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Abstract 

This deliverable reports the efforts in three different aspects: i) continuously improving the processes 
adopted for the integration of TeraFlowSDN, ii) designing the metrics collection framework for the 
performance analysis of TeraFlowSDN, and iii) refining the scenario description and defining their 
workflows and deployment. The integration efforts led to the creation of several processes to be 
adopted by the project and documentation to facilitate ease and speed of TeraFlowSDN deployment. 
In addition, the metrics collection framework leverages state-of-the-art open-source software to 
enable easy and insightful monitoring of TeraFlowSDN. Finally, each scenario is detailed, including 
which KPIs and KVIs are relevant to the scenario and the specific workflows and deployments, followed 
by the preliminary performance evaluation. 
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EXECUTIVE SUMMARY 
This deliverable summarizes the activities of WP5 during the second year of the TeraFlow project. The 
objective of this document is to describe the ongoing efforts towards i) continuously improving the 
processes adopted by TeraFlowSDN for integration, ii) designing the metrics collection framework that 
the components for performance assessment can leverage, and iii) refining the scenario definition and 
further detailing how the components will interact with each other to realize the scenario objective. 
In addition, we also focus on the definition and initial measurement of KPIs and KVIs that will quantify 
the benefits of TeraFlowSDN. 

The document starts with an introductory section that highlights the purpose of this deliverable, its 
relationship with other deliverables, and a detailed description of the document's structure. The 
second section presents an overview of the TeraFlowSDN architecture. The third section offers an 
integration report. It describes the modifications adopted by the TeraFlow project over the past year 
of development, as well as the initiatives and documentation provided to facilitate the introduction 
of TeraFlowSDN to new users. Finally, in the fourth section, we introduce the metrics collection 
framework for TeraFlowSDN to consolidate the performance assessment of all the components in a 
single solution and enable in-depth scalability and performance analysis.  

The second half of the document includes sections 5, 6 and 7; these are devoted to the three scenarios 
used to evaluate TeraFlowSDN. Each scenario introduces its motivation and challenges. The alignment 
with TeraFlow architecture specifies how the scenario will utilize TeraFlowSDN and which components 
and use cases are relevant to each scenario. The scenario setup highlights the infrastructure adopted 
for realizing the scenario and evaluating the performance of TeraFlowSDN. Each scenario also details 
relevant metrics - in the form of KPIs and KVIs - and how these metrics are measured. The workflows 
and current deployment specify how the components of TeraFlowSDN communicate the 
functionalities needed by the scenario. A preliminary performance evaluation illustrates the progress 
towards achieving all the KPIs and KVIs specified. Finally, each scenario highlights the pending work 
that will be the target of the remaining project efforts. 

Finally, this deliverable concludes with a short description of the next steps to be adopted by each one 
of the scenarios. 
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1. Introduction 
The second version of TeraFlowSDN delivers state-of-the-art open-source cloud-native Software-
Defined Networking (SDN). It provides efficient, reliable, scalable, and flexible control for B5G (Beyond 
5G) networks. In this context, it is crucial to ensure that TeraFlowSDN correctly interacts with existing 
networking devices and can take advantage of existing protocols. WP5 performs the TeraFlowSDN 
integration, followed by experimentation, validation, and evaluation using a range of KPIs and KVIs. 

Given the highly distributed nature of the TeraFlowSDN development, it is vital to enumerate, 
evaluate, and select suitable techniques, processes, and tools that can be used to assist the partners 
during the development of TeraFlowSDN components and scenarios. Moreover, the adopted setup 
needs to support collaboration among all partners while ensuring the consistency and reliability of the 
resulting software. 

The project leverages the infrastructure available at the partners’ premises to build testbed setups, 
realizing three scenarios described in this deliverable. The scenarios are first described, highlighting 
their context and motivation. Then, details of the scenarios related to the setup, metrics, workflows, 
deployments, and preliminary performance evaluation are presented. 

1.1. Purpose 

The purpose of D5.2 is threefold. The first objective is to describe the development and progress made 
since D5.1 in terms of code integration, documentation, and development environment. The second 
objective is to report the design of the metrics collection framework developed for TeraFlowSDN, 
which enables partners and users to obtain a detailed performance analysis of the internal 
TeraFlowSDN components, potentially enabling further code optimizations. Finally, this deliverable 
reports on the efforts in refining and implementing the scenarios. 

1.2. Relationship with other Deliverables 

D5.2 takes input from MS2.2, where new details on use cases, and requirements via feedback, have 
been defined, including an updated architecture of TeraFlowSDN. Moreover, the components tested 
in the scenarios reported in this deliverable are thoroughly described in D3.2 and D4.2. 

1.3. Structure 

This deliverable is structured as follows. Section 2 presents an architectural overview of TeraFlowSDN. 
Section 3 offers an integration report summarising our most recent code integration efforts and 
documentation. Section 4 introduces the metrics collection framework developed for TeraFlowSDN, 
which uses state-of-the-art open-source software to provide a comprehensive monitoring framework 
for TeraFlowSDN and its components. Sections 5, 6, and 7 detail the three scenarios used to evaluate 
the performance of TeraFlowSDN. Each section introduces the context and motivation for the 
scenario, the partner setup to test TeraFlowSDN, the relevant metrics, workflows, and deployment, 
and a preliminary performance evaluation. Finally, section 8 concludes this deliverable by presenting 
final remarks and describing the next steps for each one of the initiatives related to WP5.  



D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 16 of 112 

2. Architecture Overview 
A detailed architecture description for TeraFlowSDN  release 2.0 is provided in D2.2. In this section, 
we briefly describe the overall architecture to make the deliverable self-contained by introducing the 
main design of TeraFlowSDN. 

The SDN controller cloud-native architecture consists of stateless micro-services interacting with each 
other to fulfill network management tasks, in addition to a few stateful micro-services responsible for 
keeping the state of the network. TeraFlowSDN relies on Kubernetes to handle the containers 
supporting the micro-services. Kubernetes is a state-of-the-art container orchestrator that provides a 
broad set of management capabilities and can operate geographically distributed infrastructures.  

Figure 1 shows the proposed micro-service-based architecture. Following the design principles from 
cloud-native applications, each component is implemented as a micro-service that is able to export a 
set of Remote Procedure Call (RPC) services to other components. Each micro-service can be 
instantiated once or with multiple replicas, which allow the application of load balancing techniques. 
By adopting stateless micro-services, requests can be handled by any replica of the micro-service. Load 
balancing works by establishing an endpoint that will receive all the requests for a service. The 
endpoint acts as a load balancer by delegating each request to one of the replicas of the service. The 
load balancer is also responsible for keeping track of the replicas, i.e., tracking the addition and 
deletion of replicas and updating its internal list of replicas. Depending on the RPC implementation 
adopted, we may use the built-in Kubernetes load balancer, or adopt an external one. Each replica is 
composed of a Pod, i.e., a collection of containers that are managed by Kubernetes as a single entity. 
More information is provided in Sec. 4.1. 

Context component stores the network configuration (e.g., topologies, devices, links, services) and its 
status as managed by the TeraFlowSDN components in a No-SQL database to optimize concurrent 
access. Internally, it implements a Database API enabling to switch between different backends.  The 
TeraFlowSDN controller uses its North-Bound Interface (NBI) component (previously known as 
Compute) to receive Layer 2 Virtual Private Network (L2VPN) requests and convert them to necessary 
connectivity services or Transport Network Slices via the Slice and Service components. The Service 
component is responsible for selecting, configuring, and deploying the requested connectivity service 
through the South-Bound Interface (SBI). To this end, the SBI component interacts with the network 
equipment through pluggable drivers. In addition, a Driver Application Programming Interface (API) 
has been defined to facilitate the addition of new network protocols and data models to the SBI 
component. The Automation component implements several Event-Condition-Action (ECA) loops 
defining the automation procedures in the network. Monitoring manages the different metrics 
configured for the network equipment and services, stores monitoring data related to selected Key 
Performance Indicators (KPI), and provides means for other components to access the collected data. 
Internally, the Monitoring component relies on a database to store the monitoring data as time series, 
exploiting its powerful querying and aggregation mechanisms for retrieving the collected data. 

North-Bound Interface (NBI) component serves as the interface from internal gRPC (gRPC Remote 
Procedure Call) and protocol buffers towards external Representational State Transfer (REST)-like 
requests. It provides a Representational State Transfer API (REST-API)–based to NBI external systems, 
such as Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC) frameworks. 
We also include a Web-based User Interface (WebUI) that uses the gRPC-based interfaces made 
available by the TeraFlowSDN components to inspect the network state and issue operational 
requests to the TeraFlowSDN components.  
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Figure 1. TeraFlowSDN architecture for release 2.0 

TeraFlowSDN Release 2 provides extended and validated support for OpenConfig-based routers and 
interaction with optical SDN controllers through the Open Networking Foundation (ONF) Transport 
API (TAPI). Moreover, TeraFlowSDN release 2 includes complete integration for microwave network 
elements (through the Internet Engineering Task Force - IETF - network topology YANG model), and 
Point-to-Multipoint integration of XR optical transceivers and P4 routers. New features for P4 routers 
include loading a P4 pipeline on a given P4 switch; getting runtime information (i.e., flow tables) from 
the P4 switch; and pushing runtime entries into the P4 switch pipeline, thus allowing total usage of P4 
switches. 

Service Level Agreement (SLA) validation has been re-engineered through all the workflows, from 
Device monitoring to Service and Slice life cycle management. Thus, the Slice, Service, Policy, Device 
and Monitoring Components have been updated to support the necessary network automation 
workflows. Moreover, Slice grouping has also been introduced, along with the Path Computation 
Component. This component allows new use cases, such as energy-aware service placement. 

Cybersecurity mechanisms have been updated, including novel components for attack detection 
(either distributed or centralized), attack inference, and attack mitigation. In addition, several novel 
use cases are supported. Distributed Ledger Technology (DLT) has also been extended to interact with 
the Inter-domain Component and use the deployed Hyperledger Fabric. 
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3. Integration Report 
The previous section outlined the TeraFlowSDN architecture which is also the reference point for the 
integration process. In the following, we will overview the tools used for the component integration 
and some helpful documentation and instructions for installing the TeraFlowSDN controller. 

We will first present the new GitLab repository hosted by European Telecommunications Standards 
Institute (ETSI), including all the new features in addition to the ones inherited from the previous 
repository. Then, we will introduce our primary communication channel, i.e., Slack, followed by a 
summary of our Continuous Integration/Continuous Delivery (CI/CD) environment and its updates 
since D5.1. Finally, we will overview the different documentation available for the users. 

3.1. European Telecommunications Standards Institute (ETSI)  

The ETSI Open Source Group (OSG) TeraFlowSDN (TFS) defines a framework for developing a cloud-
native SDN controller for high-capacity networks aiming to support future networks beyond 5G. Based 
on a cloud-native, micro-services architecture, the software will be able to integrate with existing 
frameworks (NFV, MEC) and provide a toolbox for different ETSI groups to experiment with new 
features for flow aggregation, management (service layer), network equipment integration 
(infrastructure layer), AI/ML (Artificial Intelligence/Machine Learning)-based security, and forensic 
evidence for multi-tenancy. 

The OSG TFS is established on the initiative of a group of ETSI Full, Associate and Applicant members. 
The project is responsible for defining its own detailed Working Procedures within the limits of the 
ETSI Terms of Reference. It will also be responsible for the validation of the source code it produces, 
together with any associated documentation. 
 

 

Figure 2. ETSI OSG TFS governance 

The governance of OSG TFS is shown in Figure 2 and it is mainly structured into the following bodies: 

• Leadership Group (LG) 
• Technical Steering Committee (TSC) 
• Module Development Groups (MDG) 
• Dedicated Task Forces (TFs) 

Organizations participating in these bodies and involved in code contributions shall sign the OSG TFS 
Member or Participant agreements to guarantee their adherence to the Terms of Reference and 

https://portal.etsi.org/Portals/0/TBpages/TFS/Docs/TFS_Working_Procedures_v1_0.pdf
https://portal.etsi.org/Portals/0/TBpages/TFS/Docs/OSG_TFS_Terms_of_Reference_D-G_Approved_20220331.pdf
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license(s) used in the project. 
 

For more detailed information, we suggest to access https://tfs.etsi.org/legal/ 

3.2. GitLab 

After the creation of the ETSI TeraFlowSDN community, we have moved from the original Gitlab 
towards a GitLab hosted inside the  ETSI Laboratories: 

https://labs.etsi.org/rep/tfs/controller 

All features from the previous GitLab repository are available in the new one. 

This section presents the features used and the project-defined workflows for feature requests, 
feature lifecycle, bug reporting and technical wiki. 

3.2.1. Feature Request Procedure 

Two kinds of feature requests are considered in this procedure: 

- New Feature: a big change that potentially affects several components and requires an 
appropriate design phase; 

- Enhancement: a relatively small change enhancing TFS that does not require a design phase. 

Project features go through a discussion and approval process. To propose both types, TFS uses the 
issues on its GitLab code repository. 

- Important: a feature request is about functionality, not about implementation details; 
- Please describe WHAT you are proposing and WHY it is important; 
- DO NOT describe HOW to do it. This is done when the new feature is approved by TSC by 

populating the design details. 

3.2.1.1. Procedures 
1. Go to New Issue page  

https://labs.etsi.org/rep/tfs/controller/-/issues/new 

You need to be authenticated. 

2. Create a New Issue for your feature. Figure 3 shows the Gitlab form for new feature request.  

https://tfs.etsi.org/legal/
https://labs.etsi.org/rep/tfs/controller
https://labs.etsi.org/rep/tfs/controller/-/issues/new
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Figure 3. Gitlab For a new feature request 

- Title: A concise high-level description of the feature (see some other examples in GitLab) 
- Type: Issue 
- Description: Choose the "new-feature" or "enhancement" project templates and fill-in the 

auto-generated template describing the feature/enhancement. 
- Labels: 

o Select the type of request: type::new-feature / type::enhancement 
o If you foresee the components affected by the request, please pick the appropriate 

labels. 
 Component labels have the form comp-<component-name>. 

o PLEASE: Do not set other types of labels (to be set by TSC). 
- PLEASE: Do not set the following fields (to be set by TSC): EPIC, Assignee, Milestone, Weight, 

Due Date 
- Submit the Issue 
3. Interact with the TSC and the Community throughout the issue. 

TSC will review your request. It will be approved if it makes sense and its purpose is clear. Otherwise, 
TSC will provide questions for clarification. 

3.2.1.2. Designing a Feature 
Once a feature has been approved, the design phase starts. The design should be included within the 
feature description (GitLab issue description) by concatenating the Design Feature Template (see 
below) and correctly filling it in. If the feature description becomes too long, attached files could also 
be submitted. 

The design is expected to be socialized with the relevant stakeholders (e.g. MDLs and TSC). Dedicated 
slots can be allocated in the TECH calls on a per-request basis to discuss and refine it. 
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For writing the design, you can check the design of existing features or use the design templates below. 

3.2.1.3. New Feature / Enhancement Request Template 
The following describes the template for new features or enhancements in TFS. 

# Proposers 
- name-of-proposer-1 (institution-of-proposer-1) 
- name-of-proposer-2 (institution-of-proposer-2) 
... 
# Description 
Describe your proposal in ~1000 characters. 
You can reference external content listed in section "References" as [Ref-1]. 
# Demo or definition of done 
Describe which high level conditions needs to be fulfilled to demonstrate this feature 
implementation is completed. 
You can reference external content (example, demo paper) listed in section "References" as [Ref-
2]. 
# References 
1. [Reference name](https://reference-url) 
2. Author1, Author2, Author3, et. al., “My demo using feature,” in Conference-Name Demo Track, 
20XX. 

 

The Figure 4 below shows an example of a new feature request. 

 

Figure 4. Example of new feature request 

3.2.1.4. Feature Design Template 
The following text describes a Feature design template to be completed when submitting a feature 
request. 

# Feature Design 
## Clarifications to Expected Behavior Changes 
Existing component logic and workflows between components that need to be altered to realize 
this feature. 
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Remember to justify these changes. 
... 
## References 
 
List of relevant references for this feature. 
... 
## Assumptions 
Enumerate the assumptions for this feature, e.g., fix XXX is implemented and merged, specific 
configurations, specific 
components deployed. 
... 
## Impacted Components 
List of impacted components: Context, Device, Service, PathComp, Slice, Monitoring, Automation, 
Policy, Compute, etc. 
Just an enumeration, elaboration of impacts is done below. 
## Component1 Impact 
Describe impact (changes) on component1. 
... 
## Component2 Impact 
Describe impact (changes) on component2. 
... 
## Testing 
Describe test sets (unitary and integration) to be carried out. 
This section can include/reference external experiments, demo papers, etc. 
... 

3.2.2. Feature Lifecycle 

Once approved, a feature request could transition through the following steps: 

o Approved: Feature approved by TSC; design phase can start; 
o Design: Feature under design; discussing on HOW to do it. Only for New Features; 
o Development: Design approved; feature under development/implementation; 
o Testing and Review: Feature implemented and under review and testing by the developers 

and the community; 
o Completed: Testing and review completed, and feature merged; 
o Abandoned: Feature abandoned. 

Important: An approved feature is not a guarantee for implementation. 

Implementing a feature requires resources, and resources come from the members, participants and 
individual contributors within the TFS Community, which might have prioritized the development of 
other features based on their interests and the interests expressed by the LG, the TSC, and the MDGs. 

Once a Feature is mature, e.g., Testing, Review, Completed, it can be accepted for inclusion in a 
specific Release. 

This is accomplished by including the issue ticket in the respective EPIC "ReleaseX.Y". 

For instance, to see the features included in Release X.Y, check EPIC "ReleaseX.Y". 
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3.2.3. Bug Report Procedure 

Project bugs go through a review, confirmation, and resolution process. TFS uses the issues on its 
GitLab code repository for bug reporting and tracking. Important: New bugs must be properly 
documented. Details are requested on the details on the deployment environment (Operating System, 
MicroK8s, etc.), the TFS version (or branch/commit), the TFS deployment settings (components, 
particular configurations, etc.), the particular sequence of actions that resulted in the bug, the TFS 
components affected by the bug (if you know them), the expected behaviour (if you know it).  

Without this minimal information, it might be difficult to reproduce and resolve the bug and validate 
the solution's completeness. 

The reporting procedure is described as follows. 

1. Go to New Issue page https://labs.etsi.org/rep/tfs/controller/-/issues/new. 

You will then need to be authenticated. 

2. Create a New Issue for your bug 
o Title: A concise high level description of your bug (see some other examples in GitLab) 
o Type: Issue 
o Description: Choose the "bug" project template and fill-in the auto-generated template 

describing the bug. 
o Labels: 

o Select the type of request: type::bug 
o If you foresee the components affected by the bug, pick the appropriate labels for 

them. 
 Component labels have the form comp-<component-name>. 

o PLEASE: Do not set other types of labels (to be set by TSC). 
o PLEASE: Do not set the following fields (to be set by TSC): EPIC, Assignee, Milestone, 

Weight, Due Date 
o Submit the Issue 

3. Interact with the TSC and the Community through the issue. 

The TSC will review the reported bug and try to reproduce it. If we succeed in reproducing it, we will 
mark it as confirmed, and include its resolution in the development plans. Otherwise, TSC will provide 
questions for clarification. 

3.2.4. Wiki 

The documentation using the Git Wiki page is described later in Section 3.5.2. 

3.3. Slack 

Slack [SLK] is the main communication platform used by the TeraFlowSDN project consortium. Slack is 
an instant messaging platform with different add-ins and workplace tools, or as they say, “a single 
place for messaging, tools, and files”. Slack provides two communication methods: topic-based group 
chats and direct person-to-person chats. In the TeraFlowSDN Slack, we set multiple channels for 
different purposes. Some of them are public to the consortium, and some others are private for direct 
communication among a reduced number of partners. 
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Figure 5. An example of the TeraFlowSDN Slack 

Figure 5 depicts an example of the slack interface. Our main communication channel is the #general 
channel, where all the consortium members are participants. There are also dedicated channels for 
specific task purposes, such as the #wp3, #cicd, #release-v1, or #integration-demo-validation-wp5, 
where only the contributing partners are participants. We also have private channels like #atos-cttc 
and #ubitech-atos devoted to straightforward communication between partners, especially useful for 
component integration purposes. In addition to the channels where multiple users can participate, 
there are direct messages that can be used to contact any consortium person directly.  

It is worth noting that Slacks provides a formatting toolbar with dedicated formatting options for code 
and code blocks, which is especially useful for software development and component integration. In 
addition to the chats, Slack also provides tools for audio/video calls and file sharing. The consortium 
uses these options less since we usually use Microsoft Teams for resource-sharing purposes. 

3.4. CI/CD Environment 

The CI/CD environment is still based on GitLab CI, fully integrated within GitLab, which is the source 
code management tool used in the project. The CI/CD methodology was already described in D5.1, 
presenting the infrastructure, the GitFlow, the branch naming schema, and the testing methodology. 
However, some minor changes have been applied to the project file structure since the release of 
D5.1. Figure 6 shows the updated repository structure. As can be seen, the root folder is named 
controller and contains the following files and folders: 

• proto: this folder contains the data models of the TeraFlowSDN components in a .proto file; 
• manifests: this folder contains the Kubernetes manifest files for the deployment of the 

TeraFlowSDN services in a Kubernetes environment; 
• src: this folder contains the source code of the micro-services with the following folders inside: 

o common: this folder contains some common resources for the development of the 
micro-services (tools folder, multiple scripts, and logger.py) as well as symbolic links 
to the compiled protocol buffers that are generated during the installation phase 
inside the  /proto/src folder 
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o uService_i: this folder contains the source code of the uService_i. Within this folder, 
you can find the client, service, and tests folders, the Dockerfile and the .gitlab-ci.yml 
file for the Gitlab CI pipeline of that micro-service. 

• .gitlab-ci.yml: this is the global Gitlab CI configuration file. It defines the stages of the CI/CD 
pipeline and includes each micro-service's individual .gitlab-ci.yml files; 

• Deployment scripts: the root folder also contains a set of scripts for the deployment of the 
TeraFlowSDN controller into a Kubernetes infrastructure; 

• INSTALL.md and README.md: installation and readme files for the users. 

 

Figure 6. TeraFlowSDN updated GitLab repository structure 

There are two main components in a Gitlab CI pipeline, jobs, and stages. Jobs define what to do and 
stages when to execute the jobs. Stages are sequential and determine the order in which jobs should 
be completed. As can be seen in Figure 6, the Gitlab CI configuration file (.gitlab-ci.yml)  is 
hierarchically structured, defining the stages of the pipeline in the global Gitlab CI configuration file 
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located in the root folder (Figure 7) and defining the jobs for each micro-service in the individual files 
located under the /src/uService_i folder that are included as local files in the global .gitlab-ci.yml. 

 

Figure 7. Global .gitlab-ci.yml configuration file 

As illustrated in Figure 7, in the TeraFlowSDN CI/CD pipeline, we defined the following six stages: 

• dependencies: this stage is devoted to deploying the dependency services of the TerFlowSDN 
Kubernetes cluster; 

• build: this stage is in charge of building the micro-services and uploading the images to the 
Gitlab container registry; 

• unit_test: this stage is dedicated to the unit testing of the micro-services, i.e., testing isolated, 
small portions of code of individual micro-services; 

• integ_test: this stage is associated with integration testing, aiming to check whether multiple 
micro-services can properly work together; 

• deploy: this stage has been created for deploying the micro-service in the development 
infrastructure to perform end-to-end testing; 

• funct_test: this stage is dedicated to functional testing, aiming to find any problems in fulfilling 
an end-to-end function. 

Therefore, each micro-service implements its jobs based on the six stages defined in the global 
configuration file. To properly assure the testing stages' effectiveness and facilitate the integration 
between components, we measure the code coverage, a software testing metric specifying the code 
percentage and the number of code lines successfully validated during the testing phase. An example 
of code coverage of the monitoring component can be found in Figure 8. The report shows the code 
coverage of each file and the lines that have not been tested as well as the total code coverage of the 
monitoring component (e.g., in the Monitoring component is 78%). At the moment of writing this 
report, the code coverage reported in the master branch is 87%. 
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3.5. Release Documentation 

In this subsection, we provide an overview of the documentation provided with the release of the 
TeraFlowSDN controller. Then, we provide the installation instruction to facilitate the execution of an 
instance of the software locally in any environment. We also present the TeraFlowSDN wiki and some 
tutorials to test the functionalities of the software. Finally, we introduce the TFS virtual machine we 
have created with an environment that contains all the requirements for adequately deploying the 
TeraFlowSDN controller. 

3.5.1. Installation Instructions 

TeraFlowSDN is based on micro-service architecture and is composed of multiple containers. For 
properly orchestrating these containers, we recommend installing TeraFlowSDN in a Kubernetes 
cluster. There are multiple Kubernetes distributions. For the sake of simplicity, we recommend 
MicroK8s, a powerful, lightweight, and reliable Kubernetes distribution that offers multiple add-ons 
out of the box with a minimal disk and memory footprint. A guided tutorial on installing MicroK8s can 
be found in the Wiki described in Sec. 3.5.2. 

Once a Kubernetes distribution is installed, it is required to clone the repository from the ETSI-hosted 
GitLab (https://labs.etsi.org/rep/tfs/controller.git). Once the repository is cloned, the desired branch 
must be selected. By default, the repository points to the master branch.  

The next step is to prepare the environment for the deployment of the TeraFlowSDN controller. For 
this purpose, we designed a script (i.e., my_deploy.sh) that sources the deployment settings. This 
script can be found in the repository root folder. Once the environment is ready, the controller can be 
deployed using the deploy.sh script in the root directory of the repository. This script builds, tags, and 
pushes the images to the repository of the local Kubernetes distribution. Additionally, the script 
creates a dedicated namespace for the deployment, deploys all the micro-services, creates an ingress 
controller for the WebUI, and initializes the Grafana dashboard. A more detailed tutorial with all the 
installation instructions can be found in the Wiki described in Sec. 3.5.2. 

 

Figure 8. Code coverage of the Monitoring component 

 

https://labs.etsi.org/rep/tfs/controller.git


D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 28 of 112 

3.5.2. Wiki 

The TeraFlowSDN offers a comprehensive set of guidelines in the form of a wiki page hosted in the 
GitLab of the project. The wiki provides new and experienced users with reference material that can 
be followed when new installations of TeraFlowSDN are being created or when required to reproduce 
experiments. Figure 9 shows the list of pages currently available at the TeraFlowSDN wiki. The wiki 
pages are constantly being developed and updated to reflect the latest developments of the 
components. 

 

There are currently four categories of pages: 

1. Deployment guide: These pages detail how to set up an environment (i.e., install a Linux OS in 
a virtual machine or bare metal), install dependencies, and deploy TeraFlowSDN in its 
reference architecture; 

2. Run experiments: These pages show how to reproduce experiments using TeraFlowSDN. Most 
of the currently available experiments are related to the demonstrations presented at 
conferences. However, for the final version, we will also include specific documentation on 
how to run the scenario experiments; 

3. Features and bugs: These pages document how new feature requests should be placed and 
how bugs should be reported; 

 

Figure 9. List of pages composing the TeraFlowSDN public wiki 
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4. Development guide: These pages are currently under development. The main objective is to 
document how to create a new component from scratch using the main languages supported 
by TeraFlowSDN, e.g., Python and Java. 

3.5.3. Tutorial and TeraFlowSDN Virtual Machine 

To onboard users to ETSI TeraFlowSDN, we prepared an intuitive virtual tutorial, which includes all 
the basic knowledge to understand and use ETSI TeraFlowSDN.  

This tutorial offers an overview and hands-on experience in programming the necessary tools to 
control and monitor the packet optical networks while introducing ETSI TeraFlowSDN as the cloud-
native SDN controller that enables innovative connectivity services for future networks beyond 5G. 
Furthermore, this new class of cloud-native SDN controllers allows rapid prototyping and 
experimentation in R&D and standardization activities.  

First, an overview of the YANG data modelling language and NETCONF protocol is presented. Later, 
TeraFlowSDN controller is introduced. Then, we detail the dynamic establishment of L3VPN using 
OpenConfig routers. Later, RESTconf interfaces are explained, and ONF Transport API is exploited to 
obtain network information.  

 The tutorial enables participants to: 

• Learn and use open-source tools to control and monitor packet optical networks; 
• Develop simple code for NETCONF agents and clients, including learning to create the 

necessary bindings; 
• Understand OpenConfig data models and how to use them to control and monitor network 

equipment; 
• Obtain practical hands-on experience on RESTconf-based interfaces for Control of Transport 

Networks; 
• Develop a monitoring application using gRPC and gNMI (gRPC Network Management 

Interface) protocols; 
• Understand and implement publish/subscribe mechanisms for data using Kafka broker. 

This tutorial is prepared for the following audience: 

• Network Operators and Service providers who want to get first-hand operational experience 
with TeraFlowSDN Controller; 

• System Integrators who want to develop their expertise with TeraFlowSDN; 
• Academia and Universities who are using or considering TeraFlowSDN as a platform for their 

research activities in networking; 
• TeraFlowSDN developers and users that want to share and test with the community; 
• Members of other research projects that may be interested in using TeraFlowSDN Controller 

in their research and proof-of-concept activities. 

The tutorial recordings can be found at: 

1) Controlling and Monitoring Optical Networks, by Lluis Gifre and Ricard Vilalta (CTTC)  
2) Introduction ETSI TeraFlowSDN, Deployment, Onboarding Network Devices, Programmable 

L3 Routers, by Ricard Vilalta and Lluis Gifre (CTTC) 
3) Introduction to P4 and a mini P4 demo, by Georgios P. Katsikas and Panagiotis Famelis 

(UBITECH) 

http://www.youtube.com/watch?v=4erxoo5_nq4
http://www.youtube.com/watch?v=4J1EXndyxng
http://www.youtube.com/watch?v=4J1EXndyxng
http://www.youtube.com/watch?v=nax5IsdMxXI
http://www.youtube.com/watch?v=nax5IsdMxXI
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The tutorial slides are available at: 

1) Controlling and Monitoring Optical Networks, by Lluis Gifre and Ricard Vilalta (CTTC) 
2) Introduction ETSI TeraFlowSDN, Deployment, Onboarding Network Devices, Programmable 

L3 Routers, by Ricard Vilalta and Lluis Gifre (CTTC) 
3) Introduction to P4 and a mini P4 demo, by Georgios P. Katsikas and Panagiotis Famelis 

(UBITECH) 
 

The necessary TFS Virtual Machine to follow tutorial can be downloaded at: 
https://www.dropbox.com/s/gbqyybdv6nndufn/TFS-HF-VM.rar?dl=0 

More information is available at: 

https://labs.etsi.org/rep/groups/tfs/-/wikis/TFS-HACKFEST-1 

  

https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/af90e1414c7c0c1772f60839c2ee4f7e/TFS_HF_2022_-_Session_1.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/abcd754af092e9cb8eee5dce302976e0/TFS_HF_2022_-_Session_2.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/abcd754af092e9cb8eee5dce302976e0/TFS_HF_2022_-_Session_2.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/addc67f7182d3e97e6742c145b7fc207/TFS_HF_2022_-_Session_3.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/addc67f7182d3e97e6742c145b7fc207/TFS_HF_2022_-_Session_3.pdf
https://www.dropbox.com/s/gbqyybdv6nndufn/TFS-HF-VM.rar?dl=0
https://labs.etsi.org/rep/groups/tfs/-/wikis/TFS-HACKFEST-1
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4. Metrics Collection Framework 
TeraFlowSDN offers a built-in metrics collection framework that can benchmark and monitor the 
performance of the internal components. Unlike the Monitoring component, which is responsible for 
collecting KPI data from the infrastructure, the metrics collection framework is concerned with KPI 
data coming from the TeraFlowSDN components. For instance, we may want to monitor how long a 
specific method takes to run (e.g., how long does the Context component take to reply with a list of 
current services?). 

This section introduces the Metrics Collection Framework and suggests several metrics definitions that 
are relevant for the different scenarios. Later, these metrics are detailed in next sections on per-
scenario basis. 

The metrics collection framework is developed by integrating state-of-the-art open-source software 
into the TeraFlowSDN architecture. As illustrated in Figure 10, two leading open-source software 
platforms are used: 

1. Prometheus: a solution for exposing and collecting metrics about the software performance 
at run time. Its adoption has two main steps: (i) instrumenting your component to capture the 
relevant metrics and (ii) configuring the main Prometheus server to extract the exposed 
metrics periodically; 

2. Grafana: a solution for creating graphical dashboards combining multiple data sources. This 
last characteristic is essential for TeraFlowSDN because we need dashboards depicting data 
collected from the devices (therefore coming from the database used by the Monitoring 
component) and data related to the performance of TeraFlowSDN itself (i.e., using the 
information coming from Prometheus). 

 

In addition to these two main pieces of software, we rely on a service mesh software capable of 
performing load balancing for gRPC requests. Among the alternatives, Istio and Linkerd are regarded 
as the two most used service mesh implementations. Adopting Prometheus, Grafana, and a service 
mesh grants TeraFlowSDN a wide range of functionalities that can be used to understand the system's 
performance and identify potential bottlenecks or targets for optimization. 

 

Figure 10. TeraFlowSDN extended architecture encompassing the metrics collection framework 
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4.1. Micro-service gRPC Calls 

TeraFlowSDN adopts gRPC as the standard protocol for internal communication among components. 
The adoption of gRPC is motivated by several factors: (i) the explicit definition of services and 
messages provided by the protobuffers, (ii) the binary format that provides lower communication 
overhead, and (iii) the easy use and interoperability across programming languages. However, the 
gRPC protocol leverages HTTP/2 as the transfer protocol, i.e., gRPC is built on top of HTTP/2. Unlike 
HTTP/1.1, HTTP/2 allows for connection multiplexing, i.e., the same transport connection can be used 
for sending several application requests concurrently. While this feature is beneficial in terms of 
reducing signaling overhead (e.g., connection establishment time), it makes it harder to provide load 
balancing when gRPC is used in environments with multiple replicas of the same service, as it is the 
case of TeraFlowSDN. This happens because once a gRPC client establishes a connection with a gRPC 
server, the tendency is that the same connection will continue to be used as long as the client (i.e., 
the client object) still exists, or it times out due to inactivity. This prevents the client from taking 
advantage of any load balancing among existing replicas. 

To solve this issue, TeraFlowSDN adopts a service mesh, a specific piece of software responsible for 
facilitating the load balancing among different gRPC server replicas. In addition to providing the basic 
functionality of gRPC load balancing, most service mesh implementations provide built-in monitoring 
for the health and detailed parameters of the connections among all components within a 
deployment. For instance, service mesh monitoring can measure how many requests per second a 
component/service or replica receives and the response time distribution for such calls. 

 

  

 

Figure 11. Architecture of the service mesh with sidecar proxy and service container 
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Figure 11 illustrates the architecture of a service mesh deployment, specifically, the deployment of 
Scenario 3 in the optical layer (described in Sec. 7.5.2). Each component is configured to let the service 
mesh control plane act over it. The main actions that the service mesh control plane performs are to 
include a new container in the Pod called sidecar proxy. The sidecar proxy is responsible for 
intercepting any outgoing communication to other components and routing it through their respective 
sidecar proxies. The control plane is responsible for disseminating information about replicas to all the 
sidecar proxies. This way, the load balancing is not done in the transport layer (the default in 
Kubernetes) but rather in the application layer. When new replicas are added, sidecar proxies are 
included in the new Pod and start being part of the pool of replicas soon after. Potential candidates 
for deployment are the Istio service mesh, and the Linkerd service mesh. Both tools are free to use and 
open source. In addition, their core functionalities are pretty similar. 

Figure 12 shows the Linkerd dashboard during the execution of a scenario 3 experiment with optical 
physical layer attacks. We can see that the service mesh measures the number of requests per second 
and statistics about the response time and success rate of requests. This dashboard can analyse 
component performance, and help identify bottlenecks and communication issues. 

 

Figure 12. LINKERD dashboard during a Scenario 3 experiment 

4.2. Prometheus 

Prometheus is an open-source software widely used to implement monitoring of internal software 
performance. Prometheus is composed of two parts, the metrics exporter and the server. The metrics 
exporter is embedded into the code being monitored. This encompasses launching a web server that 
exposes the current state of the metrics upon request to a specific URL. The code in Figure 13 
illustrates the response of a Prometheus exporter upon a request, specifically after instrumenting a 
TeraFlowSDN component (i.e., the optical attack detector) written in Python. There are two comments 
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before every value or set of values (i.e., lines starting with #). The two comments are called HELP and 
TYPE. The HELP line is used to export the metric description. 

The TYPE describes which type is associated with the metric, out of the ones available in Prometheus. 
The types of metrics that can be stored in Prometheus are: 

• Counter: numerical metrics that can only be incremented and are reset when the process 
restarts; 

• Gauge: numerical metrics that can have their value set, incremented, or decremented; 
• Summary: a vector that can be used to store observations and further processed to obtain 

averages and other statistics; 
• Histogram: it categorizes the observed events based on predefined ranges (referred to as 

buckets). This enables the calculation of probability distributions and more advanced statistics 
over the observed values. 

 

Figure 13. Example of Prometheus exported metrics 

# HELP python_gc_objects_collected_total Objects collected during gc 
# TYPE python_gc_objects_collected_total counter 
python_gc_objects_collected_total{generation="0"} 580.0 
python_gc_objects_collected_total{generation="1"} 315.0 
python_gc_objects_collected_total{generation="2"} 8.0 
# HELP process_start_time_seconds Start time of the process since unix 
epoch in seconds. 
# TYPE process_start_time_seconds gauge 
process_start_time_seconds 1.67031966977e+09 
# HELP process_cpu_seconds_total Total user and system CPU time spent 
in seconds. 
# TYPE process_cpu_seconds_total counter 
process_cpu_seconds_total 40.8 
# HELP optical_security_loop_seconds Time taken by each security loop 
# TYPE optical_security_loop_seconds histogram 
optical_security_loop_seconds_bucket{le="1.0"} 22779.0 
optical_security_loop_seconds_bucket{le="2.5"} 22779.0 
optical_security_loop_seconds_bucket{le="5.0"} 22779.0 
optical_security_loop_seconds_bucket{le="7.5"} 22779.0 
optical_security_loop_seconds_bucket{le="10.0"} 22779.0 
optical_security_loop_seconds_bucket{le="12.5"} 22779.0 
optical_security_loop_seconds_bucket{le="15.0"} 22779.0 
optical_security_loop_seconds_bucket{le="17.5"} 22779.0 
optical_security_loop_seconds_bucket{le="20.0"} 22779.0 
optical_security_loop_seconds_bucket{le="22.5"} 22779.0 
optical_security_loop_seconds_bucket{le="25.0"} 22779.0 
optical_security_loop_seconds_bucket{le="27.5"} 22779.0 
optical_security_loop_seconds_bucket{le="30.0"} 22779.0 
# HELP optical_security_loop_seconds_created Time taken by each 
security loop 
# TYPE optical_security_loop_seconds_created gauge 
optical_security_loop_seconds_created 1.6703196713060427e+09 
# HELP optical_security_active_services Active optical services 
currently in the network 
# TYPE optical_security_active_services gauge 
optical_security_active_services 0.0 
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The second part of Prometheus is the server. The server has three primary responsibilities: 

• Metrics collector: responsible for collecting all the metrics based on a list of 
places/components to be monitored; 

• Database: The time-series database responsible for persisting/storing the collected metrics; 
• Web-based UI and API: The user interface where users can query and visualize the data stored 

in the database. The API allows access to the same information without the GUI, which 
becomes ideal for extracting only the data. 

 

Figure 14. Screenshot of Prometheus WebUI with metrics collected from Python 

Figure 14 shows a screenshot of the Prometheus WebUI. The plot shows the collected metrics from 
the Python processes during experiments of scenario 3 for optical physical layer attack detection. In 
particular, the plot shows the average number of objects collected by the garbage collector of Python. 
This detailed monitoring of the internal performance of the components enables TeraFlowSDN users 
(e.g., network operators) to obtain deep insight into potential bottlenecks that may arise, facilitating 
the analysis of such bottlenecks. 

4.3. Grafana 

Grafana is the final open-source software used in the metrics collection framework. Grafana is focused 
on visualizing different KPIs, allowing for their concurrent analysis. This is done through the creation 
of dashboards. A significant feature of Grafana is that it enables the creation of dashboards that 
combine data from different data sources. For instance, in the case of TeraFlowSDN, we have the 
Monitoring component responsible for monitoring services and devices currently active in the 
network. In addition, we also have Prometheus, where the internal monitoring data is stored. 
Therefore, Grafana makes it easy to generate dashboards combining data from the monitoring 
database and Prometheus. 
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Figure 15. The Grafana dashboard for the OFC’22 demonstration 

Figure 15 shows a screenshot of the dashboard used for monitoring L3 services. This dashboard was 
created for the demonstration in [OFC22]. Filters in the top left corner also allow the user to select 
which devices, endpoints, and KPI types to show in the dashboard. For the final version of 
TeraFlowSDN, each scenario will provide a custom dashboard in Grafana where all the relevant KPIs 
can be analyzed near real-time. 

4.4. Metric Definitions 

This section provides a complete overview of the relevant metrics for the TeraFlow project. They have 
been expanded from D5.1. Table 1 contains the overview of the metrics. In each specific scenario 
section, the metrics are further detailed in the context of the scenario. 

Table 1. Summary of metrics relevant for the TeraFlow project 

Metric Definition Relevant 
scenarios 

Device on-
boarding time 

Control plane latency to on-board a new device and upload its 
configuration. Does not consider the necessary time to 
communicate with the device. 

1 

Service setup 
delay 

Required time to setup a new service, from control plane 
perspective only. Does not consider the necessary time to 
communicate with device. 

1,2 

Slice setup delay Required time to setup a new slice, from control plane perspective 
only. Does not consider the necessary time to communicate with 
device. 

1,2 

Data rate  Amount of data transmitted during a specific time period over a 
network 

1 
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Latency Latency is the time it takes for a device to send one small 'echo' 
packet to the serving content server and the corresponding 'echo-
reply' packet to return to the device. This time is also called the 
round-trip time. It has become common practice to use the terms 
synonymously. 

1 

Energy Measuring the reduction in total average energy consumption and 
average resource utilization metrics 

1,3 

Economic Cost reduction both in CAPEX (disaggregated networks) and OPEX 
(automation). 

1, 2 

Resource 
efficiency  

Measurement of the resources needed to serve a given traffic 
request with and without using integrated resource orchestration. 

1 

Multi-tenancy Stress the slice/service management system and measure 
allocated slices  

2 

Trust Secured deployment of services through DLT 2 
Privacy Percentage of exposure of physical topological details  
DLT transaction 
delay 

Measurement of the delay introduced by the usage of DLT instead 
of other inter-domain communication mechanisms 

2 

Positioning Deployment of a position-based technique for all vehicles  2 
Security Attacks need to be detected with high accuracy to make sure they 

do not remain undetected or unaddressed in the network 
3 

Reliability Measuring the performance of the model on detecting unseen 
adversarial attacks 

3 
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5. Scenario 1: Autonomous Network Beyond 5G 
This section presents the first scenario in TeraFlow. It focuses on the evolution of autonomous 
networks beyond 5G. It can be considered an operator-led scenario, as it focuses on the evolution of 
transport networks through the hierarchical integration of SDN and NFV technologies. Firstly, we 
introduce the scenario. Secondly, we present its alignment with TeraFlow architecture. Thirdly, we 
present the scenario setup in the laboratories. Fourthly, we present the relevant metrics and KPIs for 
the scenario. Fifthly, we introduce the designed workflow and the current deployments. Sixthly, a 
preliminary performance evaluation is presented when available. Finally, we provide a summary of 
pending work and the next steps.  

5.1. Scenario Introduction 

Scenario 1 has the motivation that with 5G networks comes the opportunity to deploy new services 
in an automated manner. In this sense, network operators can migrate to 5G based on templates for 
services and network slices hard-coded into their systems. In this case, each service and network slice 
selects its deployment type from a list of predefined specifications, defining specific network 
resources and having requirements or constraints.  

It has become clearer during the duration of TeraFlow that this approach does not scale for B5G 
scenarios, where the network should adapt to the end users’ needs in a dynamic and on-demand 
manner. This means that the network (operated by the network slice controller) should compute a 
deployment plan (considering relevant and needed network service functions) together with a service 
provisioning and configuration plan. This needs to be done dynamically and intelligently to match the 
requested service, provide adaptation capabilities during the service operation, and relate the 
requested services to the specific underlying network resources that are offered and available. If most 
of the services will require resources from different domains, these network resources need to be 
orchestrated to provide multi-layer and multi-domain services. Network automation is the only way 
to deal with such adaptive environments. SDN promised the capability to program the network, and 
there are tools to do it. However, each tool has its own APIs, their associated data models may vary 
and be proprietary, so integration is a costly and time-consuming process. 

TeraFlowSDN controller supports a set of operator-driven use cases and workflows that include the 
objectives of this scenario dealing with the programmability of network elements and technology-
based SDN controllers with the north bound and south bound interface requirements.  

Figure 16 provides the high-level architecture of the envisioned scenario. A set of multiple integrated 
network elements are considered in network technological domains and used to support the 
autonomous provisioning and subsequent configuration and management of transport network slices, 
consisting of multiple Virtual Private Network (VPN) services such as Layer 2 (L2VPN) and Layer 3 
(L3VPN) services with dedicated Service Level Agreements (SLA) (more details in D3.2). Another 
possibility is the interaction of an NFV Orchestrator (e.g., ETSI OpenSource MANO) with TeraFlowSDN 
North-Bound Interfaces (NBI), which includes provisioning L2/L3VPN connectivity. The TeraFlowSDN 
controller can trigger the necessary handlers to interact with the underlying technological domains in 
all these service requests. 

The optical network domain can be managed using the Open Networking Foundation (ONF) Transport 
API (TAPI). The TAPI is used as an SBI towards an Optical Line System (OLS) or optical SDN controller, 



D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 39 of 112 

which is responsible for optical network elements, such as optical transceivers, Reconfigurable Optical 
Add/Drop Multiplexers (ROADMs) or Optical Crossconnects (OXCs). 

The microwave transport network follows the ONF Technical Reference (TR) 352 and Internet 
Engineering Task Force (IETF) Network Topology data models. To this end, a dedicated microwave SDN 
controller is used, which can interact with TeraFlowSDN SBI based on ETSI mWT 024. 

The Layer 3 (L3) routers can be controlled using OpenConfig data models. In this setting, the 
TeraFlowSDN Controller can be instantiated as a dedicated Internet Protocol (IP) SDN controller and 
can interact with a parent TeraFlowSDN controller instantiated as an End-to-End Orchestrator. 

The L3 routers can also be controlled using Path Computation Element Protocol (PCEP). In this setting, 
the TeraFlowSDN Controller can be instantiated as a dedicated PCEP SDN controller and interact with 
a parent TeraFlowSDN controller instantiated as an End-to-End Orchestrator. 

 

P4 switches also can be controlled using the TeraFlowSDN controller with a dedicated instance. In 
addition, this controller can interact with a parent TeraFlowSDN controller instantiated as an End-to-
End Orchestrator. 

5.2. Alignment with TeraFlow Architecture 

Figure 17 shows the instantiation (configuration and TFS templates) for the End-to-End (E2E) 
TeraFlowSDN controller running as an SDN orchestrator. It may be observed that The ETSI 
OpenSourceMANO (OSM) NFV orchestrator is used to provision the network services and delegates 
to the TeraFlowSDN (TFS) controller, which is used as a Wide Area Network (WAN) Infrastructure 
Manager (WIM), the establishment of the inter-Data Centre (DC) connectivity through the WAN 
infrastructure. The OSM orchestrator uses the IETF L2VPN WIM connector to interact with the TFS 
controller.  

This scenario involves the following components: 

• NBI 
• Forecaster 

 

Figure 16. Scenario 1 high-level architecture 
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• Slice 
• Service 
• Context 
• TE 
• Path Computation 
• Monitoring 
• Automation 
• SBI 

The following use cases from D2.2 are of interest for testing the validity of these components and 
the overall scenario: 

• Zero-touch device automation 
• L3VPN Service Management 
• Integration with ETSI OpenSource MANO 
• Slice grouping 
• Service restoration with P4 devices 
• End-to-End Slice Provisioning with SLA 

 

 

5.3. Scenario Setup 

This section briefly describes the scenario setup, including references to the lab equipment that 
supports the performance evaluation work. The multiple partners, facilities and network elements 
required in this scenario and use cases are described below. The different partner premises will be 
connected utilising secure VPN tunnels forming a distributed testbed where the use case on 

 

Figure 17. Scenario 1 E2E TeraFlow instantiation 
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Autonomous Network Beyond 5G will be assessed from the control plane perspective. Network 
elements residing in the same laboratory will also be interconnected through data plane connectivity, 
but verifying and assessing the TFS control plane performance is not required. 

 

Telefónica contributes with their Future Network Lab, providing access to different IP routers and 
optical devices. IP routers include Infinera DXR-30, ADVA and IP-Infusion whiteboxes based on 
EdgeCore CSR310. For the optical network, equipment includes 3 FSP 3000 optical nodes and an SDN 
controller from ADVA. 

The test environment is based on the iFusion Testbed deployed in the Telefonica CTIO lab in Sur 3 
Building in Madrid. The iFusion Testbed replicates the IP/Multiprotocol Label Switching (MPLS) 
Network of a Telefonica Business Unit. The access and cell site gateways usually form regions 
concentrated in an aggregator router in flexible hierarchy levels depending on the topology, as shown 
in Figure 18. The naming convention starts in HL5 for a Cell Site, continuing to HL4 for Access Routers 
working as intermediate hubs towards the Aggregator Provider Edge (PE) referred to as HL3. The HL2 
hierarchical level comprises only PE routers transmitting data between regions. The testbed has two 
zones, and a backbone interconnecting them. The routers belonging to a region and the backbone act 
as Autonomous System Boundary Router (ASBR) routers. Thus, to forward the traffic from the 
L3VPN/L2VPN services, the ASBR routers from each region establish an external Border Gateway 
Protocol (eBGP) session against the core routers. Each region runs IS-IS as an IGP protocol and has a 
full mesh of BGP sessions between the nodes. 

 

 

Figure 18. iFusion Testbed 
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The IP/MPLS testbed is connected to microstack servers where the services run directly or via a 
microwave link installed at Telefonica Lab. The microwave link is connected to an HL5 site, emulating 
the real scenarios in Telefonica Network, as illustrated in Figure 19. 

 

The following paragraphs provide more insight into the tested platform. 

• Hardware and Software used: 

Role Device Version Qty 
HL5 Edgecore AS7315-30X NOS-OPX-B-21.1.1 (8769) 1 
HL5 Edgecore DRX-30 NOS-OPX-B-21.1.1 (8769) 2 

Generator Ubuntu virtual machine 20.04.TLS 2 
Generator SpirentTest Center STC 5.20 1 

MW Siae AGS-2 003 2 
 

• Cell Site Gateway Bare-Metal Hardware AS7315-30X. 

The Edgecore AS7315-30X in Figure 20 is an open cell site gateway platform that provides a 
combination of 1GE, 10 GE, 25 GE and 100GE interfaces utilizing merchant silicon and an x86 processor 
to optimize performance for mobile networks. 

• Spirent SPT-N12U 

The Spirent N12U Mainframe Chassis in Figure 21 provides test solutions for 800/400/200/100/50G, 
FlexE (Flex Ethernet) testing to address 5G transport, unified Layer 2 to Layer 7 traffic generation, 
investment protection with QSFP-DD, CFP8, and OSFP interfaces and wide-scale adoption by world’s 
largest NEMs, Service Providers, and Enterprises. 

 

Figure 19. Openstack and IP router scenario interconnected through iFusion Testbed 

 

 

Figure 20. AS7315-30X chassis layout 
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This testing scenario has been used to verify the correct connectivity between the devices. 

 

A datasheet and additional information can be found at [SPI22]. 

• Edgecore DRX-30. 

The DRX-30 devices (highlighted in Figure 22) are unbundled routers that combine a carrier-class white 
box portfolio with Infinera's scalable and proven CNOS software. For the equipment used in testing 
the scenario, the software has been modified by implementing a version of ADVA. 

These devices are an open cell site gateway platform that combines 1GE, 10 GE, 25 GE and 100GE 
interfaces using commercial silicon to provide a cost-effective, software-centric, and flexible solution 
for network routing. 

 

 

Figure 21. Spirent N12U chassis layout 

 

 

Figure 22. Edgecore DRX-30 chassis layout 
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• Virtualization servers: 
o Dell PowerEdge R730 (fsociety): It has 56 CPU intel Xeon E5-2690 v4 @ 2.60GHz cores 

capable to boost up to 3.50GHz, 125GB of DDR4 RAM and 2.7TB of hybrid storage 
(SSD and HDD). It runs Ubuntu 20.04.4 LTS and 10Gbps network interfaces. One 
illustration is provided in Figure 23. 

 

o Dell PowerEdge R720xd (wopr): It has 32 CPU intel Xeon E5-2680 @ 2.70GHz cores 
capable to boost up to 3.50GHz, 125GB of DDR4 RAM and 100GB of SSD storage. It 
runs Ubuntu 20.04.5 LTS and 10Gbps network interfaces. One illustration is provided 
in Figure 24. 

 

• Microwave radio equipment: 
o AGS-20: it is L2/L3 capable, compact, an indoor unit with up to 10GbE ports. It also 

integrates basic L3 networking, compatible with SNMP and NETCONF with YANG 
models (ONF and IETF). Both ends are linked using outdoor units with a 40dB 
attenuator to simulate the channel. 

o ASNK ODU (Figure 25): this takes the intermediate frequency of the AGS-20 and 
converts it to 23GHz. It is capable up to 4096 QAM modulation. These ODUs can 
transmit radio at 23dBm but we have configured them at 4dBm so as not to melt the 
receiver at the other end. 

 

Figure 23. Dell R730 

 

 

Figure 24. Dell R720xd 
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SIAE contributes with their SDN controller and Microwave (MW) link equipment. The SDN controller 
will oversee the MW equipment through the ONF TR-352 Driver. It interacts with the E2E TeraFlowSDN 
controller using ETSI mWT 024 interface. 

Infinera contributes with XR VTI mode Nx25G bandwidth allocation and verifies its interoperability 
with Intelligent Pluggables Manager (IPM).  XR VTI mode optical transport port is presented as 
{device}/{port}.{vlan}. Other components on environment includes 400G SONiC device (Edgecore 
DSC240) hosting XR pluggables and XR-CA,  400G XR tranceivers, optical splitter/decoupler and 
external traffic generator/analyzator.  

Infinera integrates and ports XR-CA software components to standard whiteboxes DCS240 (and NOS 
SONIC) with management interface support. It has also enhanced SONiC CMIS support, and CLI 
commands for XR pluggable and has verified/hardened the requisites for SONiC features with XR-CA 
and non XR-CA use cases with DHCPv4/ND/NTP. The environment is used to verify XR pluggables on 
different operation modes and optical parameters with SONiC. The environment is multipurpose, 
allowing for example, XR module 4x100G breakout mode verification. Furthermore, different XR 
pluggable firmware versions are verified, providing feedback on XR transceivers interoperability in the 
open SONiC Environment. 

IPM provides the necessary REST API to the TeraFlowSDN SBI driver to provide the necessary 
configuration parameters for XR constellation. 

Ubitech contributes with a 32-port 400 GbE Intel Tofino-2 P4 switch acting as a high-performance 
network fabric. The device will be controlled through the P4 SDN Controller, also instantiated by 
Ubitech. 

Stritzinger contributes with virtual routers based on Free Range Routing (FRR). They also provide an 
instantiation of the PCE-based SDN controller, which interacts with E2E TeraFlowSDN. 

ADVA contributes the Ensemble Activator for whitebox devices in the Telefonica Future Lab and for 
Telenor, offering IP routing capabilities with OpenConfig APIs. 

CTTC contributes with the ADRENALINE testbed®, providing an SDN/NFV packet/optical transport 
network and edge/core cloud infrastructure for 5G and Internet of Things (IoT) services. For this 
scenario, it includes an SDN-enabled disaggregated Optical Transport Network (OTN), consisting of a 
photonic mesh network (PMN) with 4 nodes (2 ROADMs and 2 OXCs) and 5 bidirectional flexi/fixed-

 

Figure 25. ASNK ODU radio link 
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grid DWDM amplified optical links up to 150 km, controlled using a proprietary Open Line System 
(OLS) that acts as an optical SDN controller, offering an ONF Transport API.  

CTTC also provides its Kubernetes-based infrastructure to execute the TeraFlowSDN Continuous 
Development/Continuous Integration environment.  

5.4. Scenario Metrics 

This section describes the scenario Key Performance Indicators (KPIs) to be reported as final 
achievements of the project. We have identified the necessary metrics and provided preliminary 
results in this document (D5.2). In deliverable D5.3, we will provide the complete measurements 
indicated in Table 2. 

Table 2. KPIs and KVIs for the Scenario 1 

Name Description Relevance Definition of 
measurement 

Component 

Device on-
boarding time 

< 50ms Initial device 
Bootstrap in day 
0 scenario. 

Control plane latency to 
on-board a new device 
and upload its 
configuration. Does not 
consider the necessary 
time to communicate with 
the device. 

Automation 

Service setup 
delay 

< 50ms Very high. 
Necessary base 
time to deploy 
new services. 

Required time to setup a 
new service, from control 
plane perspective only. 
Does not consider the 
necessary time to 
communicate with device. 

Service 

Slice setup delay < 50ms Very high. 
Necessary base 
time to deploy 
new slices. 

Required time to setup a 
new slice, from control 
plane perspective only. 
Does not consider the 
necessary time to 
communicate with device. 

Slice 

Data rate  > 50% Multi-layer 
optimization, 
introduction of 
optical layer 
closer to the edge 
and inclusion of 
novel optical 
technologies 
(SDM, FlexE, 
disaggregated 
flexigrid). 

Percentatge of increase of 
overall network resources 
when using multi-layer 
optimization in 
comparison with available 
network resources 
without network 
optimization. 

Offline 
measurement 
based on the 
multi-layer 
topology 
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Latency < 30% Delay budget 
computation 
including traffic 
offloading 
mechanisms to 
optical layer. 

Latency reduction 
percentatge when 
comparing multi-layer off-
loading with and without. 

Offline 
measurement 
based on the 
multi-layer 
topology 

Energy < 30% Significant KPI Reduction of energy 
consumption due to 
multi-layer optimization. 

Path 
Computation 

Economic  <20% cost  Significant 
relevance as is 
the main trigger 
for network 
upgrades. 

Cost reduction both in 
CAPEX (disaggregated 
networks) and OPEX 
(automation). 

Offline 
measurement 
based on the 
multi-layer 
topology 

Resource 
efficiency  

> 50% Traffic 
optimization. 

Measurement of the 
resources needed to serve 
a given traffic request 
with and without using 
integrated resource 
orchestration. 

Offline 
measurement 
based on the 
multi-layer 
topology 

5.5. Workflows and Current Deployment 

Several workflows, including specific aspects of the proposed scenario, are presented in this section. 
These workflows and current deployments include: zero-touch device automation, L3VPN service 
management and integration with ETSI OpenSourceMANO, Slice grouping and End-to-End slice 
provisioning with SLA, Service restoration with P4 devices, and Energy-efficient Path Computation. 

5.5.1. Zero-touch Device Automation 

The automation component implements several Event-Condition-Action (ECA) loops defining the 
automation procedures in the network. These control loops deal with automation tasks such as 
bootstrapping new devices, configuring interfaces and forwarding tables, etc. They are triggered by 
relevant events (e.g., the addition of a device), when specific conditions are met (e.g., not configured), 
and they apply a set of actions (e.g., bootstrap the device) in response to these events. 

The zero-touch device bootstrapping and monitoring workflow (Figure 26) is triggered by adding a 
new device in the TeraFlowSDN, for instance, through the WebUI. 

The WebUI adds the new device through the SBI component, which triggers a connection to the 
physical device and the retrieval and storage of its current inventory and configuration in the Context 
database. 

Such action triggers the distribution of a “Device Created”. 
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When Automation receives the event, it retrieves the information and configuration of the new device 
from Context (see for reference Figure 27). If the device is not configured, it is bootstrapped by 
performing the following actions:  

1. Retrieving from SBI the initial configuration template the driver defines for this device;  
2. Populates the template with the appropriate values;  
3. Configures the device through SBI, and;  
4. Updates in Context database the configuration and new state of the device. 

The update on the device triggers the distribution of a “Device Updated” event. 

 

When Monitoring receives this event, if the device is enabled but not being monitored, the former 
creates a set of KPIs for this device and starts monitoring them through the SBI component (Figure 
28). 

 

Figure 26. Scenario 1 workflow: Adding a device 
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Figure 27. Scenario 1 workflow: Device bootstrap 
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At this point, the samples coming periodically from the device are issued to the Monitoring 
component, which stores and makes them available for the other components (e.g., Grafana, Figure 
29). 

 

5.5.2. L2/L3VPN Service Management and Integration with ETSI OpenSource 
MANO 

The architecture used for this workflow is depicted in Figure 30. It shows two geographically-distant 
Data Centers (acting as Virtual Infrastructure Manager - VIM) that must be interconnected through a 
transport network slice. Each DC has network connectivity access through Customer Edge (CE) 
equipment connected to Provider Edge (PE) equipment, each located at a network operator's Point of 
Presence (PoP).  

 

Figure 28. Scenario 1 workflow: Activate Device Monitoring 
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Figure 29. Scenario 1 workflow: Monitor Device Ports 
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For instance, DC1 has its CE connected to  data net,  as well as DC2. 

In this scenario, a transport network slice is deployed over a network connectivity service.  

 

 

Figure 31 shows the complete provisioning of a Network Service (NS) through multiple VIMs. To this 
end, multiple VIMs are requested to deploy the allocated Virtual Network Functions (VNFs). Later, the 
point-to-point Service management workflow is triggered when OSM requests creating a new VPN 
service. Such a request has two phases. First, a new empty service is created to obtain a service 
identifier. Second, the endpoints are added to the service. When NBI receives the service creation 
request, it forwards the request to Service, which completes the missing required fields with default 
values, creates the service in the Context database, and returns the service identifier to OSM. 

When NBI receives the request to add the endpoints to the service, it issues a service update request 
towards Service that identifies the devices owning the endpoints to be connected, identifies the device 
drivers they support, and chooses the appropriate service handler for the service. 

This workflow first chooses and instantiates the Layer 3 Network Model (L3NM) service handler to 
configure an L3 VPN using Netconf/OpenConfig. Then it forwards the service request to that service 
handler. Next, the service handler creates the configuration rules for each involved device and 
configures them through SBI. Finally, it returns a confirmation to OSM.  

 

Figure 30. Integration of NFV-O and Transport SDN Controller 
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The IETF L2VPN YANG data model for Service Delivery [RFC8466] enables to describe the transport 
network slices required by an OSS/BSS or an NFV orchestrator. An SDN controller can then consume 
the requests to provision the transport network connectivity services, as shown in Figure 32. 

 

5.5.3. Slice Grouping and End to End Slice Provisioning with SLA 

This workflow focuses on validating the proposed Network Slice grouping described in D3.2.  As a 
reminder, we define a slice group as an entity consisting of one or multiple slices with a unique group 
identifier. One slice belongs to one and only one slice group. Slice grouping requires a mechanism to 
map a slice into its slice group, also known as a slice template or slice blueprint. From our transport 
network perspective, slice grouping can be based on mapping slice SLA requirements to the existing 

 

Figure 31. Scenario 1 workflow: NS Provisioning 

 

Figure 32. Example of ietf-l2vpn-svc:site-network-access 
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set of slice groups. Thus, slice grouping introduces the need for a clustering algorithm to find service 
optimization while preserving the slice SLA.  

Figure 33 shows the proposed architecture to evaluate Slice Grouping and End to End Slice 
Provisioning with SLA using hierarchical orchestration/control where the TeraFlowSDN orchestrator 
interacts and coordinates the underlying dedicated domain SDN controllers, namely: IP TeraFlowSDN 
controller, Microwave (MW) SDN controller, IPM, and Optical Lines System (OLS). Each domain SDN 
controller configures a particular network technology. 

 

 

The workflow depicted in Figure 34 provides slice clustering based on slice requests that demand 
randomly distributed service availability and allocated bandwidth. Step 1 shows the request for the 
transport network sli*ce, received from the NorthBound Interface (NBI) via a RESTconf interface. The 
request is then translated/mapped into the TeraFlowSDN protocol buffer and sent to the Slice 
component for processing (Step 2). Finally, in Step 3, the slice grouping algorithm is triggered, detailed 
below in Section 5.6.3. The outcome of the slice grouping algorithm can result in two options:  

i) the slice request is mapped to an existing slice group, or; 
ii) a new slice group might be required.  

In the first case, the slice resources are related to a current/existing slice group. Then, using steps 8 
and 9, Operation Support System (OSS) and Business Support System (BSS) are notified with the 
allocated resources.  

In case new resources need to be allocated, the Slice component requests the necessary connectivity 
services to the Service component. The resources are then allocated following the necessary SDN 
orchestration mechanisms (steps 4-7). The underlying resource orchestration applied by TeraFlowSDN 
has been previously demonstrated, for IP over DWDM networks, as in the previous section.  

 

Figure 33. Transport Network Slice grouping on a hierarchical multi-layer SDN scenario 
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5.5.4. Service Restoration with P4 Devices 

This section presents the service restoration workflow assuming a given topology with several P4 
devices. The key component to realize service restoration is the Policy component of the TeraFlowSDN 
controller, which offers an intuitive way to create event-driven SLAs by exploiting the alarm subsystem 
of the Monitoring component. 

Device and link provisioning stage: The workflow shown in Figure 35 begins from an external OSS/BSS 
system, which uses the WebUI to add devices and links, thus establishing a topology of connected (P4) 
devices. These two initial parts of the workflow are highlighted as “Device provisioning” and “Link 
provisioning” in Figure 35. 

Service creation stage: Then, the OSS/BSS requests the TeraFlowSDN NBI to create a new service on 
top of the established network, following the “Service creation” part of the workflow. The NBI passes 
the requests to the Service component, which creates a new service and stores it to the Context 
component. A relevant event is generated after the successful service creation, which notifies the 
WebUI and the OSS/BSS accordingly. 

Policy creation stage: After the service is established, a new service-level policy can be applied to the 
network through the Policy component. This allows the OSS/BSS to map a service with an SLA. 
Specifically, the “policy creation” stage begins with a “policy add” call from the OSS/BSS to the Policy 
component, as shown in Figure 35. This call provides the Policy component with a Policy rule object 
which contains several internal objects denoting the service associated with the policy rule, a set of 
conditions for this rule to apply, and a set of actions to be enforced once the condition(s) is(are) met. 
First, the Policy component parses the received policy and validates that the policy rule object refers 
to a valid service ID and a valid set of KPIs and actions. Next, the input policy rule conditions are parsed 

 

Figure 34. Slice grouping sequence diagram 
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to identify which KPIs need to be requested from the Monitoring component. This entails the (i) 
creation of a KPI in case it does not already exist, (ii) monitoring of the KPI at the data plane, (iii) setting 
a KPI alarm which registers the Policy component to events when the KPI exceeds some range of values 
or specific threshold, and (iv) getting a stream of alarm responses when the KPI condition will be met. 
Once all these RPCs succeed, the policy rule transitions to the PROVISIONED state and the WebUI and 
OSS/BSS are notified via an event. 

Potential SLA violation stage: At a later stage, an asynchronous event will be generated by the 
Monitoring component, when a KPI meets the associated policy condition(s). Upon receiving a KPI 
alarm, the policy rule transitions to the ACTIVE state, as the Policy component is ready to apply the 
corresponding policy action(s). Therefore, to avoid violating the SLA, the OSS/BSS should specify 
appropriate policy conditions which will trigger service restoration before the KPI reaches the critical 
threshold/range. This way, service restoration could be triggered just in time. 
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Policy enforcement for service restoration stage: The last stage of the service restoration workflow 
is the one that applies the necessary policy action(s), when an alarm is received. First, the affected 
service is retrieved from the Context component, and its local configuration is updated by applying 
the list of policy actions. Then, to enforce the updates, the UpdateService RPC is called, which in turn 
results in Service component interactions, e.g., with (i) the Path Computation component (to compute 
a new path for the service) and (ii) the various underlying devices through the Device component. At 

 

Figure 35. Policy-driven service restoration on a P4-based topology 
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that point, the service is restored and the policy rule transitions to the ENFORCED state, which finally 
results in a relevant event being sent to the WebUI and the OSS/BSS. 

More details about the Policy component are provided in D3.2, where the design, interfaces, 
operational workflows, and evaluation benchmarks of this component are introduced. 

5.5.5. Energy-efficient Path Computation 

One of the objectives of the TeraFlow project is to attain a reduction of the consumed energy when 
deploying network services involving both cloud and networking resources. In this context, as tackled 
in WP4 T4.3 activities, it is planned to exploit the PathComp component of the TeraFlow SDN 
controller to execute an energy-efficient routing algorithm. In summary, upon receiving a new 
network connectivity service request, the PathComp component is queried to devise a route and 
selected network resources, reducing the overall consumed network power. An energy-consumption 
model needs to be defined to accomplish this macroscopic objective, which is detailed in D4.2. The 
model considers that devices and links forming the underlying network can be in different operational 
states: active, asleep, or de-activated. The operational status affects the power consumed by both the 
device and the linecards (hosting the links/ports). An analytical model is presented in D4.2, describing 
the consumption of both devices and links according to their operational state. Then, for a given 
network connectivity requests, the algorithm at PathComp can compute the instantaneous network 
consumed energy depending on the traffic being transported over all active links and devices. The 
target is that the devised energy-aware routing policy reduces the overall network energy 
consumption while minimizing network degradation performance (e.g., network resource utilization, 
network service blocking, etc.). These metrics are intended to be assessed in a dynamic network 
service scenario and reported in D5.3. 

Figure 36 depicts the basic workflow for processing any incoming network service request regardless 
of the adopted algorithm in the PathComp (whether energy-aware or not). Before triggering the path 
and resource selection algorithm, the PathComp needs to retrieve an updated view of the underlying 
transport network infrastructure, i.e., Context. To tackle the energy-efficient routing, specific device 
and link Context extensions need to be provided (please refer to D4.2 for the energy model description 
to complement the following information): 

• Extended device attributes to i) determine the operational status; ii) specify the power idle in 
Watts. For the sake of clarification, the device power idle is the energy consumed regardless 
of data traffic being switched/transported over the device. This power/energy is mainly 
caused by interactions with the TeraFlow SDN controller, fans, etc.; 

• Extended Link attributes to i) determine the operational status; ii) specify the energy/bit (i.e., 
J/bit). The links/ports are hosted in linecards equipped with memories for storing the packets, 
and a programmable look-up table (i.e., TCAM), etc. The consumption on the links/ports are 
proportional to the transported data rate.  

Once the path (e.g., devices and links) is selected by the PathComp, this is passed to the Service 
Component to coordinate the programmability of the chosen network resources carried out by the 
Device/s components. 
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Figure 36. Basic network Service Creation relying on the PathComp component output: route and resource selection 

Bearing the above in mind, the idea is to evaluate, over a single transport network domain, the 
performance of the proposed energy-aware routing with respect to a benchmark routing algorithm 
without energy-awareness. The network services will arrive and depart dynamically with 
heterogeneous network requirements in terms of bandwidth and maximum permitted latency.  

Different traffic loads will be used to obtain a more complete performance comparison. This will be 
done considering the average network power consumption and average bandwidth blocked ratio 
metrics. Other metric could be potentially considered such as average PathComp execution time, or 
average amount of used devices and links. 

5.6. Preliminary Performance Evaluation 

In this section, we present some preliminary results for the proposed scenario. Results are provided 
in tables, plots, diagrams, and screenshots. The final evaluation of the scenario will be performed 
during 2023 and documented in D5.3. 

5.6.1. Zero-touch Device Automation 

This workflow has been demonstrated in [OFC22]. To this end, the device automation workflow is 
triggered when a new device is introduced to TeraFlowSDN to configure it. Figure 37 shows a screen 
capture of the received information after a device automated configuration. 
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Figure 37 Screen capture of specific device information obtained after Device Automation 

Name Value Comment 
Device on-boarding time - This KPI will be analysed in D5.3 

5.6.2. L3VPN Service Management and Integration with ETSI OpenSource 
MANO 

This workflow has been demonstrated in [OFC22] and [ECOC22]. To this end, the experimental setup, 
illustrated in Figure 30, has been built on top of the CTTC's ADRENALINE Cloud Platform Testbed. 

 

Figure 38. OSM screen capture with provisioned NS instance 

The ETSI OpenSourceMANO (OSM) v10.0 (Figure 38) has been used as an NFV orchestrator to 
provision network services. At the same time, establishing the inter-DC connectivity through the WAN 
infrastructure is delegated to the TFS controller, which is used as a WAN Infrastructure Manager 
(WIM). 

The OSM orchestrator uses the IETF L2VPN WIM connector to interact with the TFS controller. 
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This OSM WIM connector has been extended to support the request for disjoint paths. The proposed 
extensions for the IETF L2VPN connector have been contributed to the OSM source code and will be 
detailed in [D6.4]. Details of the extensions are provided in Figure 39. 

On the TFS controller side, it uses its OpenConfig Device Driver to control the different IP routers and 
the TAPI Device Driver to control the optical core network, as previously demonstrated in [OFC22]. 
The VIMs are managed through OpenStack, controlled through the OpenStack REST-API by the OSM 
orchestrator. 

 

Figure 39. IETF L2VPN Extensions for end-to-end disjoint paths 

The preliminary results of this scenario include a WireShark capture detailing the interactions between 
the OSM orchestrator and the TFS controller in Figure 40. 

The interaction follows OpenConfig L2VPN provisioning as described in D3.2. It starts with a query of 
services available, followed by creating the VPN service handler. Then, each site network access is 
added to the VPN service handler, and finally, the status of the VPN service is verified. 

 

Figure 40. OSM-TFS Wireshark capture to deploy end-to-end network service 

The live validation has showcased the entire provisioning and configuration procedure from OSM, the 
changes and operations performed by the TFS SDN controller, and the programming of the underlying 
network equipment in Telefónica premises. D5.3 will follow with the performance evaluation of the 
significant KPIs. 

Name Value Comment 
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Service setup delay - This KPI will be analysed in D5.3 
Data rate - This KPI will be analysed in D5.3 
Latency - This KPI will be analysed in D5.3 

5.6.3. Slice Grouping and End to End Slice Provisioning with SLA 

The results of this proposed use case on slice grouping have been submitted and will be demonstrated 
at [OFC23], including hierarchical control of the underlying network technologies. 

Figure 41 shows two network slice templates considered to allocate the requested transport network 
slices. The first one, referred to as gold, offers a service availability of 90% and a guaranteed bandwidth 
of 10 Gb/s. The second one, named platinum, provides a service availability of 99% with an allocated 
bandwidth of 100Gb/s. 

 

 

Figure 41. Example of slice templates 

Figure 42 provides an example of a slice request. The requested slice includes a service-id along with 
a requested Service Level Objective (SLO) and Service Level Expectation (SLE) policy. By doing so, 
several metrics can be included, for example, SLO “one-way minimum guaranteed bandwidth” and 
SLO “guaranteed availability”. These are the two metrics considered in this work, but the network slice 
definition is flexible enough to support multiple SLO/SLE requirements. 

 

{ 
         “id": “slice-template-gold", 
         "service-slo-sle-policy":  
         { 
           "metric-bounds":  
           { 
               "metric-bound":  
                [ 
                { 
                   "metric-type": "service-slo-one-way-bandwidth", 
                   "metric-unit": "mbps" 
                   "bound": "100" 
                }, 
                { 
                   "metric-type": "service-slo-availability", 
                   "bound": "99.9%" 
                } 
               ] 
          } 
       } 
} 

{ 
         “id": “slice-template-platinum", 
         "service-slo-sle-policy":  
         { 
           "metric-bounds":  
           { 
               "metric-bound":  
                [ 
                { 
                   "metric-type": "service-slo-one-way-
bandwidth", 
                   "metric-unit": "mbps" 
                   "bound": "1000" 
                }, 
                { 
                   "metric-type": "service-slo-availability", 
                   "bound": "99.999%" 
                } 
               ] 
          } 
       } 
} 
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We use the K-Means clustering algorithm to support the slice grouping based on the requested 
SLO/SLE. This is an unsupervised machine learning algorithm, that groups data into a pre-determined 
(i.e., K) number of clusters. This number is defined by the user, and the K-Means algorithm groups the 
data into that specific number of clusters. This is the reason why a technique is needed to determine 
the optimal number of clusters for every specific case.  

Figure 43 shows the application of the Elbow method to select the number of clusters on the received 
requests, on the x axis we have the selected number of cluster and on y axis we have the distance cost 
of the requests to the allocated clusters. We have run K-means algorithm for clustering the requests 
based on requested availability and bandwidth for a number of clusters (K value) ranging from 1 to 
10. We have computed the sum of the squared distances from each point to its assigned center for 
each result. These plotted values allow us to determine the best value of K (i.e., 2 clusters in the 
proposed demonstration). The elbow method shows us that 2 is a possible good candidate for the 
number of clusters.  

 

Figure 43. Elbow method applied to slice grouping 

 

Figure 42. Applying slice grouping on new slice request depending on previously deployed slices 
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Finally, Figure 44 plots the received transport slice requests (each blue dot refers to a single request 
in terms of availability and bandwidth) and the clusters to which they are related (in red). 

 

Now that the slice grouping approach has been validated, in D5.3 the necessary KPIs will be evaluated. 

Name Value Comment 
Slice setup delay - This KPI will be analysed in D5.3 
Economic - This KPI will be analysed in D5.3 
Resource 
efficiency 

- This KPI will be analysed in D5.3 

5.6.4. Service Restoration with P4 devices 

The results are not available yet. However, the plan is to present these measurements in D5.3. 

Name Value Comment 
 End-to-end 
service latency 

5ms 
(indicative) 

The actual value depends on the topology setup. For example, 
hardware switches are faster than software switches, while 
software switches perform better on better Commercial off-
the-Shelf (COTS) hardware. Therefore, this value may vary.  
 
The plan for this scenario is to use a software-based P4 
topology atop Mininet, measure end-to-end service latency, 
and trigger service restoration using an appropriate threshold. 

 

5.6.5. Energy-Efficient Path Computation 

The results are not yet available. The plan is to present these measurements in D5.3.  

 

Figure 44. Allocated network slices and their slice groups 
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Name Value Comment 
Energy < 30% The target is to attain a network power reduction around 

30% upon adopting a energy-aware routing algorithm for 
serving the dynamic connectivity service requests. 
Different traffic loads and emulated network scenario will 
be considered for the final performance evaluation 
aiming at approaching a power reduction up to 30%.  

 

As mentioned above in Section 5.5.5, the execution of the energy-aware routing at the PathComp 
requires that the Context device and link attributes are extended to provide specific power-based 
information (i.e., operational status, device power idle, link consumed energy/bit). Figure 45 shows 
the REST API POST message sent by the PathComp Front-End to the Back-End to request the execution 
of the Energy-Aware Routing (EAR) algorithm. The serviceList contents also carry the network 
endpoints, the constraints to be met, etc. The Context information is divided into the DeviceList and 
the linkList. In the former, each device is specified its operational status and the nominal value of the 
idle. For the links, it is described the operational status and the J/bit value for every individual link. 
Consequently, with this information, the PathComp component can trigger the EAR algorithm to 
accommodate a service while reducing network power consumption. 

 

Figure 45. PathComp: REST API requesting a network service with energy-based Context Information 

 

Per device power-based 
information: status and power 
idle

Per link energy-based 
information: status and energy 
per bit

Path Computation Algorithm to be executed: 
EAR (Energy-Aware Routing)



D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 64 of 112 

5.7. Pending Work and Summary 

The Metrics Collection Framework has allowed us to start the recollection of KPIs, but until now, we 
are fixing several integration issues that preclude us from providing accurate results. To this end, we 
are fixing the reported issues, and the measurements will be provided in D5.3. Table 3 summarizes 
this status. 

Table 3. Target and achieved KPIs and KVIs for Scenario 1 

KPI Target Validation results 
Device on-boarding time < 50ms This KPI will be completed in D5.3. 
Service setup delay < 50ms This KPI will be completed in D5.3. 
Slice setup delay < 50ms This KPI will be completed in D5.3. 
Data rate  > 50% This KPI will be completed in D5.3. 
Latency < 30% This KPI will be completed in D5.3. 
Energy < 30% This KPI will be completed in D5.3. 
Economic < 20% cost  This KPI will be completed in D5.3. 
Resource efficiency > 50% This KPI will be completed in D5.3. 
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6. Scenario 2: Inter-domain 
This section presents the second scenario studied in TeraFlow. It focuses on the inter-domain 
deployment of transport network slices. It can be considered an operator-led scenario, as it focuses 
on the evolution of transport networks through peer orchestration of multiple domains. It also 
considers scalability and traceability. Firstly, we introduce the scenario. Secondly, we present its 
alignment with TeraFlow architecture. Thirdly, we present the scenario setup in the laboratories. 
Fourthly, we present the relevant metrics and KPIs for the scenario. Fifthly, we introduce the designed 
workflow and the current deployments. Finally, a preliminary performance evaluation is presented 
when available. Finally, pending work and summary is discussed. 

6.1. Scenario Introduction 

Several challenges need to be overcome when looking at the deployment of Cooperative, Connected 
and Automated Mobility (CCAM) services over a distributed edge and cloud infrastructure.  

First, we need unified computing, storage, and networking resources management. In this respect, 
the TeraFlowSDN Controller, together with an NFV orchestrator (e.g., OSM), will be able to deploy 
integrated services (i.e., to provision cloud and edge computing resources, and connectivity between 
them) and optimize the cloud and network resources (i.e., packet/optical) concurrently.  

Second, we must address multi-domain networking, where resources must be assigned in each 
domain and combined for an end-to-end service. In this respect, the TeraFlowSDN Controller will 
deploy several per-domain slice instances and compose them to create end-to-end transport network 
slices.  

Finally, the different domains involved might belong to different network operators. This calls for 
methods enabling interdomain slicing between different operators while keeping internal network 
details private. In this respect, the TeraFlowSDN Controller will be equipped with a Distributed Ledger 
Technology (DLT) component, based on blockchain technologies, to preserve the confidentiality of the 
data exchanged between the per-domain TeraFlowSDN instances, if needed. 
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Figure 46 provides an example of the envisioned CCAM scenario. At the infrastructure layer, the 
scenario comprises several packet and optical transport networks for the metro and the core 
segments providing connectivity to the distributed cloud and edge computing infrastructure. CCAM 
services can be deployed in micro-DCs at the edge nodes (e.g., cell sites, street cabinets, lampposts), 
small-DCs (e.g., in a central office) for low/moderate-computation capacity and low response time, 
and core-DCs in the core network for high-computational capacity and moderate response time.  

Transport and cloud infrastructures are administratively partitioned into different domains, each 
controlled by a TeraFlowSDN Controller instance. In addition to selected uplink-heavy and latency-
sensitive scenarios, the intention is to focus on Over-the-Air (OTA) software updates, which are 
software improvements that a car company sends wirelessly to vehicles. These OTA updates need to 
reach a moving target; thus, we provide an inter-domain scenario for moving connectivity services 
based on the position of the network elements. Testing and experimentation will be necessary to 
address the role of the Transport Network Slice and its endpoints regarding the interaction with 
adjacent access and service edge (SDN) control domains in this inter-domain scenario. 

6.2. Alignment with TeraFlow Architecture 

Figure 47 shows the single domain instantiation (configuration and TFS templates)  of the 
TeraFlowSDN controller. It can be observed that interdomain connectivity will be provided either with 
DLT or inter-domain components, between multiple instances of the TFS controller. 

 

Figure 46. Scenario 2 high-level architecture 
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This scenario involves the following components: 

• NBI 
• Load Balancing 
• AutoScaling 
• Self-healing 
• Inter-domain 
• Web UI 
• Slice 
• DLT 
• Policy 
• Monitoring 
• Service 
• Context 
• Path Computation 
• SBI 

Use cases described in D2.2 of interest for testing the validity of these components and apps are: 

• Operate TeraFlow at Scale 
• Host tracking 
• Flow Descriptors for IoT Services  
• Using DLT for Inter-Domain Service Provisioning and SLA Violation Detection 
• E2E Routing and SLA Violation Detection 

 

Figure 47. Scenario 2 TeraFlow instantiation in a single domain 
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6.3. Scenario Setup 

The testbed envisioned to test the use cases belonging to this scenario involves the following partners 
and facilities: 

• CTTC contributes with the ADRENALINE testbed® providing an SDN/NFV packet/optical 
transport network and edge/core cloud infrastructure for 5G and IoT services.  

To validate this scenario, we will take advantage of the TAPI-enabled OLS controller and the underlying 
optical transport network infrastructure. Moreover, we have two whiteboxes cell-site gateways 
(CSGW) [EDG22] with IP Infusion OcNOS available and controlled using TeraFlowSDN (Figure 48). 

 

Figure 48 Interconnected CSWGs at CTTC Testbed 

• NEC contributes with the blockchain infrastructure and runtime providing the means to 
interconnect different instances of the TeraFlowSDN for the different domains. More details 
are provided in D4.2 [D42]. 

• Telenor Telenor’s testbed includes one server (HPE Proliant DL360 Gen10) and two Whitebox 
switches (Edge-Core AS7316-26XB), which are interconnected by the FS S5860-20SQ switch, 
as shown in Figure 49.  

The physical server will deploy the TeraFlow SDN (TFS) and emulated domains/devices over Microk8s. 
In addition, TFS will be responsible for configuring the Whitebox switches, which runs the ADVA-NOS 
(Ensemble Activator). 

 

Figure 49. Telenor's testbed 
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The plan is to run experiments with one/multiple domains using emulated devices. Later, we hope to 
be able to configure the Whitebox switches and run experiments using physical devices. 

• ADVA contributes the Ensemble Activator for whitebox devices in the Telefonica Future Lab 
and for Telenor, offering IP routing capabilities with OpenConfig APIs. 

The different partner premises will be connected utilizing secure VPN tunnels forming a distributed 
testbed where the inter-domain scenario will be assessed. The setup will comprise two domains 
controlled by two different instances of the TeraFlowSDN Controller. 

6.4. Scenario Metrics 

This section describes significant metrics to be considered as scenario Key Performance Indicators 
(KPIs) to be reported as final achievements of the project. To this end, in D5.2, we have identified the 
necessary metrics and provided preliminary results when available. D5.3 will provide the complete 
measurements indicated in Table 4. 

Table 4. KPIs and KVIs for the Scenario 2 

Name Description Relevance Definition of 
measurement 

Component 

Service setup 
delay 

< 50ms Very high. 
Necessary base 
time to deploy 
new services. 

Required time to setup a 
new service, from control 
plane perspective only. 
Does not consider the 
necessary time to 
communicate with device. 

Service 

Multi-tenancy > 100 
tenants 

Scalability Stress the slice/service 
management system and 
measure allocated slices  

Slice/Service 

Trust 100% 
Secured 
Conn. 

Provide DLT for 
traceability 

Secured deployment of 
services through DLT 

DLT 

Privacy 0% Related to provide 
security and trust 
in multi-
stakeholder 
scenario. 

Percentage of exposure of 
physical topological 
details 

Topology, 
DLT 

DLT transaction 
delay 

10s Have a vision of 
which transactions 
can be recorded in 
DLT 

Measurement of the delay 
introduced by the usage 
of DLT instead of other 
inter-domain 
communication 
mechanisms 

DLT 

Positioning 100% 
vehicles 

Consider location 
in Service as a 
constraint 

Deployment of a position-
based technique for all 
vehicles  

Service 

Economic  < 20% cost  Reduction of OPEX 
costs 

Reduction of Opex 
through automatic 
interconnection in 

Off-line 
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comparison with manual 
intervention. 

 

6.5. Workflows and Current Deployment 

Several workflows, including specific aspects of the proposed scenario, are presented in this section. 
These workflows and current deployments include inter-domain provisioning using transport network 
slices, distributed ledger technologies, service/slice request scalability, and location-aware service 
updates. 

6.5.1. Inter-domain Provisioning using Transport Network Slices with SLA 

Figure 50 displays the sequence diagram regarding service preparation and activation. The workflow 
is initiated by a customer which can be any entity consuming TeraFlow services such as the OSS or 
other management domains including end-to-end service management. The slice component handles 
the customer’s request, which forwards the end-to-end transport slice request to the inter-domain 
component. The inter-domain component, in turn, decomposes the end-to-end transport slice into 
per-domain sub-slices and requests their creation in the respective TeraFlow domains through the 
corresponding inter-domain components. This inter-domain communication is performed securely by 
mutual authentication before exchanging sub-slice requests.  

If an appropriate sub-slice can be provided, the remote inter-domain component informs the 
requesting inter-domain component, and the latter can order the slice. Otherwise, a corresponding 
slice is created alongside its insertion into the catalogue and establishment of connectivity, triggering 
interaction with slice and service components, respectively.  

Finally, the same sub-slice creation and connection establishment procedure is performed at the local 
TeraFlow domain (domain #1 in the figure). 

 

 

Figure 50. Scenario 2 workflow: Inter-domain E2E slice provisioning 
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6.5.2. Distributed Ledger Technologies 

Figure 51 illustrates two architectures based on the options that Blockchain may offer using each 
transport domain SDN controller as the peer participating in the Blockchain network. 

 

The first model called "Full PDL", uses Blockchain as the key element in any interaction among the 
transport SDN controllers. In this model, Blockchain takes care of storing and distributing the 
information among the peers, moreover, the use of SCs may remove easy and repetitive tasks from 
the transport SDN controller solutions, making the Blockchain technology an even more integrated 
element within the inter-domain actions. In both proposed approaches, all the transport controllers 
are part of a Permissioned Distributed Ledger (PDL), as this avoids any non-desired entity may join the 
whole network and becoming a threat without the peer's knowledge. More information is provided 
in D4.2. 

While having all the information within the Blockchain brings positive advantages in terms of security 
and immutability, it is not the best solution regarding latency. As presented in D4.1, this model needs 
to be carefully implemented, taking into account possible issues in terms of latency. This is because 
the validation and acceptance of new/updated information within the Blockchain may take a 
minimum of some seconds, which is a high delay compared to certain SDN actions that can be done 
in less than a second. 

A second model called “Complementary PDL” was designed to solve the previous issue. In this case, 
Blockchain technology is used to store and distribute specific information samples, leaving the 
communication among peers to other existing communication protocols. In this model, Blockchain 
acts as a database for specific sets of information. Two possible use cases for this second model are:  

a) the topology export and;  
b) elements traceability.  

In the first use case and as similarly done in D4.1, Blockchain is used only to store and distribute the 
static information related to the SDN topology using abstraction models. In the second use case, as 
there is no central authority on top of all domains, the use of Blockchain focuses on the immutability 
and transparency offered in order to check, if necessary, the owner of used resources or the 
responsibility of a committed element (i.e., Service Level Agreement). 

Both models should not be considered as opposites but as two possibilities that may be implemented 
depending on the specific needs of a scenario.  

 

Figure 51. PDL proposed architectures, Full PDL (left); Complementary PDL (right) 
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For this reason, the transport SDN controllers should be adaptive enough to work with both models. 
In addition, TeraFlowSDN architecture based on micro-services allows the quick prototyping of the 
proposed use cases. 

The main module that gives the adaptation capability to this SDN controller is the “DLT” component. 
Due to the cloud-native nature of the architecture, any module can interact with the others. So the 
two previous use cases (i.e., topology export and traceability) can be easily configured as the workflow 
to interact in the Blockchain is always the same (Figure 52). First, each DLT domain has to subscribe to 
the Peer (i.e., Blockchain system) to accomplish the "initialization" phase. Then, for each new data to 
record (i.e., Record{X}), the module owning the outcome (e.g., Inter-domain or Context) sends it to 
the DLT, which triggers the transaction with the "RecordtoDlt" and "DltRecordStatus" requests using 
the Peer. Then, the Peers (i.e., Blockchain) synchronize the data, and after it, an event is generated to 
distribute the record identifier (record_id) among all domains. Finally, the DLT of each domain obtains 
the Record{X} information and passes it to the corresponding module (Context or Inter-domain). 

 

6.5.3. Service/Slice Request Scalability 

This workflow shows the capability of TeraFlowSDN to handle a large amount of requests, verifying its 
scalability. To this end, we will perform a large number of requests, also considering a high load of 
requests per second in order to evaluate how well TeraFlowSDN performs. TeraFlowSDN uses load 
balancing and Horizontal Pod Autoscaler (HPA), as used inds D3.2 to evaluate context, but to deploy 
multiple replicas of several components, such as Service, Slice and Context, in order to serve the 
requests. Scalability will be measured in terms of total number of requests handled, as well as 
demonstrated service and slice creation per second. Figure 53 provides the necessary workflow to 
evaluate Service scalability. 

 

Figure 52. Scenario 2 workflow: Sequence diagram for DLT use 
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6.5.4. Location-aware Service Updates 

The workflow in Figure 54 proposes the establishment of a connectivity service that includes 
information about its location, instead of the endpoints. Location and endpoints shall be matched at 
TeraFlow Service Handler in order to best provision the necessary endpoints depending on location. 
Once the service is provisioned, an update of the service is provided including new location. New 
endpoints shall be computed, and service updated following a break-before-make strategy. 

 

Figure 53. Scenario 2 workflow: Service Request Scalability 
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6.6. Preliminary Performance Evaluation 

In this section, we describe the preliminary results for the proposed scenario. Results are provided in 
form of tables, plots, diagrams, and screenshots. Final evaluation of the scenario will be performed 
during 2023 and documented in D5.3. 

6.6.1. Inter-domain Provisioning using Transport Network Slices with SLA 

This workflow has been validated and demonstrated in [OECC22]. The design of the inter-domain 
component is based on three use cases:  

a) service preparation and activation, 
b) service modification, and  
c) synchronization of service monitoring data between domains.  

In order to validate the proposed workflow in previous Section 6.5.1, Figure 55 shows the 
authentication sequence between two IDC from different TeraFlowSDN controllers. The permissioned 
TeraFlowSDN peer information is stored in the configuration file. 

 

Figure 54. Scenario 2 workflow: Location-aware Service updates 
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Figure 55. Wireshark capture of Authenticate sequence 

Once TeraFowSDN controllers are authenticated, an E2E Transport Network Slice request can be 
triggered (for example from OpenSourceMANO). It can be observed as they are requested from inter-
domain TeraFlowSDN controller 1 to controller 2. Figure 56 provides the wireshark traces between 
multiple instances of TeraFlowSDN controllers, and highlights the inter-domain provisioning. 

 

Figure 56. Inter-domain End-to-End Transport Network Slice deployment 

After scenario validation, in D5.3 we will analize the following Metrics for this workflow. 

Name Value Comment 
Service setup delay - This KPI will be analysed in D5.3 
Economic - This KPI will be analysed in D5.3 

 

6.6.2. Distributed Ledger Technologies 

This workflow has been validated and demonstrated in [NFV22]. From the outside, it might seem 
similar to the previously presented workflow, but in this case, we are using DLT component to interact 
between multiple TFS instances.  

In Section 6.5.2, we have detailed the workflow for establishing an inter-domain transport network 
slice. In our validation, we have provisioned an inter-domain Transport Network Slice. Figure 57 details 
a Wireshark capture with the externally-visible messages involved in this test, and taken from D4.2. It 
is worth noting that the DLT Connector and DLT Gateway run within the same pod and Kubernetes is 
not exposing these packets, so Wireshark cannot capture them. In that figure, an arbitrary 
TeraFlowSDN component issues a request to add a device into the Context component (messages 
2009 and 2015). Then, that component triggers the recording of that device into the Blockchain 
(message 2030). To do that, the arbitrary component issues a “RecordDevice” request to the DLT 
component, that is received by the DLT Connector. The DLT connector then retrieves the device details 
from the Context component (not shown since it is an internal Kubernetes communication) and 
forwards the request to the DLT Gateway that triggers the upload into the Blockchain hosted by NEC 
in Germany (messages 2056-2885) Upon the operation is done, the DLT Gateway replies to the DLT 
Connector and the later replies to the requesting component (message 2888). 
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Figure 57. Transport Network topology for DLT evaluation 

Figure 58 shows the Cumulative distribution function (CDF) of the DLT latency for the generated 100 
requests. We observe that the delay takes around 10 seconds. The main contribution of this delay is 
due to the cost of uploading the record into the blockchain due to the consensus and ordering 
constraints that need to be fulfilled.  

 

Figure 58. CDF for the DLT Delay 

Figure 59 shows the complete information for an inter-domain transport network slice as shown in 
TeraFlowSDN User Interface. It may be observed that multiple sub-slices have been required.  
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Figure 59. Inter-domain Transport Network Slice that includes sub-slices 

 

Figure 60 provides the details of the local (from the initial domain perspective) requested sub-slice. 

 

Figure 60. Sub-slice information details 

 

After scenario validation, in D5.3 we will analize the following Metrics for this workflow. 

Name Value Comment 
Trust/privacy - This KPI will be analysed in D5.3 
DLT transaction delay 10s This KPI will be further analysed in D5.3 
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6.6.3. Service/Slice Request Scalability 

Only context evaluation has been provided with regard to scalability in D3.2. We aim to evaluate the 
KPI in D5.3, following the approach described in the related workflow. 

Name Value Comment 
Multi-tenancy  >100 tenants This KPI will be analysed in D5.3 

6.6.4. Location-aware Service Updates 

This use case has not been validated and tested. Details of the use case and its evaluation will be 
provided in D5.3. 

Name Value Comment 
Positioning - This KPI will be analysed in D5.3 

6.7. Pending Work and Summary 

The Metrics Collection Framework has allowed us to start the recollection of KPIs, but until now, we 
are fixing several integration issues that preclude us from providing accurate results. To this end, we 
are fixing the reported issues, and the measurements will be provided in D5.3. and Table 5 summarizes 
their status. 

Table 5. Target and achieved KPIs and KVIs for Scenario 2 

KPI Target Validation results 
Multi-tenancy > 100 tenants This KPI will be completed in D5.3. 
Trust/privacy 100% secured connections This KPI will be completed in D5.3. 
DLT transaction delay 10s This KPI will be completed in D5.3. 
Positioning 100% vehicles This KPI will be completed in D5.3. 
Social < 20% cost This KPI will be completed in D5.3. 
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7. Scenario 3: Cybersecurity 
This section presents the third scenario in TeraFlow, focusing on cybersecurity. It can be considered 
an operator-led scenario, as it focuses on analysing and mitigating security attacks on multiple 
network layers, spanning data and control planes. Firstly, we introduce the scenario. Secondly, we 
present its alignment with the TeraFlow architecture. Thirdly, we present the scenario setup in the 
laboratories. Fourthly, we present the metrics and KPIs that are relevant for the scenario. Fifthly, we 
introduce the designed workflows and the current deployments. Sixthly, preliminary performance 
evaluation numbers are presented, where available. Finally, pending work and summary are provided. 

7.1. Scenario Introduction 

Nowadays, when an operator moves towards an automated environment, security becomes a key 
feature since network operations are done by software components operating without human 
intervention or oversight. Moreover, the pervasive softwarisation of network and infrastructure 
components is further increasing their attack surface. Indeed, security must undergo a similar 
technological evolution to enable the resilience of SDN controllers, the automation of security policies 
over the network, the use of Machine Learning (ML) to detect and identify attacks, the utilization of 
DLT to ensure configuration and forensic capacity, and the deployment of NFV security functions.  

In this context, the same tools can be used for attacks, such as malicious VNFs, or weaponized Artificial 
Intelligence (AI). Therefore, it is crucial to provide a combination of innovative solutions that are 
scalable in a production environment and resilient to sophisticated attacks in a common framework 
that integrates different security technologies to detect, identify, and mitigate both traditional and 
new generations of attacks across different technology domains, e.g., optical and IP layers. 

 

Figure 61 depicts an example of the envisioned Cybersecurity scenario and of the threats in the 
context of an automated network. Attacks may target the IP or the optical layers at the data plane. 
Attacks exploiting the IP layer traverse or target devices located in the access segment (e.g., edge DCs), 
the core network, or core DCs. In this case, per-packet inspection is necessary to detect and identify 
attacks, enabling their mitigation. However, inspecting packets is a demanding operation. Executing 
this process at a central packet inspector instance is impractical. Packets must be transported from 
the remote site, e.g., Central Office (CO) or DC, to a central location, incurring significant traffic and 
computing loads. Therefore, designing distributed packet inspection becomes necessary for efficient 
and effective attack detection at the IP layer. Moreover, it is necessary to coordinate the distributed 

 

Figure 61. Cybersecurity scenario and threats 
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packet inspectors, which means that a central entity is still necessary, but only for consolidating and 
coordinating the network's security status. 

Attacks at the data plane can also exploit the optical layer. In this case, malicious access to premises 
hosting optical equipment may lead to disruption of the traffic of entire fibre links, to the perturbation 
of the quality of the transmission of certain portions of the spectrum, or even to unwarranted access 
to the data being transmitted. Therefore, designing accurate, fast, and scalable optical attack 
detection, identification, and mitigation mechanisms becomes critical to avoid or minimize data losses 
and breaches. We focus on the scalable attack detection problem in this deliverable, while mitigation 
aspects will be tackled in the next deliverable. 

At the control plane, the SDN controller and the ML models that support its operations may also be 
the target of malicious attacks. ML models can be induced to report false errors and make 
mispredictions by carefully tailoring the data fed to the model (i.e., a process known as adversarial 
attacks). The control plane must ensure that the ML models are not exposed or vulnerable to these 
attacks. To this end, Generative Adversarial Networks are combined with ML-based models using a 
Black-Box approach to generate variations of attacks that help in training ML models immune to such 
adversarial attacks.  

7.2. Alignment with TeraFlow Architecture 

The Cybersecurity scenario will validate several components, use cases, NBI/SBI interfaces, and 
protocols. Three components compose the Cybersecurity assessment within TeraFlowSDN: 
Centralized Attack Detector (CAD), attack inference, and attack mitigator. The main components 
involved in this scenario are highlighted in Figure 62. They are deployed in different containers to take 
advantage of the scalability and reliability features of cloud-native applications. The Cybersecurity 
components integrate with TeraFlowSDN core components in several ways, as illustrated in Figure 62. 
The Service component is used for provisioning and (re)configuration tasks necessary to mitigate 
detected attacks. Integration with the Device component is also needed to perform changes to specific 
devices when mitigation actions are needed. The Context component is used to detect service updates 
(i.e., creation and deletion) and retrieve service details. The Monitoring component is used both to 
retrieve monitoring data as well as to store the result of the security assessment process.  
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In addition to the components deployed within TeraFlowSDN, a Distributed Attack Detector (DAD) 
located at remote sites interacts with the TeraFlowSDN Controller. Note that the DAD is an external 
component running outside the TeraFlowSDN. We refer to D4.1 for a complete description of the 
components responsible for the Cybersecurity assessment. Use cases of interest for testing the validity 
of these components and apps are monitoring, service, context, device, NBI, and path computation. 
More details about these use cases are provided in D2.2. 

7.3. Scenario Setup 

In the following, we describe the setup used to validate the implementation of Scenario 3. As Scenario 
3 has two main targets (i.e., optical and IP layers), we present two separate setups. First, for the Layer 
3 cybersecurity experiments, the target is to prepare a setup that allows us to reproduce previously 
recorded cryptomining attacks. We first capture packets from the cryptomining attack that are 
reproduced in the setup environment. Second, the objective of the optical physical layer attacks is to 
reproduce previously-capture Optical Performance Monitoring (OPM) data from malicious attack 
conditions. 

7.3.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments 

Classical VPN services provided by network operators are not aware of cybersecurity attacks, because 
such capability would require additional appliances or solutions (Firewalls, Intrusion Detection System 
- IDS, etc.) to cope with attacks, in client facilities or through traffic engineering (redirection to a 
cleaning center) on the network operator side. This has been considered a disadvantage if we compare 
it with Software-Defined WAN (SD-WAN) or Secure Access Service Edge (SASE) overlay solutions. This 
demonstration setup aims to represent a common situation where TeraFlowSDN can monitor MPLS 
VPN traffic and apply ML techniques to detect and mitigate a complex representative attack such as 

 

Figure 62. TeraFlow components used in the cybersecurity scenario 
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cryptomining. The setup considered for this demonstration is illustrated in Figure 63. A Level 3 VPN 
service (L3VPN) is deployed using the TeraflowSDN controller in the Telefónica facilities (details in D5.1 
section 6.2), including Mouseworld Lab for traffic attack generation and Future network Lab for IP 
devices and SDN deployment. The TeraFlowSDN Controller activates this service using provisioned 
templates over the standardized IETF NETCONF southbound interface against the different Provider 
Edge (PE) routers from ADVA manufacturer. In this demonstration, branch and central office, are 
implemented with Mouseworld OpenStack resources through virtual machines that replay a mix of 
normal traffic with a cryptomining malware activity. Also, the central office provides internet access. 

As part of the VPN service provisioning process done by the TeraFlowSDN Controller, a mirror of the 
traffic in the logical interfaces that conform to the L3VPN is also enforced to copy the traffic towards 
the distributed attack detector co-located with the ADVA router. This distributed attack detector 
component will extract and calculate statistical features from network flows to be delivered to the 
TeraFlowSDN Controller for further processing. The Cybersecurity components will identify the attack 
as a cryptomining activity and propose a mitigation solution to the TeraFlowSDN core components 
that will trigger the mitigation. This mitigation will be instantiated as a new customized Access Control 
List (ACL) rule in the ADVA router with specific parameters (transport protocol, destination IP address 
and destination port). This rule can be enforced in additional PE routers that are part of the L3VPN to 
increase the mitigation capacity. 

 

7.3.2. Emulated Optical Setup for Optical Cybersecurity Experiments 

The objective of this setup is to enable us to reproduce OPM data from optical physical layer attacks 
captured in a real-world testbed. Since scalability is a key concern in this scenario, we need to be able 
to quickly create a high number of optical services being operated with the help of TeraFlowSDN. 
Then, TeraFlowSDN is responsible for its optical cybersecurity assessment. 

Due to the high complexity, time constraints, and cost associated with reproducing experiments with 
real optical devices, we decided to use an emulated optical infrastructure. The high complexity comes 
from the fact that imposing attacks on the physical layer of optical networks require special 
equipment, and very specific configurations. Moreover, there are several time constraints. For 
instance, once (re)configured, optical devices may require a few minutes to a few hours to reach a 
stable working condition, making it impractical for experiments to be reproduced several times, as 
required in our case. 

 

Figure 63. Deployment of the cybersecurity scenario focusing on L3 
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Figure 64 presents a simplified illustration of the setup considered. We use TeraFlowSDN at the control 
plane. The components tested are the Centralized Attack Detector (referred to hereinafter as Attack 
Detector in the context of the optical layer), Attack Inference, and Attack Mitigator. The Monitoring 
component and Prometheus are used as data sources for the visualizations, which are created using 
Grafana. We also created a custom script that acts as an OSS/BSS and can be configured to perform 
optical service requests to TeraFlowSDN’s SBI. 

The emulated optical network was configured to replay the dataset reported in [JLT2019]. The dataset 
consists of OPM samples collected from a real testbed using commercial equipment. The equipment 
consisted of coherent transceivers, able to report detailed OPM parameters with a frequency of once 
per minute. The data was collected using a custom-made agent and consolidated into a dataset. The 
OPM features captured are: 

• Chromatic dispersion 
• Differential group delay 
• Optical signal-to-noise ratio 
• Polarization-dependent loss 
• Q-factor 
• Block errors before FEC 
• Bit error rate before FEC 
• Uncorrected blocks 
• Bit error rate after FEC 
• Optical received power 
• Optical received frequency 
• Loss of signal 

In addition to normal operating conditions, the setup was configured to emulate three types of attack: 
in-band jamming, out-of-band jamming, and polarization scrambling. For each type of attack, a light 
and a strong intensity were imposed, forming seven attack conditions: 

 

Figure 64. Simplified view of the emulated deployment 

 

Emu OLS

Context

OSS/BSS

Service

SBIPathComp

RESTConf NBI

Attack 
DetectorMonitoring

Attack 
Inference

Attack 
Mitigator

Emulated Optical Network Recorded dataset



D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 84 of 112 

1. Normal operating conditions 
2. Light in-band jamming attack 
3. Strong in-band jamming attack 
4. Light out-of-band jamming attack 
5. Strong out-of-band jamming attack 
6. Light polarization scrambling attack 
7. Strong polarization scrambling attack 

Each attack condition was captured for 24 hours, which accounts for any transition period that the 
transmission might undergo (i.e., instability of the channel due to changes). 

The dataset was used by a custom-made OLS that communicates with TeraFlowSDN emulating the 
optical network. The emulation happens in the optical service provisioning and the optical service 
monitoring phases. The emulated OLS makes it easy to accommodate any request without resource 
constraints during optical service provisioning. This enables us to perform stress tests and validate the 
scalability properties of the cybersecurity component. 

During optical service monitoring, the OLS reports OPM values to TeraFlowSDN according to a 
configurable setting. By default, new optical services will replay data pertaining to normal operating 
conditions. However, each channel can be associated with a particular attack condition, upon which 
the emulated OLS will start replaying, for that specific service, the data captured from the attack 
condition. This allows us to validate the attack mitigator's scalability and actions, which are planned 
for D5.3. 

7.4. Scenario Metrics 

Scenario 3 integrates several components and implements several workflows that need to be 
evaluated. Table 6 summarizes the KPIs and KVIs to be evaluated, their relevance, and the definition 
of how they are measured. 

Table 6. KPIs and KVIs for Scenario 3 

Name Description Relevance Definition of 
measurement 

Component 

Layer 3 Optical  
Security > 99% 

accuracy 
(known 
attacks) 

Attacks need to be detected with 
high accuracy to make sure they 
do not remain undetected or 
unaddressed in the network 

Measuring the 
performance 
of the trained 
model over a 
testing dataset 

CAD and 
Attack 
Inference. 
Offline 
measurement 
based on the 
ML model 
characteristic 
and collected 
dataset 
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 > 90% 
accuracy 
(unseen 
attacks) 

- (Not 
relevant due 
to specific 
focus on 
cryptomining 
attacks 

Detecting attacks 
that are not 
present in the 
current catalogue 
of attacks 
improves 
network 
preparedness 

Measuring the 
performance 
of the model 
over attacks 
that are not 
present in the 
training 
dataset 

Attack 
Inference. 
Offline 
measurement 
based on the 
ML model 
characteristic 
and collected 
dataset 

 > 30% 
reduction of 
attack 
response 
latency 

Attacks 
should be 
detected as 
early as 
possible to 
minimize the 
damage they 
can cause 

- (Not relevant 
due to the 
significant time 
required to 
reconfigure 
optical devices) 

* Attack 
mitigator 

Reliability > 90% 
accuracy in 
detecting 
and avoiding 
known 
adversarial 
attacks 

Adversarial 
L3 attacks 
generated by 
malicious 
actors need 
to be 
detected 
with high 
accuracy to 
prevent 
attackers 
being able to 
bypass the 
detection 
system 

- (Not relevant 
due to 
information flow 
traversing only 
core 
components) 

Measuring the 
performance 
of the model 
on detecting 
unseen 
adversarial 
attacks 

Offline 
measurement 
based on the 
ML model 
characteristic 
and collected 
dataset 
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Energy > 25% 
resource 
consumption 

The machine 
learning 
model 
responsible 
of detecting 
L3 attacks 
should be 
optimized to 
be as energy 
efficient as 
possible with 
minimal 
degradation 
in accuracy 

- (Not relevant 
due to low 
frequency of 
inferences with 
respect to the L3) 

Measuring the 
reduction in 
total average 
energy 
consumption 
and average 
resource 
utilization 
metrics of the 
machine 
learning model 
responsible for 
detecting L3 
attacks using 
thirteen 
different 
combinations 
of state-of-the-
art 
optimization 
techniques 

Offline 
measurement 
based on the 
ML model 
characteristic 
and collected 
dataset 

* Measuring the latency between the connection start and the detection of the attack. We will 
measure the latency reduction with and without using an ML model deployed at the edge (i.e., at 
the Distributed Attack Detector). The measurements will include the mean, minimum, maximum, 
and standard deviation of the time required to detect a cryptocurrency mining attack in different 
repetitions with and without an ML model deployed at the Distributed Attack Detector. 

7.5. Workflows and Current Deployment 

In the case of Scenario 3, two complimentary yet distinct workflows need to be implemented. One is 
related to monitoring Layer 3 flows, which work with a monitoring cycle that depends on the (user) 
traffic under exam. The second is the monitoring of optical connectivity services, which work with a 
monitoring cycle that the TeraFlowSDN administrator can define. 

This section presents a few general workflows that illustrate how the Cybersecurity component 
interacts with other TeraFlowSDN core components. Later, the specifics of the Layer 3 and Optical 
workflows will be detailed. 

Figure 65 shows the general communication among the core and cybersecurity components when a 
new service is created. Firstly, during start-up, the Cybersecurity component subscribes to service 
events from the Context component. Then, when a service request is received, the service setup stage 
is triggered, performing the necessary changes involving several components of TeraFlowSDN. A 
detailed workflow of the service setup can be found in D3.2. After the service is set up, the service 
identifier is returned to the customer who requested the service. Then, the KPI setup stage starts. At 
this stage, the Cybersecurity component is notified by the Context component about creating the new 
service. Then, the Cybersecurity will create relevant KPIs in the Monitoring component. The specifics 
of this workflow for Layer 3 and Optical Cybersecurity will be detailed later in this section. 
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7.5.1. Layer 3 Cybersecurity 

In this section, we will describe the specific workflows that implement the detection and mitigation of 
network attacks at the IP layer. 

7.5.1.1. Traffic Capture and Feature Extraction at the Network Edge 

 

 

Figure 65. Scenario 3 workflow: General communication when creating a new service 
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Figure 66. Scenario 3 workflow: Traffic Capture and Feature Extraction Workflow 
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We assume that the DAD receives a copy of the traffic (i.e., all the packets) traversing the endpoint 
being monitored for L3 attacks. After the DAD receives the traffic, it is grouped into flow-level statistics 
using the TSTAT files. Figure 66 shows that the DAD communicates via RCP methods with the Context 
component to obtain the service_id and endpoint_id attributes, so the connection is traceable in the 
TeraFlowSDN, and the mitigation strategies can later be implemented on the correct devices. Once all 
the connection data is grouped into an L3CentralizedattackdetectorMetrics object, it is sent via de RCP 
method SendInput to the CAD. 

7.5.1.2. Detect Known Attacks using Supervised ML 

Figure 67 shows the workflow for the detection of known attacks. The CAD component receives and 
stores flow statistics from L3CentralizedattackdetectorMetrics objects. A function is then called with 
these objects as the input to perform the Machine Learning inference that will classify the data as 
either belonging to a cryptomining attack or not. If the flow statistic has been classified as a 
cryptomining attack, the SendOutput RCP method will be called. It will send the necessary flow data 
and inference data to the Attack Mitigator component in an L3AttackmitigatorOutput object. 

7.5.1.3. Mitigate Detected Attacks 

Figure 68 shows that after the AM component receives the connection data belonging to a 
cryptomining attack, it will create a mitigation strategy. As of now, that mitigation strategy is to 
generate a rule to drop the connection. AM will then need to communicate with the Context 
component to receive the Service instance belonging to the service_id that is included in the 
connection data. After receiving the Service object, the ComposeMitigation method will add the new 
rule to drop the connection to it. After calling the RCP method UpdateService with the modified 

 

Figure 67. Scenario 3 workflow: Attack Detection Workflow (Layer 3) 
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Figure 68. Scenario 3 workflow: Attack Mitigation Workflow (Layer 3) 
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service instance, the Teraflow OS will propagate the changes to the Device component, and it will 
modify the ACL rules in the Router to drop the connection, thus finishing the current mitigation 
strategy. 

7.5.1.4. Monitor Relevant Cybersecurity-related Metrics 
The Centralized Attack Detector monitors five relevant KPIs for each active service. Below, we list the 
cybersecurity KPIs that are observed and recorded and their associated KPI sample type: 

• Cryptomining detector confidence in security status over the last time interval 
(KPI_ML_CONFIDENCE); 

• Security status against cryptomining attacks of the service in a time interval 
(KPI_L3_CRYPTO_SECURITY_STATUS); 

• Number of attack connections detected in a time interval (KPI_UNIQUE_ATTACK_CONNS); 

• Number of unique compromised clients of the service in a time interval 
(KPI_UNIQUE_COMPROMISED_CLIENTS); 

• Number of unique attackers of the service in a time interval (KPI_UNIQUE_ATTACKERS). 

The values of KPI_L3_ML_CONFIDENCE are collected for predictions that take place during a specific 
time interval (e.g., 5 seconds). This is done separately for predictions that correspond to an attack and 
predictions that correspond to normal traffic. At the end of each time interval, the values of both lists 
are aggregated independently calculating the average. If an attack connection occurred during that 
time interval, the average confidence of the predictions corresponding to an attack are sent to the 
Monitoring component as KPI_L3_ML_CONFIDENCE and "1" as KPI_L3_SECURITY_STATUS_SERVICE. 
Otherwise, the average confidence of the predictions corresponding to normal traffic is sent to the 
Monitoring component as KPI_L3_ML_CONFIDENCE and "0" as KPI_L3_SECURITY_STATUS_SERVICE. 

The KPI_L3_UNIQUE_ATTACK_CONNS counts the number of unique attack connections that were 
detected in each time interval. Like the previous KPIs, these values are collected during each time 
interval. Once the interval is over, these values are aggregated and sent to the monitoring component. 
Note that the packet aggregator running in the Distributed Attack Detector component aggregates 
the new packets from the same connections as soon as they are received, and the characteristics are 
sent to the ML model. For this reason, if subsequent packets are received from the same connections, 
the Decentralized Attack Detector will produce new statistics that the ML model will also ingest. For 
this reason, connections may be detected as an attack more than once. However, in 
KPI_L3_UNIQUE_ATTACK_CONNS we will only count these repeated connections once. 

Similar to KPI_L3_UNIQUE_ATTACK_CONNS, KPI_UNIQUE_COMPROMISED_CLIENTS measures the 
number of compromised cryptocurrency clients in each time interval by counting the number of flows 
that correspond to the same source IP. On the other hand, KPI_UNIQUE_ATTACKERS measures the 
number of unique attackers in each time interval by counting the number of flows that correspond to 
the same destination IP. KPI_L3_UNIQUE_ATTACK_CONNS provides a measure of the intensity with 
which compromised clients attack the network. KPI_UNIQUE_COMPROMISED_CLIENTS and 
KPI_UNIQUE_ATTACKERS extend this information by revealing the scale of the compromised network 
and quantifying how many attackers are involved in attacking the network. 
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Figure 69 shows that the Centralized Attack Detector creates these KPIs at launch time by registering 
KpiRequest for each KPI through the Monitoring client and requesting the Monitoring service process 
to create and add them to the Management Database (DB). For each KpiRequest, a KpiDescriptor 
includes service information, device and endpoint identifiers, and the description and KPI sample type 
of each KPI. After successful creation, the KPIs can be effectively monitored by sending samples to the 
Monitoring service via the IncludeKpi RPC method. When the Monitoring service receives each 
sample, they are introduced into the Metrics DB to be accessible through the Grafana dashboard. 

7.5.2. Optical Cybersecurity 

For the optical cybersecurity, the Centralized Attack Detector (hereinafter denoted simply as Attack 
Detector) has three main tasks: 

1. To maintain a list of the currently active optical services, their identifiers, and relevant KPI 
identifiers; 

2. To periodically trigger the cybersecurity assessment loop for each active optical service; 
3. To coordinate the cybersecurity assessment of each service. 

These responsibilities are too extensive for a single component and diverge in terms of how they are 
triggered and processed. For instance, to maintain an updated list of the currently active services, the 
cybersecurity app needs to subscribe to Context events related to services (i.e., service creation, 
service update, service deletion). These events will be reported whenever changes happen. On the 
other hand, the cybersecurity assessment loop needs to be executed periodically, irrespective of other 
events. Moreover, this task needs to be done by a single instance, i.e., the component responsible for 

 

Figure 69. Scenario 3 workflow: Cybersecurity KPIs Monitoring Workflow (Layer 3) 
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this task cannot be replicated. Finally, the execution of the assessment for each service needs to be a 
scalable process, meaning that the component performing this task needs to scale. 

These facts translate into the need for one stateful component and another stateless one. Stateful 
components maintain the internal state necessary for their correct functioning. Nevertheless, on the 
other hand, they are hard (if not impossible) to replicate due to the need to establish a protocol to 
share the state. On the other hand, Stateless components handle each request as an isolated process, 
and no state is saved across requests. 

Due to these reasons, we divided the Attack Detector into two variations: 

• Attack Manager: a stateful component with a single replica (i.e., does not scale) responsible 
for maintaining a list of current active optical services in the network, and for triggering the 
assessment of each optical service; 

• Attack Detector: a stateless component that can have multiple replicas, where each call refers 
to the task of performing the assessment of a single optical service. 

These two components cooperate in order to realize the optical cybersecurity assessment loop. For 
example, during the initialization of the Attack Manager, as illustrated in Figure 70, the Attack 
Manager queries the Context component for a list of current services. Note that this initialization 
procedure allows the Cybersecurity app to be resilient to restarts, which means that it can be started 
or restarted whenever needed. Furthermore, it means that the Cybersecurity app can be put into 
operation at any point in time (as opposed to having to activate it only during the startup of the entire 
TeraFlowSDN). 

 

Naturally, as the network is operated, new services will be created, and old services will be terminated. 
Therefore, the optical cybersecurity component needs to have an updated list with the active services. 
This could be obtained by repeating the workflow in Figure 70 for every new loop that is starting, i.e., 
querying the Context for a list of services. However, this approach would incur in substantial added 
load to the Context. To have keep the load of the optical cybersecurity loop as low as possible, we 
took advantage of the streaming capabilities of the Context to receive events related to services. 

Figure 71 shows the workflow used to maintain an updated list of active services. For the sake of 
space, we focus on the service creation part, with the service deletion being very similar except for 
the triggering event. The figure shows that the Attack Manager is notified upon the creation of a new 
service. This allows the Attack Manager to include the newly created service in its internal list of active 
services and create relevant KPIs in the Monitoring. 

 

Figure 70. Scenario 3 workflow: Initialization of the optical cybersecurity components 
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Once the Attack Manager has a list with the optical services currently under operation in the network, 
the periodical cybersecurity assessment loop can take place. The specific steps and components 
involved in the loop will depend on the type of ML model used by the Attack Inference component. 
Supervised learning algorithms learn the properties of the system during training, which means that 
for the inference only the new(est) sample(s) are needed, i.e., the ones that were not assessed so far. 
On the other hand, unsupervised learning models do not have a training step, which means that they 
need a substantial number of samples at each inference to be able to determine which one(s) of the 
samples, if any, are anomalies (or attacks, as it is in our case). 

One potential solution for both cases would be to rely on the Monitoring component to provide all 
the samples for all the inferences, regardless of the ML model used. However, this would incur a 
substantial load on the Monitoring component, since it would need to retrieve many samples at each 
loop for each service. 

Another potential solution would be to cache the latest samples within the Attack Detector 
component, but this approach would make it stateful (i.e., bound to specific services). In addition, this 
would increase the complexity of managing replicas, making the scalability more complex. 

The third approach is the one adopted by TeraFlowSDN. In this approach, a cache is deployed as an 
external component. The cache stores the latest samples of all the active services in the network. By 
adopting an in-memory cache, the response time can be orders of magnitude lower than the 
Monitoring component (which uses an in-disk persistent database). 

Figure 72 illustrates the communication among components for the case where the Attack Inference 
uses a supervised learning model. For each service, the Attack Manager invokes the Attack Detector. 
The Attack Detector, responsible for a single service at a time, queries the Monitoring for the latest 
OPM sample(s), i.e., the ones that have not yet undergone the attack detection. The Monitoring 
returns the list of samples used to build a detection request sent to the Attack Inference. Once the 
inference result is received, the relevant KPIs are included in the time series related to this service. 
The Attack Detector then returns an empty message to the Attack Manager, representing that the 
assessment for this service has been completed. Finally, after receiving the completion message from 
all the services, the Attack Manager computes how much time the loop took and reports it to the 
Monitoring. This value is also reported to Prometheus. 

 

Figure 71. Scenario 3 workflow: Receiving service events from the Context component 
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Figure 73 shows the communication among components for the case where an unsupervised learning 
algorithm is used by the Attack Inference. We focus only on the differences from the previous 
workflow. The first difference is that, upon receiving a detection request, the Attack Detector gets the 
latest samples from the cache. Then, based on the latest OPM sample available in the cache, it queries 
the new(est) OPM sample(s) from the monitoring component. The number of new samples may 
change depending on the ratio between the monitoring cycle and the cybersecurity cycle. For 
instance, if the monitoring cycle is executed at every 30 seconds, but the cybersecurity cycle runs at 
every 1 minute, each cybersecurity cycle will process 2 new OPM samples. The n new samples are 
added to the array of samples obtained from the cache, while discarding the oldest n samples. The 
new array of samples is sent back to the cache to be used in the next cycle. 

 

Once the needed samples are gathered, the Attack Detector composes a detection request to the 
Attack Inference and sends it. The Attack Inference executes the unsupervised learning model and 
returns the detection response with an array of integers with the same cardinality as the samples. 
Each item in the array represents whether or not that sample was considered an anomaly (i.e., an 
attack in our case). 

Once an attack is detected, an attack mitigation strategy must be triggered. We leave the attack 
mitigation part for the next iteration of the Cybersecurity component to be reported in D5.3. 

 

Figure 72. Scenario 3 workflow: Periodical optical cybersecurity monitoring using supervised learning 
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Figure 73. Scenario 3 workflow: Periodical optical cybersecurity monitoring using unsupervised learning 
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7.6. Preliminary Performance Evaluation 

In this section, we report the preliminary performance of the Cybersecurity components for the two 
types of attacks investigated: Layer 3 attacks represented by cryptomining and optical physical layer 
attacks represented by six different attacks described in Section 7.3.2. 

7.6.1. Layer 3 

This section describes the performance and energy efficiency evaluation of the cybersecurity 
components that address attack detection and mitigation at Layer 3 of the seven-layered Internet 
model. 

7.6.1.1. Security 
In this section, the performance evaluation will focus on the machine learning model integrated in the 
Centralized Attack Detector responsible for identifying malicious cryptocurrency traffic in the network. 

A major change from the initial design was the replacement of the Random Forest algorithm with a 
Deep Neural Network for detecting malicious cryptocurrency traffic. This decision was made because 
the Deep Neural Network (DNN) provided higher accuracy than the Random Forest. In addition, a DNN 
is easily parallelizable and can scale to adapt to different network environments with different data 
throughputs, allowing for better scalability than the Random Forest algorithm. In addition, another 
deciding factor for this change was the fact that the energy-efficient optimization of Random Forest 
algorithms is not yet well established, making them less suitable for the implementation of a 
centralized attack detector. 

7.6.1.1.1. Analysis of the Cryptomining Detector 
In this section, we describe in detail the model we used to address the detection of cryptomining 
attacks at the network layer. First, we describe the setup we used to collect the training data. Next, 
we present the structure of the model and the procedure that was followed to train it. Finally, we 
evaluate the model using several standard performance metrics. 

7.6.1.1.2. Training of the Cryptomining Detector 
The dataset used to train the DNN model for the task of cryptomining detection has been developed 
for the precise task of detecting cryptomining attacks [PAS20]. This dataset is provided by Telefónica 
R&D as part of ML research for defences against network traffic attacks generated in their 
Mouseworld lab. 

The experiments that can be deployed in the Mouseworld Lab [PAS18] allow the capture, storage, and 
processing of network traffic representative of the attacks to be reproduced. The processing 
performed on the network traffic captured in the Mouseworld Lab is oriented toward the training and 
validation of ML models for detecting network attacks. To this end, the Mouseworld Lab provides a 
way to launch clients and servers and collect their traffic, even if they interact with clients and servers 
outside Mouseworld on the Internet. In this way, the Mouseworld lab can be used to set up and 
emulate attack scenarios in a controlled way and to generate and collect in a PCAP file all packets of 
the attack and normal traffic to be used later for the training and testing of ML algorithms. This 
emulation environment allows configuring and executing specific attacks mixed with normal traffic 
instantiating virtual machines that deploy specific attack clients connected to real servers located at 
different points on the Internet. In addition, the emulation environment allows configuring other 
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virtual machines on which normal traffic clients and servers (e.g., web, file hosting, streaming) are 
deployed. Finally, a commercial tool called BreakingPoint from Ixia allows a wide variety of realistic 
traffic types to be configured and injected into the network. Once a configuration is deployed, all 
packets exchanged by the clients and servers with each other and other servers on the Internet can 
be captured. The captures are stored in PCAP format files to be used later for training and validation 
of ML-based attack detectors. 

We used the Mouseworld lab to emulate a cryptomining attack scenario over a 5G network. In this 
scenario, the attack consists of several cryptomining clients sending cryptomining traffic to a real 
server located on the Internet. Normal traffic was also injected into the network using the 
BreakingPoint tool, and several virtual machines were configured to emulate the normal traffic (e.g., 
web, file hosting, streaming). The captures of both attack and normal traffic were stored in PCAP files. 
The PCAP files were then used to generate the dataset used in this case study. 

The data collected in the Mouseworld lab contains traffic samples represented by flow statistics 
derived from network packets using the Tstat tool. This traffic data was labelled to create the dataset 
used to train the cryptomining detector. In particular, two types of traffic can be found in the dataset, 
samples (rows) corresponding to normal traffic, and samples corresponding to cryptomining attacks. 
In this case, each row of the dataset was tagged as either 0 (normal traffic) or 1 (cryptomining attack 
traffic) using the IPs and ports of the known attack connections. 

We used the TensorFlow library to train a Fully Connected Neural Network (FCNN) classifier to predict 
whether a connection corresponds to cryptomining activity or not according to all features derived 
from Tstat statistics except IPs and ports, as they are used to label the dataset (class labels) and 
therefore cannot be used to train the model. 

The structure of each of the FCNN model that was used as baseline is specified below. In particular, 
the model consists of a stack of three fully connected layers with 20, 30 and 10 with Rectified Linear 
Unit (ReLU) activation followed by a fully connected layer with two neurons and SoftMax activation 
as output layer. The training hyperparameters are as follows. We use a batch size of 4096. We also 
use Adam optimizer with a learning rate of 0.001. Furthermore, we use the early stopping technique 
to automatically terminate the training process if the validation loss does not improve for 20 epochs, 
restoring the model weights to those obtained in the epoch with the lowest validation loss after 
training is complete. For the validation procedure, we reserve 20% of the training data for the 
validation split. Finally, as a loss function, we use the categorical cross-entropy function. 

Although the accuracy of the model using all these features is already high, it was observed that many 
of them do not contribute significantly to the prediction performance and can be ignored to improve 
the training efficiency and model inference. Therefore, we decided to make a random selection of the 
most commonly used features and managed to reduce the required input to ten features, while the 
F1 score was still high (> 95%). We list the features that we selected in Table 7. Note that if a feature 
has a CS (Client-Server) and SC (Server-Client) identifier, it is because it has been measured in both 
directions. However, if a feature has only one identifier, it is because it has been measured in the 
direction indicated by the identifier type (CS or SC). 
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All data were standardized to ensure that the mean of the sample was 0 and the standard deviation 
was 1. This was done so that the scale of each variable did not cause one variable to dominate the 
results. We found that standardisation significantly improved the results. 

7.6.1.1.3. Performance Evaluation of the Cryptomining Detector 
The trained model was converted to an ONNX format. ONNX is an open-source format for 
representing deep learning models in an intermediate format that allows for interoperability between 
different frameworks, such as TensorFlow, PyTorch, and Caffe2. ONNX is a well-suited format for 
deploying deep learning models in production, since it enables faster performance and a smaller file 
size. In addition, this conversion process allows the model to be deployed and used in various 
environments, including web services and mobile devices, and a variety of hardware platforms. The 
conversion process of the DNN model from the TensorFlow/Keras format to ONNX was done using the 
tf2onnx library. Once the conversion is complete, the model can be deployed using the ONNX Runtime 
library, which provides an execution engine for the ONNX models. 

Once the model was successfully converted to ONNX, it was evaluated in an offline fashion. This was 
done by first selecting a test set of data and then running inference on it using the ONNX Runtime 
library. The model's performance was then evaluated by comparing the predicted results to the actual 
labels of the data. Once the model was successfully converted to ONNX, it was evaluated offline. To 
do this, a test data set representing 20% of a reserved portion of the total data set that was never 
used for model training was first selected, and then inference was run on it using the ONNX Runtime 
library. The performance of the model was then evaluated by comparing the predicted results with 

Table 7. Selected features of the Crypto dataset to train the cryptomining detector. 

CS 
ID 

SC 
ID Name Type Description 

13 27 SYN count Numeric Number of SYN segments observed (including rtx). 

70 93 flow control Numeric Number of retransmitted segments to probe the receiver 
window. 

71 94 unnece rtx RTO Numeric Number of unnecessary transmissions following a 
timeout expiration. 

72 95 unnece rtx FR Numeric Number of unnecessary transmissions following a fast 
retransmit. 

73 96 != SYN seqno Binary 1 = retransmitted SYN segments have different initial 
seqno. 

74 97 HTTP Request 
count Numeric Number of HTTP Requests (GET/POST/HEAD) seen in 

the C2S direction (for HTTP connections). 

76 98 First HTTP 
Response Numeric First HTTP Response code seen in the server->client 

communication (for HTTP connections). 

77 99 PSH-separated 
C2S Numeric Number of push separated messages C2S. 

78 100 PSH-separated 
S2C Numeric Number of push separated messages S2C. 

- 90 reordering Numeric Number of packet reordering observed. 

CS: Client to server traffic. 
SC: Server to client traffic. 
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the actual labels on the data. The metrics used to measure model performance include three well-
known metrics: precision, balanced accuracy, F1 score and confusion matrix. We incorporated 
balanced precision among the evaluation metrics to account for imbalances that exist in the data set. 
A brief explanation of each metric is provided below. 

• True Negative (TN): number of cases in which the model correctly predicted a negative 
outcome. The True Negative Rate (TNR) measures the rate of negative outcomes correctly 
predicted as negative; 

• False Positive (TP): number of cases in which the model incorrectly predicted a positive 
outcome. The False Positive Rate (FPR) measures the rate of negative samples that were 
mislabeled as positives; 

• False Negative (FN): number of cases in which the model incorrectly predicted a negative 
outcome. The False Negative Rate (FNR) measures the rate of positive samples that were 
mislabeled as negative; 

• True Positive (TP): number of cases in which the model correctly predicted a positive 
outcome. The True Positive Rate (TPR) measures the rate of positive samples that were 
correctly labeled as positive; 

• Accuracy: rate of correct predictions made by the model. It is calculated by taking the ratio of 
true positives and true negatives to the total number of predictions. The formula is given by: 
Accuracy = (TP + TN) / (TP + TN + FP + FN); 

• Balanced Accuracy: accuracy of the model in predicting both positive and negative classes. 
The formula is given by: Balanced Accuracy = (TP/P + TN/N) / 2 where P is the total number of 
positive examples, and N is the total number of negative examples; 

• Precision: true positive rate of all positive predictions made by the model. The formula is as 
follows: Precision = (TP) / (TP + FP); 

• Recall: true positive rate of all true positive examples in the data set. The formula is as follows: 
Recall = (TP) / (TP + FN); 

• F1 Score: it is calculated by taking the harmonic mean of precision and recall. The formula is 
given by: F1 Score = 2 * (precision * recall) / (precision + recall); 

• Confusion Matrix: The confusion matrix is a visual representation of the model's performance 
and is used to analyze the model's ability to correctly classify the data into different classes. 

The results of the evaluation are shown below. 

• Accuracy: 0.99996 
• Balanced Accuracy: 0.99543 
• Precision: 0.99998 
• Recall: 0.99543 
• F1 score: 0.99541 
• Confusion matrix:  

 Predicted Negative Predicted Positive 
Actual Negative 97120 0 
Actual Positive 4 434 

From the evaluation results, it can be seen that the ONNX DNN model achieved excellent performance, 
with an accuracy of 0.99996, a balanced accuracy of 0.99543, a precision of 0.99998, a recall of 0.99543, 
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and an F1 score of 0.99541. This shows that the model is capable of accurately predicting the labels of 
the data set with a high degree of accuracy. 

Once the offline evaluation was successfully completed, the ONNX model was integrated into the 
Centralized Attack Detector (CAD) component. In this context, we validated the performance of the 
model by re-injecting the same packets contained in the test dataset and observed that the 
performance of the ONNX model was consistent with the offline evaluation results. 

7.6.1.2. Energy Efficiency 
In this section, we evaluate the energy efficiency optimization of the deep neural network deployed 
in the Centralized Attack Detector component responsible for the cryptomining detection task. We 
present a comparison of the energy efficiency achieved with different state-of-the-art techniques, 
discuss the energy efficiency trade-offs arising from the model optimization, and identify the best 
performing approaches for the task at hand according to a variety of criteria considering different 
energy efficiency and accuracy requirements. 

7.6.1.2.1. Experimental Framework for the Cryptomining Detector Energy 
Efficiency Optimization 

In this section, we describe the experimental framework we applied for analysing the energy efficiency 
and resource utilization of DNN-based systems deployed in production environments. First, we explain 
the energy measurement process followed to collect energy consumption data and discuss the main 
statistics collected to analyse the resource utilization of the resulting models. Next, we describe how 
the most appropriate optimization strategy for the problem at hand is selected. Next, we describe the 
energy optimization techniques that were applied. 

7.6.1.2.2. Measuring Energy Consumption 
To measure the energy consumption obtained with the different optimization approaches, we use the 
Running Average Power Limit (RAPL) interface, which estimates power consumption based on the 
Power Management Controller (PMC) values that can be collected from Intel family processors. In 
particular, we use the RAPL interface through the powerstat command line profiling tool to collect the 
CPU power consumption of the ML models during the training, model optimization, inference, and 
model loading phases. 

For each combination of techniques to be applied, the baseline model that was analysed in section 
7.6.1.1.1 is trained and then the optimization techniques are applied sequentially depending on the 
order specified in the optimization strategy defined by the particular combination to be applied. 

Once the model has been trained and optimized, its inference performance is evaluated. To evaluate 
the inference performance of the model obtained with each combination of techniques, the model is 
converted from TensorFlow/Keras to TensorFlow Lite format. Considering that the inference phase is 
the most energy-consuming in ML applications, converting the model to TensorFlow Lite format to 
speed up and optimize the inference process has proven to be a great gain in terms of both energy 
and performance. 

In the inference stage, various batch sizes are tested to evaluate the variation in power consumption 
and resource utilization. By default, the small (32), medium (256) and large (1024) batch sizes are 
tested, although they can be configured by the user depending on the application requirements. 
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In addition, the predictive performance of the optimized ML model obtained with each combination 
of techniques is also measured. In this case, since the model to be optimized is a classifier, we use the 
F1 accuracy and F1 score, as well as the balanced accuracy to account for the class imbalance that 
exists in our data. 

Once all repetitions have been performed, the metrics obtained at each time step among all 
repetitions are aggregated using the mean, standard deviation, and maximum value. 

In addition, a second aggregation is also performed, but on this occasion on the time axis to show the 
mean value, standard deviation, and maximum of each statistic measured throughout the test. as a 
summary of the results. At this point, the total energy consumed in the test is obtained by multiplying 
the average energy consumption by the average duration of the test. Furthermore, the percentage of 
reduction in total average energy consumption is also calculated by computing the difference between 
the average total energy consumption of each test with that obtained for the same test performed 
with the baseline model and dividing the result by the average total energy consumption of the test 
performed with the baseline model. In this way, a percentage is obtained that can be used as a metric 
of the improvement in energy efficiency achieved by the proposed optimizations. The obtained value 
can be positive or negative depending on the change in the energy consumption of the optimizations 
with respect to the baseline. A positive value shows that the optimizations perform better than the 
baseline, while a negative value shows that the optimizations consume more energy than the baseline. 

7.6.1.2.3. Selection of the Best Optimization Strategy 
Three different optimization profiles have been considered in the optimization process, which 
determine the selection of the most suitable optimization technique according to the particular needs 
of the application. Details of these profiles are given in D4.2. A summary is given below. 

A. Energy efficiency profile: This profile is designed to minimize the power consumption of the 
optimized model as much as possible, while providing acceptable performance measured 
against a given metric and a specific threshold; 

B. Performance profile: This profile is designed to maximize the performance of the optimized 
model as much as possible, while providing an energy efficiency gain equal to or greater than 
a given threshold; 

C. Balanced profile: This profile is designed to balance performance and energy efficiency by 
applying the optimization strategy that provides the best balance between both metrics 
according to the parameters that control the importance of each one during the selection. 

Regarding the selection of the most appropriate combination of techniques to apply, an exhaustive 
search of all combinations of optimization strategies is performed. More specifically, a set of all 
possible combinations of techniques that can be applied to the DNN model is first built and then each 
combination is applied and evaluated. At the end, the most appropriate combinations to apply 
according to each optimization criterion are selected. 

7.6.1.2.4. Selected Model Optimization Strategies 
Three different sets of optimization strategies were selected for the experimental evaluation. Each 
optimization strategy contains several different combinations of the most promising state-of-the-art 
optimization techniques that were identified. The tests were performed offline to evaluate the most 
effective approach to minimize the total energy consumption of an ML model during the training, 



D5.2 Implementation of pilots and first evaluation 

 

© 2021 - 2023 TeraFlow Consortium Parties  Page 100 of 112 

inference, and loading stages by performing a quantitative analysis of the energy consumption 
metrics. 

The first set contains combinations of quantization techniques that can be applied as a post-processing 
step after training the ML model. The second set contains various methods of compressing the 
physical representation of an ML model (number of total model parameters or the in-memory size of 
each parameter), in order to reduce the amount of energy consumed by an ML model during the 
inference stage and in subsequent retraining that might be necessary due to a change in the 
underlying data distribution during the operational stage. Finally, the third set contains combinations 
of the individual techniques included in the other two sets. 

The specific combinations of techniques in each set are listed in Table 8. It should be noted that, in 
order to reduce the computational cost and time spent on the third test set, only the optimal post-
training quantization technique according to the results of the first test set in terms of the selected 
optimization profile is applied to the models of the third set. The reason for this choice is that all the 
post-training quantization techniques have a negligible computational cost compared to that of the 
techniques found in the second set. Therefore, by evaluating them beforehand and selecting the 
optimal one as the one used for the combinations present in the third test set, the total evaluation 
time is considerably reduced. After preliminary validation, we conclude that this approach does not 
affect the results obtained with the third set in any meaningful way. Specific details of the application 
of these techniques are described in D4.2. 

Table 8. Energy efficiency optimization strategies considered in the experimental framework. 

Set Opt. 
Strategy Id. 

Opt. Strategy 

N/A 0 No optimizations (baseline) 

Post-Training 
Optimization 
Techniques 

1 1) Full 8-bit Integer (INT8) Weight Quantization 

2 1) Half-precision Floating-point (FP16) Weight Quantization 

3 1) Full Integer Weight Quantization with 16-bit Integer 
(INT16) Activations and 8-bit Integer (INT8) Weights 

Training-aware 
Optimization 
Techniques 

4 1) Pruning-aware Model Fine-tuning 

5 1) Quantization-aware Model Fine-tuning 

6 
1) Neural Architecture Search 
2) Knowledge Distillation 

Combined 
Optimization 
Techniques 

7 
1) Pruning-aware Model Fine-tuning 
2) Quantization-aware Model Fine-tuning 

8 

1) Neural Architecture Search  
2) Knowledge Distillation 
3) Pruning-aware Model Fine-tuning 

9 

1) Neural Architecture Search 
2) Knowledge Distillation 
3) Quantization-aware Model Fine-tuning 

10 
1) Neural Architecture Search 
2) Knowledge Distillation 
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3) Pruning-aware Model Fine-tuning 
4) Quantization-aware Model Fine-tuning 

11 
1) Pruning-aware Model Fine-tuning 
2) Optimal post-training Quantization 

12 

1) Neural Architecture Search 
2) Knowledge Distillation 
3) Optimal post-training Quantization 

13 

1) Neural Architecture Search 
2) Knowledge Distillation 
3) Pruning-aware Model Fine-tuning 
4) Optimal post-training Quantization 

7.6.1.2.5. Experimental Evaluation 
In this section, we present the results of the experimental evaluation that was performed to optimize 
the energy efficiency of the postmining detector implemented in the Centralized Attack Detector 
component. First, we describe the experimental setup that we have defined to test the different 
optimization strategies to be evaluated, including the main parameters of the optimization process to 
be applied to our target model, as well as the hardware platform that we have used to perform the 
experiments. Next, we analyse the experimental results obtained in the model inference state for each 
of the optimization strategies that were applied. Finally, we provide a summary of the main 
conclusions of our experimental evaluation. 

7.6.1.2.6. Experimental Setup 
We have performed an experimental evaluation in which we have applied all combinations of 
optimization techniques defined in 7.6.1.2.4 to the cryptomining detector described in Section 7.3.1. 
In addition, we repeated the experiments 5 times with a 1-second time interval for sample 
measurements to collect energy efficiency metrics. 

To carry out the optimization process, the three optimization profiles defined in 7.6.1.2.3 to select the 
most appropriate optimization strategy are considered. We establish as a performance threshold a 
minimum acceptable reduction in energy consumption concerning the non-optimized model of 25% 
and a minimum balanced accuracy of 0.9. Furthermore, to apply the balanced profile, we set the ratio 
of these two factors as 0.5 for both to obtain the optimization strategy that leads to the most balanced 
results between the two objectives and analyse its comparison with those obtained with the other 
two profiles. We will use balanced accuracy as the objective performance metric for our optimization 
process because, as explained above, due to the class imbalance that exists in our data it is a more 
restrictive and more reliable metric to evaluate the effectiveness of the different optimization 
strategies that have been applied than the other metrics that are commonly used a classification 
problem (e.g., accuracy, F1 score, etc.). Furthermore, we use a balanced accuracy of 0.9 as a threshold 
because it provides an acceptable accuracy in our case while maintaining adequate energy efficiency. 

Three different batch sizes (small: 32, medium: 256 and large: 1024) were tested to analyse the 
influence of the batch size used to perform the prediction on the results obtained 

The hardware platform used to validate the proposed methodology is a system with an Intel(R) 
Core(TM) i7-2600 CPU (Sandy Bridge microarchitecture; base clock 3.40 GHz; turbo boost 3.80GHz; 8 
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MB cache) with Intel RAPL support. The system has 32 GB of RAM and Ubuntu 20.04.5 (with 5.15.0-
48-generic Linux kernel) was used as the operating system.  

The experimental framework was implemented using Python (version 3.10.6) as the main 
programming language and using the following dependencies: TensorFlow (version 2.9.2), TensorFlow 
Model Optimization (version 0.7.3), psutil (version 5.9.4) and powerstat (version 0.02.27). 

7.6.1.2.7. Analysis of the Results Obtained 
The complete analysis of the results obtained in the inference stage of the optimized models and the 
selection of the best optimization strategies that provide the best compromise between energy 
efficiency and performance according to the different optimization profiles considered can be found 
in D4.2. In Figure 74, we show the percentage of total average CPU power consumption obtained for 
each optimization strategy during the inference phase. The values represented were obtained from 
the aggregation of measured values collected during the duration of model inference at 1-second 
intervals and over 5 iterations for each optimization strategy using a batch size of 256 (medium size) 
to perform the prediction. 

A summary of the most important conclusions and observations is provided below. 

• Almost all optimization strategies lead to a significant reduction in energy consumption, 
exceeding in most cases the threshold of reduction in energy consumption with respect to the 
non-optimized model that was set at the beginning of the experimental evaluation; 

 

Figure 74. Energy consumption reduction obtained with each optimization strategy in the inference phase with respect 
to the non-optimized model using a batch size of 256. 
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• The knowledge distillation technique provides the largest reduction in energy consumption in 
most cases studied, reducing the total average energy consumption by up to 82.304% with a 
minimal performance degradation of just 0.08% in the balanced accuracy, 0.016% in the 
accuracy and 0.11 in the F1 score; 

• The optimization strategy based on the application of the half-precision floating-point weight 
quantization provides a reduction in energy consumption of up to 58.208%, with no 
performance degradation compared to the baseline model; 

• Some of the techniques studied are not mutually exclusive and can be applied in conjunction 
with each other to further reduce the energy consumption of the model. In this regard, 
applying a weight quantization as final post-processing can potentially reduce the energy 
consumption of the model in the inference stage. In particular, we observed that the 
optimization strategy based on the application of the knowledge distillation technique 
followed by a half-precision floating-point weight quantization provides a reduction in energy 
consumption of up to 80.741%, with a negligible performance degradation of 0.08% in the 
balanced accuracy, 0.016% in the accuracy and 0.11 in the F1 score;  

• Another technique that can be applied in conjunction with the knowledge distillation 
technique to further reduce the energy consumption of the model is the pruning-aware model 
fine-tuning. The optimization strategy based on the application of the knowledge distillation 
technique followed by a pruning-aware model fine-tuning provides a reduction in energy 
consumption of up to 81.046% but with a significantly higher performance degradation of 
0.287% in the balanced accuracy. In addition, in some preliminary tests, we observed that 
performance degradation was unpredictable, as the same optimization strategy was applied 
on different occasions and provided different performance results. For this reason, we 
recommend caution when applying this optimization strategy; 

• The results show that, regardless of the batch size used for inference, an optimal balance 
between energy and accuracy can be obtained with the application of the knowledge 
distillation technique, as it provides a very high energy savings with minimal degradation of 
performance. Finally, the results also demonstrate that, when performance degradation is not 
allowed, the optimization strategy based on the application of the half-precision floating-point 
weight quantization provides the best energy-consumption results; 

• The difference in energy consumption reduction provided by optimization strategies using a 
large batch size and a small batch size does not result in a variation in the relative ranking of 
the optimization strategies. In most cases, optimization strategies that provide the greatest 
reduction in energy consumption for small batch sizes also provide the greatest reduction for 
large batch sizes, and when this is not the case, the difference in energy savings is small. 
However, it is clear from the results that the reduction in energy consumption obtained with 
the application of optimization strategies is greater for larger batch sizes, regardless of the 
optimization strategy applied. From this observation, we can conclude that, in order to obtain 
optimal energy savings, the use of large batch sizes should be preferred whenever possible, 
as the application requirements permit; 

• The results obtained in terms of accuracy and balanced accuracy are also very favourable in 
general. With only two exceptions, the optimization strategies have managed to maintain a 
balanced accuracy above the threshold we set at the beginning of the experimental 
evaluation. In all cases, accuracy and the F1 score were almost unaffected. However, due to 
the significant class imbalance in the data, this result is irrelevant, so we continue to focus on 
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balanced accuracy. The largest balanced accuracy loss is obtained with the application of 8-bit 
integer weight quantization after training (0.5), followed by the balanced accuracy loss 
produced with the application of knowledge distillation and half-precision floating-point 
weight quantization (0.287) and knowledge distillation (0.008). 

In summary, we observe that the optimization strategy based on the application of the knowledge 
distillation technique is the one that provides the largest reduction in energy consumption in all cases 
studied. However, in some cases, the optimization strategy based on the application of the knowledge 
distillation followed by the pruning-aware fine-tuning technique and the quantization-aware model 
fine-tuning provides a slight gain over the former but with a much greater performance penalty. In 
addition, the optimization strategy that provides the best energy efficiency gain with no degradation 
in performance is the half-precision floating-point weight quantization technique. 

Based on the results obtained, we can conclude that the knowledge distillation technique provides 
the largest reduction in energy consumption in most cases studied, reducing the total average energy 
consumption by up to 82.304% with a minimal performance degradation of just 0.08% in the balanced 
accuracy, 0.016% in the accuracy and 0.11 in the F1 score. 

In addition, it is clear from the results that the reduction in energy consumption obtained with the 
application of optimization strategies is greater for larger batch sizes, regardless of the optimization 
strategy applied. From this observation, we can conclude that, in order to obtain optimal energy 
savings, the use of a large batch size should be preferred whenever possible, as the application 
requirements permit. 

Therefore, in our case the use of the knowledge distillation technique to optimize the DNN model 
implemented in the Centralized Attack Detector component is the most recommended strategy 
among the ones evaluated, as it provides the highest energy savings and minimal performance 
degradation. In addition, medium and large batch sizes should be used for inference, as they provide 
significantly higher energy savings than the small batch size. 

7.6.2. Optical 

In this section, we present the preliminary performance evaluation of the Cybersecurity component 
devoted to detecting physical layer attacks to optical networks. First, we present a quick summary of 
the results of the ML model for physical layer attack detection and identification (detailed results are 
present in D4.2). Then, we also show results related to the scalability properties of the Cybersecurity 
optical performance analysis loop designed and implemented in TeraFlowSDN. 

7.6.2.1. Accuracy of ML models 
One of the critical KPIs of the cybersecurity scenario is the accuracy of the ML model used in the 
presence of known and unknown attacks. Known attacks are attacks that have been included in the 
training dataset, therefore known by the ML model prior to the inference. Unknown attacks are 
attacks that have not been presented to the ML model during training, and are first presented to the 
ML model during inference. Naturally, both these attacks are known a priori by the ML/cybersecurity 
specialist who designed the experiments to collect the dataset, selected and trained the ML models, 
and evaluated their performance. 

Let us focus first on the detection and classification of known attacks. In this case, the fact that the 
attacks are known by the ML model during training enable the ML model to classify them, i.e., the ML 
model is able to perform attack detection and identification. One of the most regarded ML models for 
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the classification task are the Artificial Neural Networks (ANNs). In our scenario, we adopted ANNs 
and performed a hyperparameter analysis (details are provided in D4.2). We split the dataset into 3 
slices: training, validation, and testing. 

Figure 75 shows the performance of the best ANN architecture over training for the training and 
validation datasets. As we can see, the accuracy and categorical cross-entropy (used as the loss 
function for training) start in a quite bad performance, but quickly progress to very good levels of 
performance. The accuracy reaches nearly 100%. We can see that after 400-500 epochs, the 
categorical cross-entropy of the validation set stabilizes, indicating that if we interrupt the training in 
around 500 epochs the model would still maintain the characteristics of the model trained with 1000 
epochs. At the end, the ANN achieves a 98.2% accuracy over the testing set. 

 

Figure 76 shows the confusion metrices for the training, validation, and testing data sets. In this case, 
true positives are all the attacks that are predicted as an attack, where false negatives are the attacks 
predicted as not attacks. Focusing on the testing dataset, only 0.4% are false negatives, where the true 
attack is a light in-band jamming attack, but the ANN is classifying them as normal operating 
conditions. 

True negatives are the samples from normal operating conditions being classified as such, while false 
positives are the samples from normal operating conditions being classified as attacks. Only 0.2% of 
false positives are found, 0.1% being classified from the light in-band jamming attack, and 0.1% from 
the strong polarization attack. 

 

Figure 75. Training performance of the ANN for attack detection and identification 
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When we move to the task of detecting unknown attacks, i.e., attacks that are not included in the 
training dataset, traditional ANNs are no longer suitable. In this case, we adopted DBSCAN, a well-
known unsupervised learning algorithm used for anomaly detection. In our case, attacks should affect, 
at least mildly, the OPM parameters, just enough so that DBSCAN is able to detect them. 

Table 9 shows a summary with the best results of the hyperparameter tuning performed for DBSCAN. 
The two parameters MinSamples and Epsilon were varied in the range of [3, 5, 8, 10, 12, 15, 20, 50, 
80, 100] and [0.1, 0.5, 1, 2, 3, 4, 5, 10], respectively. We can see that the best configuration achieves 
an F1 score of 0.803, leading to 26% false positives and 13.8% false negatives. These numbers are not 
ideal but can be used in conjunction of root cause analysis strategies to provide indication that 
something is wrong with the channel. 

Table 9. Summary of the results of unsupervised learning detecting unknown optical physical layer attacks 

MinSamples Epsilon TNR FPR TPR FNR F1 score 
3 1 0.819 0.18 0.76 0.239 0.77 
5* 1* 0.733 0.266 0.861 0.138 0.803 
8 1 0.601 0.398 0.912 0.087 0.786 
10 2 0.998 0.0012 0.374 0.625 0.42 
20 2 0.998 0.0017 0.55 0.449 0.623 
50 2 0.991 0.008 0.586 0.413 0.659 
80 2 0.891 0.108 0.653 0.346 0.687 
* Configuration with the best overall F1 score. 

7.6.2.2. Scalability Performance Evaluation 
In this section, we focus on the performance evaluation of two components: the Attack Detector and 
the Attack Inference. The evaluation of the Attack Mitigator will be performed in the next deliverable 
(i.e., D5.3). 

For the scalability performance evaluation, we designed a script that is able to generate a high number 
of optical service requests to TeraFlowSDN. Moreover, in order to be able to accommodate such a 
high number of services, we disabled the resource availability checks when performing the 
provisioning of new services. Finally, we configured the emulated optical data plane to replay data 
captured as detailed in Section 7.3.2. For the results in this deliverable, we only replay data from 
normal operating conditions, given that the scalability of the Attack Mitigator component is not 
assessed. 

 

Figure 76. Confusion matrices for the ANN 
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The results illustrated in this section are collected and plotted using Prometheus. We show the 
Prometheus query for each plot to serve as reference for reproducibility purposes. We varied the 
number of active optical services in the range [120, 240, 480, 960, 1440, 1920]. The OPM cycle is 
configured for 30 seconds, as well as the Cybersecurity assessment cycle (i.e., our components run the 
cycle at every 30 seconds). We use the Attack Inference component that leverages DBSCAN, and 
unsupervised learning algorithm that is able to detect anomalies (e.g., attacks in the case of our 
scenario). For each prediction, we use 330 samples. The cache is enabled and saves the 330 samples 
between monitoring loops. 

First, let us visualize the number of active optical services in the network. Figure 77 shows the number 
of active optical services in the network, together with the Prometheus query used to generate it. For 
each number of services, we leave the experiments running for 30 minutes in order to be able to 
capture the stable scalability performance. Between each test, we remove all the active services and 
leave TeraFlowSDN without any services for 10 minutes. 

 

Next, we move our attention to evaluating how successful the Cybersecurity component is with 
respect to scaling to meet the monitoring cycle (i.e., configured for 30 seconds in this case). Figure 78 
shows the Prometheus query and the plot generated for the average loop time. By analyzing Figure 
78 in combination with Figure 77 we can note that the increases in the number of services coincide 
with increases in the loop time (i.e., x axis have the same time span). This represents the time that it 
took to perform the optical physical layer attack detection over all the services in the network. Note 
that the plot shows that at the beginning of a given experiment (e.g., right after adding 240 services) 
there is a increase in the response time, that later stabilizes towards the final value. This behaviour is 
explained by the fact that right after adding a high number of services, all at once, it takes a few 
minutes for TeraFlowSDN to scale to the necessary number of replicas. However, this represents a 
worst-case scenario, as in normal operating conditions the number of active services does not 
fluctuate so drastically in a short period of time. 

optical_security_active_services 

 

Figure 77. Number of active optical services (y axis) over time (x axis) in the network as collected by Prometheus 
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We can see that between 120 and 960 services, the loop took between 10 and 15 seconds. Note that 
this time can be considered quite stable, even though the number of services in the network increased 
by a factor of 8. When the number of services is 1440, the loop takes longer than 20 seconds. When 
considering 1920 active optical services, the loop time reaches 30 seconds at first, but quickly stabilizes 
below that value. 

 

 

In the following, we focus on the scalability properties of each individual component. Figure 79 shows 
the response time of the Attack Detector for performing the cybersecurity monitoring to a single 
service. The value is averaged over all the replicas. We can see that at the beginning of each 
experiment (i.e., right after adding a high number of services), the response time is high, reaching up 
to 230 milliseconds for the case with 1920 services. However, as the experiment progresses, more 
replicas are created and the response time stabilizes around a value between 80 and 120 milliseconds, 
which represents a very stable range given the great difference in the number of services. 

rate(optical_security_loop_seconds_sum[5m]) / 
rate(optical_security_loop_seconds_count[5m]) 

 

Figure 78. Time taken for the optical cybersecurity monitoring loop (y axis, in seconds) over time (x axis) as collected by 
Prometheus 
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7.7. Pending Work and Summary 

Table 10 summarizes the KPIs and KVIs achieved by the current implementation of Scenario 3. Some 
of the KPIs and KVIs are left for D5.3. 

Table 10. Target and achieved KPIs and KVIs for Scenario 3 

KPI Target Validation results 
Layer 3 Optical 

Security > 99% accuracy 
(known attacks) 

• Accuracy Score: 0.99966 
• False positive: 0 
• False negative: 144 
• True positive: 1494 
• True negative: 421968 
• F1 Score: 0.95402 

• Accuracy Score: 
0.982 

• False positive: 
0.002 

• False negative: 
0.004 

• True positive: 
0.996 

• True negative: 
0.997 

• F1 Score: 0.996 
 > 90% accuracy 

(unseen attacks) 

N/A 

• Accuracy: 0.817 
• False positive: 

0.266 
• False negative: 

0.138 
• True positive: 

0.861 

 

Figure 79. Average response time over all replicas (y axis, in seconds) of the optical attack detector over time (x axis) as 
measured by Prometheus 
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• True negative: 
0.773 

• F1 Score: 0.803 
 > 30% reduction of 

attack response 
latency 

To be evaluated in D5.3 N/A 

Reliability > 90% accuracy in 
detecting and avoiding 
known adversarial 
attacks. 

To be evaluated in D5.3  N/A 

Energy > 25% resource 
consumption • Percentage of Total 

Average CPU Energy 
Consumption Reduction 
with respect to the 
original model in the 
inference stage 
(Knowledge Distillation, 
batch size: 256): 
82.304%. 

• Loss in the accuracy: 
0.016%. 

• Loss in the balanced 
accuracy: 0.008%. 

• Loss in the F1 Score: 
0.011 

To be evaluated in 
D5.3 
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8. Conclusions and Next Steps 
This deliverable reports the latest efforts on integration and performance evaluation of TeraFlowSDN. 
In this regard, three scenarios are leveraged to drive the integration and evaluation efforts. The main 
outcomes are a functional CI/CD environment and detailed documentation for new and experienced 
users. Moreover, a new metrics collection framework enables the internal monitoring and 
performance assessment of TeraFlowSDN components and workflows. Finally, each scenario has been 
detailed, including its motivation and challenges, alignment with the overall TeraFlowSDN 
architecture, the setup used to evaluate the performance in the context of the scenario, metrics 
relevant to the scenario, workflows, deployment, and preliminary performance evaluation. 

Regarding integration, the next steps include the functional tests created for the scenarios in the CI/CD 
environment. This will enable the validation of modifications in terms of unitary tests (i.e., tests more 
focused on the individual functionalities of each component) and end-to-end workflows. Activities for 
dissemination will continue, and feedback will be considered for newer versions of the documentation 
offered by TeraFlowSDN. 

The scenarios will continue to be integrated and evaluated, with several points to be reported in D5.3. 
For Scenario 1, all the KPIs and KVIs have been detailed in this deliverable. However, due to issues in 
the integration of components, all measurements of the defined KPIs and KVIs will be reported in D5.3. 
The same applies to Scenario 2, where the integration issues with the Context component prevented 
us from obtaining the preliminary performance results as expected. 

Finally, in the case of Scenario 3, several KPIs and KVIs have already been measured and reported in 
this deliverable. However, additional performance assessments remain to be performed. In particular, 
with respect to the energy efficiency optimization performed in Cybersecurity Layer 3, the best 
optimized model that was obtained in the energy efficiency assessment that was performed will be 
deployed in the Centralized Attack Detector component in the next iteration, and further energy 
efficiency and performance metrics will be collected in this environment to validate that they are 
consistent with the energy efficiency and performance metrics that were obtained offline. 
Furthermore, resilience to adverse attacks will also be analysed in the next iteration. In this sense, we 
will report the methodology and results of our study on the effectiveness of the defensive mechanisms 
put in place to protect the ML model deployed in the Centralized Attack Detector against this type of 
attack. In the case of Cybersecurity Layer 3 components, a comprehensive evaluation of the real-time 
performance of the different components under various stress conditions will be carried out, and 
different scalability mechanisms will be studied to ensure the correct operation of these components 
under high load. In the future, we will also analyse the attack mitigation response time of 
Cybersecurity L3 components in the next iteration and study different strategies to improve the 
performance of these services by reducing latency in inter-component communications. For optical 
cybersecurity, the next deliverable will include a measurement of the elapsed time from detection to 
end-to-end mitigation, as well as an analysis of the performance of the attack mitigation strategy. 
Finally, an assessment of the power consumption of the optical cybersecurity loop will be included, 
and optimizations will be proposed.  
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