-state
 | | | | +--rw address* dt-address
 | | | +--rw fc-switch* [local-id]
 | | | | +--rw hold-off-time? int64
 | | | | +--rw prot-type? protection-type
 | | | | +--rw reversion-mode? reversion-mode
 | | | | +--rw selected-fc-port* [local-id]
 | | | | | +--rw logical-termination-point* -> /control-construct/logical-
termination-point/uuid
 | | | | | +--rw role? port-role
 | | | | | +--rw fc-port-direction? port-direction
 | | | | | +--rw is-protection-lock-out? boolean
{fcportisprotectionlockout}?
 | | | | | +--rw selection-priority? int64
 | | | | | +--ro is-internal-port? boolean
 | | | | | +--rw fc-route-feeds-fc-port-egress* string
 | | | | | +--rw fc-port* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | | +--rw port-of-internal-fc* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | | +--rw local-id string
 | | | | | +--rw name* [value-name]
 | | | | | | +--rw value-name string

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 83 of 105

 | | | | | | +--rw value? string
 | | | | | +--rw label* [value-name]
 | | | | | | +--rw value-name string
 | | | | | | +--rw value? string
 | | | | | +--rw extension* [value-name]
 | | | | | | +--rw value-name string
 | | | | | | +--rw value? string
 | | | | | +--ro operational-state? operational-state
 | | | | | +--rw administrative-control? administrative-control
 | | | | | +--ro administrative-state? administrative-state
 | | | | | +--rw lifecycle-state? lifecycle-state
 | | | | | +--rw address* dt-address
 | | | | +--rw profile-proxy* string
 | | | | +--rw configuration-and-switch-control? string
 | | | | +--rw internal-configuration-and-switch-control? string
 | | | | +--rw switch-control? switch-control
 | | | | +--rw switch-selects-ports? port-direction
 | | | | +--ro switch-selection-reason? switch-state-reason
 | | | | +--rw control-parameters
 | | | | | +--rw reversion-mode? reversion-mode
 | | | | | +--rw wait-to-revert-time? int64
 | | | | | +--rw prot-type? protection-type
 | | | | | +--rw hold-off-time? int64
 | | | | | +--rw network-scheme-specification? string
 | | | | +--rw wait-to-restore-time? int64
 | | | | +--rw local-id string
 | | | | +--rw name* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw label* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw extension* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--ro operational-state? operational-state
 | | | | +--rw administrative-control? administrative-control
 | | | | +--ro administrative-state? administrative-state
 | | | | +--rw lifecycle-state? lifecycle-state
 | | | | +--rw address* dt-address
 | | | +--rw configuration-and-switch-control* string
 | | | +--rw forwarding-direction? forwarding-direction
 | | | +--rw is-protection-lock-out? boolean
{forwardingconstructisprotectionlockout}?
 | | | +--rw service-priority? int64
 | | | +--rw supported-link* string
 | | | +--rw supporting-pc? string
 | | | +--rw external-managed-id
 | | | | +--rw manager-identifier? string
 | | | | +--rw external-managed-uuid? string
 | | | +--rw local-id? string
 | | | +--rw uuid universal-id
 | | | +--rw name* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw label* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw extension* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--ro operational-state? operational-state
 | | | +--rw administrative-control? administrative-control
 | | | +--ro administrative-state? administrative-state
 | | | +--rw lifecycle-state? lifecycle-state
 | | | +--rw address* dt-address
 | | +--rw sync-ltp* -> /control-construct/logical-termination-
point/uuid
 | | +--rw encapsulated-casc* string
 | | +--rw phase-aligned-clock* -> /control-construct/logical-termination-
point/embedded-clock/local-id
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 84 of 105

 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw supporting-pc? string
 | +--rw external-managed-id
 | | +--rw manager-identifier? string
 | | +--rw external-managed-uuid? string
 | +--rw local-id? string
 | +--rw uuid universal-id
 | +--rw name* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw label* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw extension* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--ro operational-state? operational-state
 | +--rw administrative-control? administrative-control
 | +--ro administrative-state? administrative-state
 | +--rw lifecycle-state? lifecycle-state
 | +--rw address* dt-address
 +--rw forwarding-domain* [uuid]
 | +--rw layer-protocol-name* layer-protocol-name-type
 | +--rw lower-level-fd* -> /control-construct/forwarding-domain/uuid
 | +--rw fc* [uuid]
 | | +--rw layer-protocol-name? layer-protocol-name-type
 | | +--rw lower-level-fc* -> /control-construct/forwarding-
domain/fc/uuid
 | | +--rw fc-route? string
 | | +--rw fc-port* [local-id]
 | | | +--rw logical-termination-point* -> /control-construct/logical-
termination-point/uuid
 | | | +--rw role? port-role
 | | | +--rw fc-port-direction? port-direction
 | | | +--rw is-protection-lock-out? boolean {fcportisprotectionlockout}?
 | | | +--rw selection-priority? int64
 | | | +--ro is-internal-port? boolean
 | | | +--rw fc-route-feeds-fc-port-egress* string
 | | | +--rw fc-port* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | +--rw port-of-internal-fc* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | +--rw local-id string
 | | | +--rw name* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw label* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw extension* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--ro operational-state? operational-state
 | | | +--rw administrative-control? administrative-control
 | | | +--ro administrative-state? administrative-state
 | | | +--rw lifecycle-state? lifecycle-state
 | | | +--rw address* dt-address
 | | +--rw fc-switch* [local-id]
 | | | +--rw hold-off-time? int64
 | | | +--rw prot-type? protection-type
 | | | +--rw reversion-mode? reversion-mode
 | | | +--rw selected-fc-port* [local-id]
 | | | | +--rw logical-termination-point* -> /control-construct/logical-
termination-point/uuid
 | | | | +--rw role? port-role

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 85 of 105

 | | | | +--rw fc-port-direction? port-direction
 | | | | +--rw is-protection-lock-out? boolean {fcportisprotectionlockout}?
 | | | | +--rw selection-priority? int64
 | | | | +--ro is-internal-port? boolean
 | | | | +--rw fc-route-feeds-fc-port-egress* string
 | | | | +--rw fc-port* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | +--rw port-of-internal-fc* -> /control-construct/forwarding-
domain/fc/fc-port/local-id
 | | | | +--rw local-id string
 | | | | +--rw name* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw label* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--rw extension* [value-name]
 | | | | | +--rw value-name string
 | | | | | +--rw value? string
 | | | | +--ro operational-state? operational-state
 | | | | +--rw administrative-control? administrative-control
 | | | | +--ro administrative-state? administrative-state
 | | | | +--rw lifecycle-state? lifecycle-state
 | | | | +--rw address* dt-address
 | | | +--rw profile-proxy* string
 | | | +--rw configuration-and-switch-control? string
 | | | +--rw internal-configuration-and-switch-control? string
 | | | +--rw switch-control? switch-control
 | | | +--rw switch-selects-ports? port-direction
 | | | +--ro switch-selection-reason? switch-state-reason
 | | | +--rw control-parameters
 | | | | +--rw reversion-mode? reversion-mode
 | | | | +--rw wait-to-revert-time? int64
 | | | | +--rw prot-type? protection-type
 | | | | +--rw hold-off-time? int64
 | | | | +--rw network-scheme-specification? string
 | | | +--rw wait-to-restore-time? int64
 | | | +--rw local-id string
 | | | +--rw name* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw label* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--rw extension* [value-name]
 | | | | +--rw value-name string
 | | | | +--rw value? string
 | | | +--ro operational-state? operational-state
 | | | +--rw administrative-control? administrative-control
 | | | +--ro administrative-state? administrative-state
 | | | +--rw lifecycle-state? lifecycle-state
 | | | +--rw address* dt-address
 | | +--rw configuration-and-switch-control* string
 | | +--rw forwarding-direction? forwarding-direction
 | | +--rw is-protection-lock-out? boolean
{forwardingconstructisprotectionlockout}?
 | | +--rw service-priority? int64
 | | +--rw supported-link* string
 | | +--rw supporting-pc? string
 | | +--rw external-managed-id
 | | | +--rw manager-identifier? string
 | | | +--rw external-managed-uuid? string
 | | +--rw local-id? string
 | | +--rw uuid universal-id
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 86 of 105

 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw logical-termination-point* -> /control-construct/logical-termination-
point/uuid
 | +--rw fd-port* [local-id]
 | | +--rw logical-termination-point* -> /control-construct/logical-termination-
point/uuid
 | | +--rw role? port-role
 | | +--rw fd-port-direction? port-direction
 | | +--rw fc-port* -> /control-construct/forwarding-domain/fc/fc-
port/local-id
 | | +--rw fd-port* -> /control-construct/forwarding-domain/fd-
port/local-id
 | | +--rw local-id string
 | | +--rw name* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw label* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--rw extension* [value-name]
 | | | +--rw value-name string
 | | | +--rw value? string
 | | +--ro operational-state? operational-state
 | | +--rw administrative-control? administrative-control
 | | +--ro administrative-state? administrative-state
 | | +--rw lifecycle-state? lifecycle-state
 | | +--rw address* dt-address
 | +--rw external-managed-id
 | | +--rw manager-identifier? string
 | | +--rw external-managed-uuid? string
 | +--rw local-id? string
 | +--rw uuid universal-id
 | +--rw name* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw label* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw extension* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--ro operational-state? operational-state
 | +--rw administrative-control? administrative-control
 | +--ro administrative-state? administrative-state
 | +--rw lifecycle-state? lifecycle-state
 | +--rw address* dt-address
 +--rw profile-collection
 | +--rw profile* [uuid]
 | +--rw profile-name? profile-name-type
 | +--rw external-managed-id
 | | +--rw manager-identifier? string
 | | +--rw external-managed-uuid? string
 | +--rw local-id? string
 | +--rw uuid universal-id
 | +--rw name* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw label* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--rw extension* [value-name]
 | | +--rw value-name string
 | | +--rw value? string
 | +--ro operational-state? operational-state
 | +--rw administrative-control? administrative-control
 | +--ro administrative-state? administrative-state
 | +--rw lifecycle-state? lifecycle-state
 | +--rw address* dt-address
 +--rw external-managed-id
 | +--rw manager-identifier? string
 | +--rw external-managed-uuid? string
 +--rw local-id? string
 +--rw uuid? universal-id

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 87 of 105

 +--rw name* [value-name]
 | +--rw value-name string
 | +--rw value? string
 +--rw label* [value-name]
 | +--rw value-name string
 | +--rw value? string
 +--rw extension* [value-name]
 | +--rw value-name string
 | +--rw value? string
 +--ro operational-state? operational-state
 +--rw administrative-control? administrative-control
 +--ro administrative-state? administrative-state
 +--rw lifecycle-state? lifecycle-state
 +--rw address* dt-address

8.1.4. ONF TR-532 - ethernet-container model parameters

module: ethernet-container-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw ethernet-container-pac
 +--ro ethernet-container-capability
 | +--ro available-queue-list* [queue-name]
 | | +--ro queue-name queue-name-type
 | | +--ro max-queue-depth? int32
 | | +--ro queue-depth-configuration-is-avail? boolean
 | | +--ro available-dropping-behavior-kind-list* dropping-behavior-kind-
type
 | | +--ro available-drop-precedence-kind-list* drop-precedence-type
 | | +--ro wred-profile-per-drop-precedence-is-available? boolean
 | | +--ro available-scheduling-kind-list* scheduler-kind-type
 | +--ro explicit-congestion-notification-is-avail? boolean
 | +--ro ingress-policing-is-avail? boolean
 | +--ro egress-shaping-is-avail? boolean
 | +--ro information-rate-min? int32
 | +--ro information-rate-max? int32
 | +--ro burst-size-min? int16
 | +--ro burst-size-max? int16
 | +--ro bundling-is-avail? boolean
 | +--ro bundling-group-size-max? int8
 | +--ro support-of-management-frames-without-preamble-is-avail? boolean
 | +--ro supported-header-compression-kind-list* [header-compression-name]
 | | +--ro header-compression-name string
 | | +--ro header-compression-mode? header-compression-mode-type
 | | +--ro compressed-protocol-layer-list* protocol-layer-type
 | | +--ro mpls-payload-kind-list* mpls-payload-kind-type
 | | +--ro compressed-header-length? int16
 | +--ro fec-is-avail? boolean
 | +--ro fec-word-size-max? int16
 | +--ro supported-fec-redundancy-size-list* fec-redundancy-size-
type
 | +--ro supported-fec-interleaver-kind-list* fec-interleaver-
kind-type
 | +--ro supported-fec-interleaver-depth-list* fec-interleaver-
depth-type
 | +--ro encryption-is-avail? boolean
 | +--ro admin-shut-down-is-avail? boolean
 | +--ro supported-loop-back-kind-list* loop-back-type
 | +--ro maintenance-timer-range? string
 | +--ro statistics-is-avail? boolean
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw ethernet-container-configuration
 | +--rw interface-name? string
 | +--rw interface-is-on? boolean
 | +--rw queue-behavior-list* [queue-name]
 | | +--rw queue-name queue-name-type
 | | +--rw queue-depth? int32
 | | +--rw dropping-behavior-kind? dropping-behavior-kind-type
 | | +--rw wred-behavior-list* [affected-drop-precedence affected-protocol]
 | | | +--rw affected-drop-precedence drop-precedence-type
 | | | +--rw affected-protocol protocol-layer-type

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 88 of 105

 | | | +--rw wred-profile? -> /core-model:control-construct/profile-
collection/profile/uuid
 | | +--rw scheduler-kind? scheduler-kind-type
 | | +--rw weighting? int8
 | +--rw explicit-congestion-notification-is-on? boolean
 | +--rw ingress-policing-profile? -> /core-model:control-
construct/profile-collection/profile/uuid
 | +--rw egress-shaping-is-on? boolean
 | +--rw maximum-information-rate? int32
 | +--rw maximum-burst-size? int16
 | +--rw bundling-is-on? boolean
 | +--rw header-compression-kind? -> /core-model:control-
construct/logical-termination-point/layer-protocol/ethernet-container:ethernet-container-
pac/ethernet-container-capability/supported-header-compression-kind-list/header-compression-
name
 | +--rw fec-is-on? boolean
 | +--rw fec-word-size? int16
 | +--rw fec-redundancy-size? fec-redundancy-size-type
 | +--rw fec-interleaver-kind? fec-interleaver-kind-type
 | +--rw fec-interleaver-depth? fec-interleaver-depth-type
 | +--rw encryption-is-on? boolean
 | +--rw cryptographic-key? string
 | +--rw loop-back-kind-on? loop-back-type
 | +--rw maintenance-timer? int32
 | +--rw statistics-is-on? boolean
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw performance-monitoring-is-on? boolean
 +--ro ethernet-container-status
 | +--ro interface-status? interface-status-type
 | +--ro bundling-is-up? boolean
 | +--ro remote-site-is-faulty? boolean
 | +--ro loop-back-kind-up? loop-back-type
 | +--ro statistics-is-up? boolean
 | +--ro performance-monitoring-is-up? boolean
 | +--ro timestamp? yang:date-and-time
 | +--ro last-10-sec-data-input-rate? int32
 | +--ro last-10-sec-data-output-rate? int32
 | +--ro total-bytes-input? uint64
 | +--ro total-bytes-output? uint64
 | +--ro forwarded-bytes-input? uint64
 | +--ro forwarded-bytes-output? uint64
 +--ro ethernet-container-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro ethernet-container-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro tx-ethernet-bytes-max-s? int32
 | | | +--ro tx-ethernet-bytes-max-m? int64
 | | | +--ro tx-ethernet-bytes-sum? int64
 | | | +--ro queue-utilization-list* [queue-name]
 | | | | +--ro queue-name queue-name-type
 | | | | +--ro max-queue-length? int32
 | | | | +--ro avg-queue-length? int32
 | | | +--ro fec-corrected-blocks? int32
 | | | +--ro fec-uncorrectable-blocks? int32
 | | | +--ro time-period? int32
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro ethernet-container-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro tx-ethernet-bytes-max-s? int32
 | | +--ro tx-ethernet-bytes-max-m? int64

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 89 of 105

 | | +--ro tx-ethernet-bytes-sum? int64
 | | +--ro queue-utilization-list* [queue-name]
 | | | +--ro queue-name queue-name-type
 | | | +--ro max-queue-length? int32
 | | | +--ro avg-queue-length? int32
 | | +--ro fec-corrected-blocks? int32
 | | +--ro fec-uncorrectable-blocks? int32
 | | +--ro time-period? int32
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

8.1.5. ONF TR-532 - firmware model parameters

module: firmware-1-0
 augment /core-model:control-construct:
 +--rw firmware-collection
 +--ro firmware-component-list* [local-id]
 | +--ro firmware-component-pac
 | | +--ro firmware-component-capability
 | | | +--ro firmware-component-name? string
 | | | +--ro firmware-component-version? string
 | | | +--ro firmware-component-class? firmware-component-class-type
 | | | +--ro individual-activation-is-avail? boolean
 | | | +--ro related-kinds-of-equipment-list* string
 | | +--ro firmware-component-status
 | | +--ro firmware-component-status? firmware-component-status-type
 | | +--ro firmware-component-activation-date? yang:date-and-time
 | | +--ro is-active-on-equipment-list* string
 | +--ro subordinate-firmware-component-list* string
 | +--ro local-id string
 | +--ro name* [value-name]
 | | +--ro value-name string
 | | +--ro value? string
 | +--ro label* [value-name]
 | | +--ro value-name string
 | | +--ro value? string
 | +--ro extension* [value-name]
 | | +--ro value-name string
 | | +--ro value? string
 | +--ro operational-state? operational-state
 | +--ro administrative-control? administrative-control
 | +--ro administrative-state? administrative-state
 | +--ro lifecycle-state? lifecycle-state
 | +--ro address* dt-address
 +--ro download
 +--ro filename? string
 +--ro download-status? download-status-type
 +--ro download-status-description? string

 rpcs:
 +---x download-firmware-component
 | +---w input
 | +---w source-uri string
 | +---w filename string
 | +---w username-at-file-server? string
 | +---w password-at-file-server? string
 | +---w ssh-key? string
 | +---w force-download boolean
 +---x abort-firmware-download
 +---x activate-firmware-component
 +---w input
 +---w firmware-component -> /core-model:control-construct/firmware:firmware-
collection/firmware-component-list/local-id
 +---w activation-delay-period uint64

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 90 of 105

8.1.6. ONF TR532 - hybrid-mw-structure model parameters

module: hybrid-mw-structure-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw hybrid-mw-structure-pac
 +--ro hybrid-mw-structure-capability
 | +--ro supported-tdm-structure-kind-list* [tdm-structure-name]
 | | +--ro tdm-structure-name string
 | | +--ro tdm-segment-size? int32
 | | +--ro max-number-of-segments-reservable? int8
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw hybrid-mw-structure-configuration
 | +--rw tdm-structure-kind? -> /core-model:control-
construct/logical-termination-point/layer-protocol/hybrid-mw-structure:hybrid-mw-structure-
pac/hybrid-mw-structure-capability/supported-tdm-structure-kind-list/tdm-structure-name
 | +--rw number-of-tdm-segments-to-be-reserved? int8
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw g-826-threshold-cross-alarm-list* [g-826-value-kind granularity-period]
 | | +--rw g-826-value-kind g-826-type
 | | +--rw alarm-raising-threshold? int32
 | | +--rw alarm-clearing-threshold? int32
 | | +--rw granularity-period granularity-period-type
 | +--rw clearing-threshold-cross-alarms-is-on? boolean
 | +--rw performance-monitoring-is-on? boolean
 +--ro hybrid-mw-structure-status
 | +--ro segment-status-list* [segment-status-type-id]
 | | +--ro segment-status-type-id int16
 | | +--ro segment-is-reserved-for-tdm? boolean
 | | +--ro operational-status? operational-state-type
 | +--ro performance-monitoring-is-up? boolean
 +--ro hybrid-mw-structure-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro hybrid-mw-structure-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro time-period? int32
 | | | +--ro es? int32
 | | | +--ro ses? int32
 | | | +--ro cses? int32
 | | | +--ro unavailability? int32
 | | | +--ro rx-level-min? int8
 | | | +--ro rx-level-max? int8
 | | | +--ro rx-level-avg? int8
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro hybrid-mw-structure-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro time-period? int32
 | | +--ro es? int32
 | | +--ro ses? int32
 | | +--ro cses? int32
 | | +--ro unavailability? int32
 | | +--ro rx-level-min? int8
 | | +--ro rx-level-max? int8
 | | +--ro rx-level-avg? int8
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 91 of 105

 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

8.1.7. ONF TR532 - ltp-augment model parameters

module: ltp-augment-1-0
 augment /core-model:control-construct/core-model:logical-termination-point:
 +--rw ltp-augment-pac
 +--ro ltp-augment-capability
 +--ro equipment* -> /core-model:control-construct/equipment/uuid
 +--ro connector? -> /core-model:control-construct/equipment/connector/local-id

8.1.8. ONF TR532 - mac-interface model parameters

module: mac-interface-1-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw mac-interface-pac
 +--ro mac-interface-capability
 | +--ro hardware-mac-address? string
 | +--ro mac-address-configuration-is-avail? boolean
 | +--ro maximum-frame-size-min? int16
 | +--ro maximum-frame-size-max? int16
 | +--ro supported-frame-format-list* frame-format-type
 | +--ro supported-flow-control-mode-list* flow-control-mode-type
 | +--ro link-loss-forwarding-is-avail? boolean
 | +--ro broadcast-frame-suppression-is-avail? boolean
 | +--ro loop-port-shut-down-is-avail? boolean
 | +--ro loop-detection-is-avail? boolean
 | +--ro admin-shut-down-is-avail? boolean
 | +--ro supported-loop-back-kind-list* loop-back-type
 | +--ro maintenance-timer-range? string
 | +--ro statistics-is-avail? boolean
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw mac-interface-configuration
 | +--rw interface-name? string
 | +--rw interface-is-on? boolean
 | +--rw mac-address-configuration-is-on? boolean
 | +--rw configured-mac-address? string
 | +--rw maximum-frame-size? int16
 | +--rw fragmentation-allowed? fragmentation-type
 | +--rw transmitted-frame-format? frame-format-type
 | +--rw flow-control-mode? flow-control-mode-type
 | +--rw link-loss-forwarding-is-on? boolean
 | +--rw link-loss-forwarding-delay? int8
 | +--rw broadcast-frame-suppression-is-on? boolean
 | +--rw maximum-share-of-broadcast-frames? int8
 | +--rw loop-port-shut-down-is-on? boolean
 | +--rw loop-detection-is-on? boolean
 | +--rw loop-back-kind-on? loop-back-type
 | +--rw maintenance-timer? int32
 | +--rw statistics-is-on? boolean
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw performance-monitoring-is-on? boolean
 +--ro mac-interface-status
 | +--ro interface-status? interface-status-type
 | +--ro mac-address-cur? string
 | +--ro received-ethernet-frame-format-cur? frame-format-type
 | +--ro flow-control-mode-cur? flow-control-mode-type
 | +--ro loop-detection-result? loop-detection-result-type
 | +--ro loop-back-kind-up? loop-back-type
 | +--ro statistics-is-up? boolean
 | +--ro performance-monitoring-is-up? boolean
 | +--ro timestamp? yang:date-and-time
 | +--ro last-10-sec-frame-input-rate? int32

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 92 of 105

 | +--ro last-10-sec-frame-output-rate? int32
 | +--ro total-frames-input? int64
 | +--ro total-frames-output? int64
 | +--ro forwarded-frames-input? int64
 | +--ro forwarded-frames-output? int64
 | +--ro unicast-frames-input? int64
 | +--ro unicast-frames-output? int64
 | +--ro multicast-frames-input? int32
 | +--ro multicast-frames-output? int32
 | +--ro broadcast-frames-input? int32
 | +--ro broadcast-frames-output? int32
 | +--ro fragmented-frames-input? int32
 | +--ro errored-frames-input? int32
 | +--ro errored-frames-output? int32
 | +--ro dropped-frames-input? int32
 | +--ro dropped-frames-output? int32
 +--ro mac-interface-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro mac-interface-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro mac-control-frames-ingress? int32
 | | | +--ro mac-pause-frames-ingress? int32
 | | | +--ro oversized-frames-ingress? int32
 | | | +--ro undersized-frames-ingress? int32
 | | | +--ro jabber-frames-ingres? int32
 | | | +--ro fragmented-frames-ingress? int64
 | | | +--ro tagged-frames-ingress? int64
 | | | +--ro mac-control-frames-egress? int32
 | | | +--ro mac-pause-frames-egress? int32
 | | | +--ro tagged-frames-egress? int64
 | | | +--ro frames-of-64-byte? int64
 | | | +--ro frames-of-65-to-127-byte? int64
 | | | +--ro frames-of-128-to-255-byte? int64
 | | | +--ro frames-of-256-to-511-byte? int64
 | | | +--ro frames-of-512-to-1023-byte? int64
 | | | +--ro frames-of-1024-to-1518-byte? int64
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro mac-interface-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro mac-control-frames-ingress? int32
 | | +--ro mac-pause-frames-ingress? int32
 | | +--ro oversized-frames-ingress? int32
 | | +--ro undersized-frames-ingress? int32
 | | +--ro jabber-frames-ingres? int32
 | | +--ro fragmented-frames-ingress? int64
 | | +--ro tagged-frames-ingress? int64
 | | +--ro mac-control-frames-egress? int32
 | | +--ro mac-pause-frames-egress? int32
 | | +--ro tagged-frames-egress? int64
 | | +--ro frames-of-64-byte? int64
 | | +--ro frames-of-65-to-127-byte? int64
 | | +--ro frames-of-128-to-255-byte? int64
 | | +--ro frames-of-256-to-511-byte? int64
 | | +--ro frames-of-512-to-1023-byte? int64
 | | +--ro frames-of-1024-to-1518-byte? int64
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 93 of 105

8.1.9. ONF TR532 - pure-ethernet-structure model parameters

module: pure-ethernet-structure-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw pure-ethernet-structure-pac
 +--ro pure-ethernet-structure-capability
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw pure-ethernet-structure-configuration
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw g-826-threshold-cross-alarm-list* [g-826-value-kind granularity-period]
 | | +--rw g-826-value-kind g-826-type
 | | +--rw alarm-raising-threshold? int32
 | | +--rw alarm-clearing-threshold? int32
 | | +--rw granularity-period granularity-period-type
 | +--rw clearing-threshold-cross-alarms-is-on? boolean
 | +--rw performance-monitoring-is-on? boolean
 +--ro pure-ethernet-structure-status
 | +--ro segment-status-list* [segment-status-type-id]
 | | +--ro segment-status-type-id int16
 | | +--ro operational-status? operational-state-type
 | +--ro performance-monitoring-is-up? boolean
 +--ro pure-ethernet-structure-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro pure-ethernet-structure-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro time-period? int32
 | | | +--ro es? int32
 | | | +--ro ses? int32
 | | | +--ro cses? int32
 | | | +--ro unavailability? int32
 | | | +--ro rx-level-min? int8
 | | | +--ro rx-level-max? int8
 | | | +--ro rx-level-avg? int8
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro pure-ethernet-structure-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro time-period? int32
 | | +--ro es? int32
 | | +--ro ses? int32
 | | +--ro cses? int32
 | | +--ro unavailability? int32
 | | +--ro rx-level-min? int8
 | | +--ro rx-level-max? int8
 | | +--ro rx-level-avg? int8
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 94 of 105

8.1.10. ONF TR532 - tdm-container model parameters

module: tdm-container-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw tdm-container-pac
 +--ro tdm-container-capability
 | +--ro supported-tdm-container-kind-list* [tdm-container-name]
 | | +--ro tdm-container-name string
 | | +--ro tdm-container-size? int32
 | +--ro admin-shut-down-is-avail? boolean
 | +--ro supported-loop-back-kind-list* loop-back-type
 | +--ro maintenance-timer-range? string
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw tdm-container-configuration
 | +--rw interface-name? string
 | +--rw interface-is-on? boolean
 | +--rw tdm-container-kind? -> /core-model:control-construct/logical-
termination-point/layer-protocol/tdm-container:tdm-container-pac/tdm-container-
capability/supported-tdm-container-kind-list/tdm-container-name
 | +--rw segment-number? int16
 | +--rw loop-back-kind-on? loop-back-type
 | +--rw maintenance-timer? int32
 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw performance-monitoring-is-on? boolean
 +--ro tdm-container-status
 | +--ro interface-status? interface-status-type
 | +--ro loop-back-kind-up? loop-back-type
 | +--ro statistics-is-up? boolean
 | +--ro performance-monitoring-is-up? boolean
 +--ro tdm-container-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro tdm-container-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data? container-performance-type
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro tdm-container-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data? container-performance-type
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

8.1.11. ONF TR-532 - vlan-fc model parameters

module: vlan-fc-1-0
 augment /core-model:control-construct/core-model:forwarding-domain/core-model:fc:
 +--rw vlan-fc-pac
 +--ro vlan-fc-capability
 | +--ro supported-sub-layer-protocol-name-list* sub-layer-protocol-name-type
 +--rw vlan-fc-configuration
 +--rw fc-name? string
 +--rw sub-layer-protocol-name? sub-layer-protocol-name-type

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 95 of 105

 +--rw vlan-id? int64

 rpcs:
 +---x create-vlan-fc-port
 | +---w input
 | | +---w affected-vlan-fc? -> /core-model:control-construct/forwarding-
domain/fc/uuid
 | | +---w associated-vlan-interface? -> /core-model:control-construct/logical-
termination-point/uuid
 | +--ro output
 | +--ro created-vlan-fc-port? string
 +---x delete-vlan-fc-port
 +---w input
 +---w affected-vlan-fc? -> /core-model:control-construct/forwarding-
domain/fc/uuid
 +---w obsolete-vlan-interface? -> /core-model:control-construct/logical-
termination-point/uuid

8.1.12. ONF TR-532 - vlan-fd model parameters

module: vlan-fd-1-0
 augment /core-model:control-construct/core-model:forwarding-domain:
 +--rw vlan-fd-pac
 +--ro vlan-fd-capability
 | +--ro supported-sub-layer-protocol-name-list* sub-layer-protocol-name-type
 | +--ro component-id? int32
 | +--ro extended-filtering-is-avail? boolean
 | +--ro traffic-classes-is-avail? boolean
 | +--ro static-entries-on-individual-ports-is-avail? boolean
 | +--ro independent-vlan-learning-is-avail? boolean
 | +--ro shared-vlan-learning-is-avail? boolean
 | +--ro hybrid-vlan-learning-is-avail? boolean
 | +--ro configurable-port-vlan-id-tagging-is-avail? boolean
 | +--ro multiple-local-bridges-is-avail? boolean
 | +--ro supported-version? int16
 | +--ro maximum-number-of-vlan-ids? int16
 | +--ro overriding-default-port-vlan-id-is-avail? boolean
 | +--ro protocol-frame-format? protocol-frame-format-type
 | +--ro maximum-number-of-msti? int16
 | +--ro port-and-protocol-based-vlan-is-avail? boolean
 +--rw vlan-fd-configuration
 | +--rw fd-name? string
 | +--rw sub-layer-protocol-name? sub-layer-protocol-name-type
 | +--rw mac-address? string
 | +--rw traffic-classes-is-on? boolean
 | +--rw protocol-group-list* [db-index]
 | +--rw db-index uint16
 | +--rw protocol-group-id? int32
 | +--rw protocol-frame-format? protocol-frame-format-type
 | +--rw ethertype? string
 | +--rw protocol-id? string
 | +--rw llc-address-list* string
 +--ro vlan-fd-status
 +--ro mac-address-cur? string
 +--ro number-of-ports-cur? int16
 +--ro number-of-static-vlan-registrations-cur? int32
 +--ro number-of-dynamic-vlan-registrations-cur? int32
 +--ro fd-status? fd-status-type

 rpcs:
 +---x create-vlan-fc
 | +---w input
 | | +---w affected-vlan-fd? -> /core-model:control-construct/forwarding-domain/uuid
 | | +---w new-vlan-id? uint64
 | +--ro output
 | +--ro created-vlan-fc? -> /core-model:control-construct/forwarding-domain/fc/uuid
 +---x delete-vlan-fc
 +---w input
 +---w affected-vlan-fd? -> /core-model:control-construct/forwarding-domain/uuid
 +---w obsolete-vlan-fc? -> /core-model:control-construct/forwarding-domain/fc/uuid

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 96 of 105

8.1.13. ONF TR-532 - vlan-interface model parameters

module: vlan-interface-1-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw vlan-interface-pac
 +--ro vlan-interface-capability
 | +--ro supported-sub-layer-protocol-name-list* sub-layer-protocol-
name-type
 | +--ro supported-interface-kind-list* interface-kind-type
 | +--ro tagging-and-mvrp-is-avail? boolean
 | +--ro configuring-ingress-tag-filtering-is-avail? boolean
 | +--ro ingress-vlan-id-filtering-is-avail? boolean
 | +--ro available-pcp-bits-interpretation-kind-list* pcp-bits-
interpretation-kind-type
 | +--ro configuring-pcp-bits-decoding-is-avail? boolean
 | +--ro configuring-pcp-bits-encoding-is-avail? boolean
 | +--ro drop-eligible-indicator-is-avail? boolean
 | +--ro number-of-available-priorities? int8
 | +--ro received-priority-overwriting-is-avail? boolean
 | +--ro vlan-id-translation-is-avail? boolean
 | +--ro egress-vlan-id-translation-is-avail? boolean
 | +--ro port-and-protocol-based-vlan-is-avail? boolean
 | +--ro max-number-of-protocol-vlan-id-groupings? int16
 | +--ro service-access-priority-tagging-is-avail? boolean
 | +--ro configuring-service-access-priority-mapping-is-avail? boolean
 | +--ro number-of-available-traffic-classes? int8
 | +--ro restricted-automated-vlan-registration-is-avail? boolean
 | +--ro admin-shut-down-is-avail? boolean
 | +--ro statistics-is-avail? boolean
 +--rw vlan-interface-configuration
 | +--rw interface-name? string
 | +--rw sub-layer-protocol-name? sub-layer-protocol-name-type
 | +--rw interface-kind? interface-kind-type
 | +--rw default-vlan-id? int64
 | +--rw default-priority? int8
 | +--rw ingress-tag-filtering? ingress-tag-filtering-type
 | +--rw ingress-vlan-id-filtering-is-on? boolean
 | +--rw pcp-bits-interpretation-kind? pcp-bits-interpretation-kind-
type
 | +--rw pcp-bit-to-priority-mapping-list* [to-be-decoded-pcp-bits-value]
 | | +--rw to-be-decoded-pcp-bits-value int8
 | | +--rw associated-priority-value? int8
 | | +--rw associated-drop-eligibility? boolean
 | +--rw pcp-bits-encoding-mapping-list* [to-be-encoded-priority-value to-be-encoded-
drop-eligibility]
 | | +--rw to-be-encoded-priority-value int8
 | | +--rw to-be-encoded-drop-eligibility boolean
 | | +--rw associated-pcp-bits-value? int8
 | +--rw drop-eligible-indicator-is-on? boolean
 | +--rw drop-eligible-encoding-is-required? boolean
 | +--rw received-priority-overwriting-is-on? boolean
 | +--rw received-priority-overwriting-list* [to-be-overwritten-priority-value]
 | | +--rw to-be-overwritten-priority-value int8
 | | +--rw new-priority-value? int8
 | +--rw vlan-id-translation-is-on? boolean
 | +--rw external-to-internal-vlan-id-mapping-list* [external-vlan-id]
 | | +--rw external-vlan-id int16
 | | +--rw internal-vlan-id? int16
 | +--rw egress-vlan-id-translation-is-on? boolean
 | +--rw internal-to-egress-vlan-id-mapping-list* [internal-vlan-id]
 | | +--rw internal-vlan-id int16
 | | +--rw egress-vlan-id? int16
 | +--rw forwarded-protocol-vlan-id-grouping-list* [forwarded-protocol-group-id]
 | | +--rw forwarded-protocol-group-id int32
 | | +--rw forwarded-vlan-id-list* int64
 | +--rw service-access-priority-tagging-is-on? boolean
 | +--rw service-access-priority-mapping-list* [c-vlan-priority-value]
 | | +--rw c-vlan-priority-value int8
 | | +--rw s-vlan-pcp-bits-value? int8
 | +--rw priority-to-traffic-class-mapping-list* [priority-value]
 | | +--rw priority-value int8
 | | +--rw traffic-class-value? int8
 | +--rw restricted-automated-vlan-registration-is-on? boolean

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 97 of 105

 | +--rw admin-point-to-point? admin-point-to-point-type
 | +--rw statistics-is-on? boolean
 +--ro vlan-interface-status
 +--ro interface-status? interface-status-type
 +--ro statistics-is-up? boolean
 +--ro timestamp? yang:date-and-time
 +--ro total-bytes-input? int64
 +--ro total-frames-input? int64
 +--ro total-bytes-output? int64
 +--ro total-frames-output? int64

8.1.14. ONF TR-532 - wire-interface model parameters

module: wire-interface-2-0
 augment /core-model:control-construct/core-model:logical-termination-point/core-model:layer-
protocol:
 +--rw wire-interface-pac
 +--ro wire-interface-capability
 | +--ro supported-pmd-kind-list* [pmd-name]
 | | +--ro pmd-name string
 | | +--ro speed? string
 | | +--ro duplex? duplex-type
 | +--ro auto-pmd-negotiation-is-avail? boolean
 | +--ro auto-negotiation-pmd-selection-is-avail? boolean
 | +--ro supported-signal-ordering-kind-list* signal-ordering-
kind-type
 | +--ro auto-signal-ordering-is-avail? boolean
 | +--ro configuration-of-rx-sync-preference-is-avail? boolean
 | +--ro mii-kind? mii-kind-type
 | +--ro mdi-kind? mdi-kind-type
 | +--ro required-medium-kind? medium-kind-type
 | +--ro wavelength-min-list* int32
 | +--ro wavelength-max-list* int32
 | +--ro wavelength-grid-min? int32
 | +--ro short-reach-mode-is-avail? boolean
 | +--ro eee-is-avail? boolean
 | +--ro unidirectional-operation-is-avail? boolean
 | +--ro rxlevel-low-threshold? int8
 | +--ro rxlevel-high-threshold? int8
 | +--ro temperature-low-threshold? int8
 | +--ro temperature-high-threshold? int8
 | +--ro configuration-of-number-of-bip-errors-per-ses-is-avail? boolean
 | +--ro admin-shut-down-is-avail? boolean
 | +--ro isolation-is-avail? boolean
 | +--ro supported-loop-back-kind-list* loop-back-type
 | +--ro maintenance-timer-range? string
 | +--ro supported-alarm-list* string
 | +--ro performance-monitoring-is-avail? boolean
 +--rw wire-interface-configuration
 | +--rw interface-name? string
 | +--rw interface-is-on? boolean
 | +--rw remote-wire-interface-name? string
 | +--rw transceiver-is-on-list* boolean
 | +--rw auto-pmd-negotiation-is-on? boolean
 | +--rw fixed-pmd-kind? -> /core-model:control-construct/logical-
termination-point/layer-protocol/wire-interface:wire-interface-pac/wire-interface-
capability/supported-pmd-kind-list/pmd-name
 | +--rw auto-negotiation-pmd-list* -> /core-model:control-construct/logical-
termination-point/layer-protocol/wire-interface:wire-interface-pac/wire-interface-
capability/supported-pmd-kind-list/pmd-name
 | +--rw auto-signal-ordering-is-on? boolean
 | +--rw fixed-signal-ordering-kind? signal-ordering-kind-type
 | +--rw wavelength-list* int32
 | +--rw rx-sync-preference? rx-sync-preference-type
 | +--rw short-reach-mode-is-on? boolean
 | +--rw eee-is-on? boolean
 | +--rw unidirectional-operation-is-on? boolean
 | +--rw number-of-bip-errors-per-ses? int16
 | +--rw restart-pmd-negotiation-is-on? boolean
 | +--rw isolation-is-on? boolean
 | +--rw loop-back-kind-on? loop-back-type
 | +--rw maintenance-timer? int32

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 98 of 105

 | +--rw problem-kind-severity-list* [problem-kind-name]
 | | +--rw problem-kind-name string
 | | +--rw problem-kind-severity? severity-type
 | +--rw performance-monitoring-is-on? boolean
 +--ro wire-interface-status
 | +--ro interface-status? interface-status-type
 | +--ro receive-signal-is-detected-list* boolean
 | +--ro pmd-negotiation-state? pmd-negotiation-state-type
 | +--ro pmd-is-up? boolean
 | +--ro pmd-kind-cur? -> /core-model:control-construct/logical-
termination-point/layer-protocol/wire-interface:wire-interface-pac/wire-interface-
capability/supported-pmd-kind-list/pmd-name
 | +--ro signal-ordering-kind-cur? signal-ordering-kind-type
 | +--ro rx-sync-role? rx-sync-role-type
 | +--ro eee-is-up? boolean
 | +--ro link-is-up? boolean
 | +--ro link-is-idle? boolean
 | +--ro loop-back-kind-up? loop-back-type
 | +--ro tx-level-cur? int8
 | +--ro rx-level-cur-list* int8
 | +--ro performance-monitoring-is-up? boolean
 +--ro wire-interface-current-problems
 | +--ro current-problem-list* [sequence-number]
 | | +--ro problem-name? string
 | | +--ro sequence-number int16
 | | +--ro timestamp? yang:date-and-time
 | | +--ro problem-severity? severity-type
 | +--ro number-of-current-problems? int8
 | +--ro time-of-latest-change? yang:date-and-time
 +--ro wire-interface-current-performance
 | +--ro current-performance-data-list* [granularity-period]
 | | +--ro performance-data
 | | | +--ro es? int32
 | | | +--ro ses? int32
 | | | +--ro symbol-error-during-carrier? int32
 | | | +--ro low-power-idle-transmitter-ms? int32
 | | | +--ro low-power-idle-receiver-ms? int32
 | | +--ro timestamp? yang:date-and-time
 | | +--ro suspect-interval-flag? boolean
 | | +--ro elapsed-time? int64
 | | +--ro scanner-id? string
 | | +--ro granularity-period granularity-period-type
 | +--ro number-of-current-performance-sets? int8
 +--ro wire-interface-historical-performances
 +--ro historical-performance-data-list* [granularity-period period-end-time]
 | +--ro performance-data
 | | +--ro es? int32
 | | +--ro ses? int32
 | | +--ro symbol-error-during-carrier? int32
 | | +--ro low-power-idle-transmitter-ms? int32
 | | +--ro low-power-idle-receiver-ms? int32
 | +--ro suspect-interval-flag? boolean
 | +--ro history-data-id? string
 | +--ro granularity-period granularity-period-type
 | +--ro period-end-time yang:date-and-time
 +--ro number-of-historical-performance-sets? int16
 +--ro time-of-latest-change? yang:date-and-time

8.1.15. ONF TR-532 - wred-profile model parameters

module: wred-profile-1-0
 augment /core-model:control-construct/core-model:profile-collection/core-model:profile:
 +--rw wred-profile-pac
 +--ro wred-profile-capability
 | +--ro available-buffer-size? int32
 | +--ro drop-probability-at-threshold-low-is-avail? boolean
 | +--ro gentle-wred-is-avail? boolean
 | +--ro sensitivity-setting-is-avail? boolean
 | +--ro coloring-is-avail? boolean
 +--rw wred-profile-configuration
 +--rw profile-name? string
 +--rw threshold-low? int32

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 99 of 105

 +--rw drop-probability-at-threshold-low? int8
 +--rw threshold-high? int32
 +--rw drop-probability-at-threshold-high? int8
 +--rw gentle-wred-is-on? boolean
 +--rw threshold-gentle? int32
 +--rw sensitivity? int8
 +--rw coloring-is-on? boolean

8.2. OpenConfig Examples

8.2.1. OpenConfig query to get the inventory details for all the components

The below XML query is to get all components and subcomponents of an Infinera DRX-30 stacked
node.

Request:
 <rpc
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <get>
 <filter>
 <components
 xmlns=http://openconfig.net/yang/platform>
 <component/>
 </components>
 </filter>
 </get></rpc>]]>]]>

Reply:
 <rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <data>
 <components
 xmlns=http://openconfig.net/yang/platform>
 <component>
 <name>DRX-30</name>
 <config>
 <name>DRX-30</name>
 </config>
 <state>
 <type>CHASSIS</type>
 <name>DRX-30</name>
 <id>0</id>
 <description>x86_64-accton_as7315_27xb-r0</description>
 </state>
 </component>
 ...
 <component>
 <name>unit1</name>
 <config>
 <name>unit1</name>
 </config>
 <state>
 <type>CONTROLLER_CARD</type>
 <name>unit1</name>
 <id>unit1</id>
 <location>unit1</location>
 <description>cuUnit</description>
 <mfg-date>2019-6-11, 2:23:52.0, +0:00</mfg-date>
 <software-version>2.4.7</software-version>

http://openconfig.net/yang/platform
http://openconfig.net/yang/platform

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 100 of 105

 <serial-no>731527XB1924006</serial-no>
 <part-no>VQS-X30CHASS-0A</part-no>
 <oper-status>ACTIVE</oper-status>
 <parent>DRX-30</parent>
 </state>
 ...
 </component>

 <component>
 <name>unit13</name>
 <config>
 <name>unit13</name>
 </config>
 <state>
 <type>LINECARD</type>
 <name>unit13</name>
 <id>unit13</id>
 <location>unit13</location>
 <description>luUnit</description>
 <mfg-date>2019-6-11, 13:52:13.0, +0:00</mfg-date>
 <software-version>2.4.7</software-version>
 <serial-no>731527XB1924001</serial-no>
 <part-no>VQS-X30CHASS-0A</part-no>
 <oper-status>ACTIVE</oper-status>
 <parent>DRX-30</parent>
 </state>
 <subcomponents>
 <subcomponent>
 <name>unit13:0</name>
 <config>
 <name>unit13:0</name>
 </config>
 <state>
 <name>unit13:0</name>
 </state>
 </subcomponent>
 ...
 </subcomponents>
 <linecard
 xmlns=http://openconfig.net/yang/platform/linecard>
 <config>
 <power-admin-state/>
 </config>
 <state>
 <power-admin-state>POWER_ENABLED</power-admin-state>
 <slot-id>unit13</slot-id>
 </state>
 </linecard>
 </component>
 ...
 <component>
 <name>13/0/0</name>
 <config>
 <name>13/0/0</name>
 </config>
 <state>
 <type>PORT</type>
 <name>13/0/0</name>
 <id>13/0/0</id>
 <location>13/0/0</location>
 <oper-status>ACTIVE</oper-status>
 <parent>unit13:0</parent>

http://openconfig.net/yang/platform/linecard

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 101 of 105

 <subcomponents>
 <subcomponent>
 <name>13/0/0-Transceiver</name>
 <config>
 <name>13/0/0-Transceiver</name>
 </config>
 <state>
 <name>13/0/0-Transceiver</name>
 </state>
 </subcomponent>
 </subcomponents>
 </state>
 <port
 xmlns=http://openconfig.net/yang/platform/port>
 <breakout-mode>
 <config>
 <channel-speed>100GbitPerSec</channel-speed>
 <num-channels>1</num-channels>
 </config>
 <state>
 <channel-speed>100GbitPerSec</channel-speed>
 <num-channels>1</num-channels>
 </state>
 </breakout-mode>
 </port>
 </component>
 ...
 <component>
 <name>13/0/0-Transceiver</name>
 <config>
 <name>13/0/0-Transceiver</name>
 </config>
 <state>
 <type>TRANSCEIVER</type>
 <name>13/0/0-Transceiver</name>
 <id>13/0/0</id>
 <location>13/0/0</location>
 <removable>true</removable>
 <empty>true</empty>
 <parent>13/0/0</parent>
 </state>
 <transceiver
 xmlns=http://openconfig.net/yang/platform/transceiver>
 <config>
 <enabled>TRUE</enabled>
 </config>
 <state>
 <enabled>TRUE</enabled>
 <present>NOT_PRESENT</present>
 </state>
 </transceiver>
 </component>
 ...
 </components>
 </data></rpc-reply>]]>]]>

8.2.2. OpenConfig query to get details for all the interfaces

The below XML query is to get all interfaces in a DRX-30 stacked node.

http://openconfig.net/yang/platform/port
http://openconfig.net/yang/platform/transceiver

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 102 of 105

Request:
<rpc
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <get>
 <filter type="subtree">
 <oc-if:interfaces
 xmlns:oc-if=http://openconfig.net/yang/interfaces>
 <oc-if:interface/>
 </oc-if:interfaces>
 </filter>
 </get></rpc>]]>]]>

Reply:
 <rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
 <data>
 <interfaces
 xmlns=http://openconfig.net/yang/interfaces>
 <interface>
 <name>13/0/0</name>
 <config>
 <name>13/0/0</name>
 <type
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-
type">ianaift:ethernetCsmacd
 </type>
 <mtu>1530</mtu>
 <loopback-mode>false</loopback-mode>
 <description/>
 <enabled>false</enabled>
 </config>
 <state>
 <name>13/0/0</name>
 <type
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-
type">ianaift:ethernetCsmacd
 </type>
 <mtu>1530</mtu>
 <loopback-mode/>
 <description/>
 <enabled/>
 <ifindex/>
 <admin-status/>
 <oper-status/>
 <logical/>
 <counters>
 <in-octets>0</in-octets>
 <in-pkts>0</in-pkts>
 <in-unicast-pkts>0</in-unicast-pkts>
 <in-broadcast-pkts>0</in-broadcast-pkts>
 <in-multicast-pkts>0</in-multicast-pkts>
 <in-discards>0</in-discards>
 <in-errors>0</in-errors>
 <in-unknown-protos>0</in-unknown-protos>
 <in-fcs-errors>0</in-fcs-errors>
 <out-octets>0</out-octets>
 <out-pkts>0</out-pkts>
 <out-unicast-pkts>0</out-unicast-pkts>
 <out-broadcast-pkts>0</out-broadcast-pkts>
 <out-multicast-pkts>0</out-multicast-pkts>
 <out-discards>0</out-discards>
 <out-errors/>
 </counters>
 </state>

http://openconfig.net/yang/interfaces
http://openconfig.net/yang/interfaces

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 103 of 105

 <subinterfaces>
 <subinterface>
 <index>0</index>
 <config>
 <index>0</index>
 </config>
 <ipv4
 xmlns=http://openconfig.net/yang/interfaces/ip>
 <addresses>
 <address>
 <ip>44.44.44.1</ip>
 <config>
 <ip>44.44.44.1</ip>
 <prefix-length>24</prefix-length>
 </config>
 <state>
 <ip>44.44.44.1</ip>
 <prefix-length>24</prefix-length>
 <origin>STATIC</origin>
 </state>
 </address>
 </addresses>
 <config>
 <mtu>useLayer2Mtu</mtu>
 </config>
 <state>
 <enabled>false</enabled>
 <mtu>useLayer2Mtu</mtu>
 <dhcp-client/>
 <counters>
 <in-pkts>0</in-pkts>
 <in-octets>0</in-octets>
 <in-error-pkts>0</in-error-pkts>
 <in-unknown-proto-pkts>0</in-unknown-proto-pkts>
 <in-forwarded-pkts/>
 <in-forwarded-octets/>
 <in-discarded-pkts/>
 <out-pkts>0</out-pkts>
 <out-octets>0</out-octets>
 <out-error-pkts>0</out-error-pkts>
 <out-forwarded-pkts/>
 <out-forwarded-octets/>
 <out-discarded-pkts>0</out-discarded-pkts>
 </counters>
 </state>
 </ipv4>
 </subinterface>
 <subinterface>
 <index>13/0/0.1</index>
 <config>
 <index>13/0/0.1</index>
 </config>
 <vlan
 xmlns=http://openconfig.net/yang/vlan>
 <config>
 <vlan-id>13/0/0.1</vlan-id>
 </config>
 <state>
 <vlan-id>13/0/0.1</vlan-id>
 </state>
 </vlan>
 <ipv4
 xmlns=http://openconfig.net/yang/interfaces/ip>
 <addresses>

http://openconfig.net/yang/interfaces/ip
http://openconfig.net/yang/vlan
http://openconfig.net/yang/interfaces/ip

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 104 of 105

 <address>
 <ip>45.45.45.1</ip>
 <config>
 <ip>45.45.45.1</ip>
 <prefix-length>24</prefix-length>
 </config>
 <state>
 <ip>45.45.45.1</ip>
 <prefix-length>24</prefix-length>
 <origin>STATIC</origin>
 </state>
 </address>
 </addresses>
 <config>
 <mtu>useLayer2Mtu</mtu>
 </config>
 <state>
 <enabled>false</enabled>
 <mtu>useLayer2Mtu</mtu>
 <dhcp-client/>
 <counters>
 <in-pkts/>
 <in-octets/>
 <in-error-pkts/>
 <in-unknown-proto-pkts/>
 <in-forwarded-pkts/>
 <in-forwarded-octets/>
 <in-discarded-pkts/>
 <out-pkts/>
 <out-octets/>
 <out-error-pkts/>
 <out-forwarded-pkts/>
 <out-forwarded-octets/>
 <out-discarded-pkts/>
 </counters>
 </state>
 </ipv4>
 </subinterface>
 </subinterfaces>
 </interface>
 ...
 </interfaces>
 </data></rpc-reply>]]>]]>

D3.1 Preliminary Evaluation of Life-cycle Automation and High Performance SDN
Components

© 2021 - 2023 TeraFlow Consortium Parties Page 105 of 105

References
[1] Vilalta R, de la Cruz JL, López-de-Lerma AM, López V, Martínez R, Casellas R, Muñoz R. uABNO: A

Cloud-Native Architecture for Optical SDN Controllers. In2020 Optical Fiber Communications
Conference and Exhibition (OFC) 2020 Mar 8 (pp. 1-3). IEEE.

[2] Qin Wu, Igor Bryskin, Henk Birkholz, Xufeng Liu, Benoit Claise, "A YANG Data model for ECA Policy
Management", IEFT draft NETMOD Working Group, February 19, 2021. Work in progress.
Available from: https://datatracker.ietf.org/doc/html/draft-ietf-netmod-eca-policy

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. 2008. OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 2 (April 2008), 69–74. DOI:
https://doi.org/10.1145/1355734.1355746

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4:
programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev. 44, 3
(July 2014), 87–95. DOI: https://doi.org/10.1145/2656877.2656890

[5] Open Networking Foundation (ONF): https://opennetworking.org/

[6] ONF Stratum OS: https://opennetworking.org/stratum/

[7] ONF Open Network Operating System (ONOS): https://opennetworking.org/onos/

[8] H2020 EU TeraFlow project, Milestone 3.1

[9] H2020 EU TeraFlow project, Milestone 3.2

[10] ONF TR-532 models: https://github.com/openBackhaul/Overview

[11] Farrel, A., Gray, E., Drake, J., Rokui, R., Homma, S., Makhijani, K., Contreras, L. M., and J. Tantsura,
"Framework for IETF Network Slices", IETF draft TEAS Working Group, August 2021. Work in
progress. Available from: https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices

[12] Wu, Q., Liu, W., and A. Farrel, "Service Models Explained", RFC 8309, DOI 10.17487/RFC8309,
January 2018, Available from https://www.rfc-editor.org/info/rfc8309

[13] X. Liu, et al., "IETF Network Slice YANG Data Model", IETF draft TEAS Working Group, July 2021.
Work in progress. Available from https://datatracker.ietf.org/doc/draft-liu-teas-transport-
network-slice-yang/.

[14] A. Alcalá, S. Barguil, V. López, L. M. Contreras, C. Manso, P. Alemany, R. Casellas, R. Martínez, D.
Gonzalez-Perez, X. Liu, J.M. Pulido, J.P. Fernandez-Palacios, R. Muñoz, R. Vilalta, Multi-layer
Transport Network Slicing with Hard and Soft Isolation , in Proceedings of The Optical Networking
and Communication Conference & Exhibition (OFC), 6-11 June 2021, virtual event.

[15] R. Enns, M. Bjorklund, J. Schoenwaelder, A. Bierman, "Network Configuration Protocol
(NETCONF)," IETF RFC6241, June 2011, Available from
https://datatracker.ietf.org/doc/html/rfc6241

[16] OpenConfig, November 2021, https://www.openconfig.net/

[17] Transport API OpenAPI Specification. Available:
 https://github.com/OpenNetworkingFoundation/TAPI/tree/develop/OAS

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-eca-policy-01.
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2656877.2656890
https://opennetworking.org/
https://opennetworking.org/stratum/
https://opennetworking.org/onos/
https://github.com/openBackhaul/Overview
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices
https://www.rfc-editor.org/info/rfc8309
https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
https://datatracker.ietf.org/doc/html/rfc6241
https://www.openconfig.net/
https://github.com/OpenNetworkingFoundation/TAPI/tree/develop/OAS

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	1.1. Objectives
	1.2. Relation with Other Tasks and Deliverables
	1.3. Deliverable Structure

	2. Core TeraFlow OS Components’ Overview
	3. High-Performance SDN Framework
	3.1. Context Management Component
	3.1.1. Design Overview
	3.1.2. Interfaces
	3.1.3. Preliminary Results

	3.2. Monitoring Component
	3.2.1. Design Overview
	3.2.2. Interfaces
	3.2.2.1. Internal Interface

	3.2.3. Preliminary Results

	3.3. Traffic Engineering Component
	3.3.1. Design Overview
	3.3.2. Interfaces
	3.3.3. Preliminary Results

	4. Hardware and L0/L3 Multi-layer Integration
	4.1. Device Component
	4.1.1. Design Overview
	4.1.2. Device Plugins
	4.1.2.1. Emulated Device Driver Plugin
	4.1.2.2. OLS ONF Transport API Driver Plugin
	4.1.2.3. ONF TR-532 Microwave Driver Plugin
	4.1.2.4. OpenConfig Driver Plugin
	4.1.2.5. P4 Whitebox Switches Driver Plugin

	4.1.3. Interfaces
	4.1.4. Preliminary Results

	4.2. Service Component
	4.2.1. Design Overview
	4.2.2. Interfaces
	4.2.3. Preliminary Results

	5. SDN Automation
	5.1. Automation (ZTP) Component
	5.1.1. Design Overview
	5.1.2. Interfaces
	5.1.3. Operational Workflows
	5.1.4. Preliminary Results

	5.2. Policy Management Component
	5.2.1. Design Overview
	5.2.2. Interfaces
	5.2.3. Operational Workflows
	5.2.4. Preliminary Results

	6. Transport Network Slicing and Multi-tenancy
	6.1. Slice Management Component
	6.1.1. Design Overview
	6.1.2. Interfaces
	6.1.3. Preliminary Results

	7. Conclusions and Next Steps
	8. ANNEX
	8.1. ONF TR-532 model parameters
	8.1.1. ONF TR-532 - air-interface parameters
	8.1.2. ONF TR-532 - co-channel-profile model parameters
	8.1.3. ONF TR-532 - core-model model parameters
	8.1.4. ONF TR-532 - ethernet-container model parameters
	8.1.5. ONF TR-532 - firmware model parameters
	8.1.6. ONF TR532 - hybrid-mw-structure model parameters
	8.1.7. ONF TR532 - ltp-augment model parameters
	8.1.8. ONF TR532 - mac-interface model parameters
	8.1.9. ONF TR532 - pure-ethernet-structure model parameters
	8.1.10. ONF TR532 - tdm-container model parameters
	8.1.11. ONF TR-532 - vlan-fc model parameters
	8.1.12. ONF TR-532 - vlan-fd model parameters
	8.1.13. ONF TR-532 - vlan-interface model parameters
	8.1.14. ONF TR-532 - wire-interface model parameters
	8.1.15. ONF TR-532 - wred-profile model parameters

	8.2. OpenConfig Examples
	8.2.1. OpenConfig query to get the inventory details for all the components
	8.2.2. OpenConfig query to get details for all the interfaces

	References

