
Grant Agreement No.: 101015857
Research and Innovation action
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G

Secured autonomic traffic management for a Tera of SDN flows

D5.2: Implementation of pilots and first evaluation

Deliverable type R (Report)

Dissemination level PU (Public)

Due date 31.12.2022

Submission date 12.01.2023

Lead editor Carlos Natalino (CHAL)

Authors Lluis Gifre, Ricardo Martínez, Ricard Vilalta, Javier Vilchez, Raul Muñoz,
Michela Svaluto, Laia Nadal (CTTC), Alberto Mozo, Amit Karamchandani
Batra, Luis de la Cal (UPM), Antonio Pastor, Pablo Armingol, Juan Pedro
Fernández Diaz, Óscar González de Dios (TID), Georgios P. Katsikas (UBI)
Jose Juan Pedreño (ADVA), Achim Autenrieth (ADVA), Sergio González,
Javier Moreno (ATOS), Carlos Natalino (CHAL), Sebastien Andreina,
Konstantin Munichev, Giorgia Mason (NEC), Min Xie, Jane Frances Pajo,
Abdelhakim Cherifi, Håkon Lønsethagen (Telenor), Mika Silvola
(Infinera), Michele Milano, Nicola Carapellese (SIAE), Peer Stritzinger
(Stritzinger)

Reviewers Paolo Monti (CHAL), Thomas Zinner (NTNU)

Quality check team Adrian Farrel (ODC), Daniel King (ODC)

Work package WP5

Abstract

This deliverable reports the efforts in three different aspects: i) continuously improving the processes
adopted for the integration of TeraFlowSDN, ii) designing the metrics collection framework for the
performance analysis of TeraFlowSDN, and iii) refining the scenario description and defining their
workflows and deployment. The integration efforts led to the creation of several processes to be
adopted by the project and documentation to facilitate ease and speed of TeraFlowSDN deployment.
In addition, the metrics collection framework leverages state-of-the-art open-source software to
enable easy and insightful monitoring of TeraFlowSDN. Finally, each scenario is detailed, including
which KPIs and KVIs are relevant to the scenario and the specific workflows and deployments, followed
by the preliminary performance evaluation.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 2 of 112

[End of abstract]

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 3 of 112

Disclaimer

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may
not be reproduced or copied without permission.

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

 CC BY-NC-ND 3.0 License – 2020 TeraFlow Consortium Parties

Acknowledgment

The research conducted by TeraFlow receives funding from the European Commission H2020
programme under Grant Agreement No 101015857. The European Commission has no responsibility
for the content of this document.

Revision History

Revision Date Responsible Comment
0.1 22.04.2022 Editor Initial structure of the document
0.2 26.10.2022 Editor Initial contributions to Scenario 3
0.3 03.11.2022 Amit

Karamchandani
Batra

Contributions to Scenario 3

0.4 29.11.2022 Ricard Vilalta Revision of the outline
0.4.1 30.11.2022 Sergio González Contributions to Section 3
0.4.2 01.12.2022 Alberto Mozo Contributions to Scenario 3
0.4.3 02.12.2022 Georgios P.

Katsikas
Contributions to Scenario 1

0.5 13.12.2022 Editor Contributions to Scenario 3
0.5.1 19.12.2022 Paolo Monti Review of Sec. 4
0.5.2 20.12.2022 Partners Contributions to Scenarios 1 and 2
0.5.3 21.12.2022 Editor Inclusion of abstract, executive summary,

introduction and conclusions
0.5.4 22.12.2022 Partners Inclusion of content
0.6 29.12.2022 Editor Initial draft completed
0.6.1 30.12.2022 Daniel King Document Review
0.6.2 03.01.2023 Paolo Monti Document Review
0.6.3 05.01.2023 Thomas Zinner Document Review
0.7 06.01.2023 Ricard Vilalta Consolidation of Reviews
0.7.1 07.01.2023 Partners Addressing comments
0.7.2
1.0

09.01.2023
16.01.2023

Editor
Daniel King

Addressing comments
Q/A Review

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 4 of 112

EXECUTIVE SUMMARY
This deliverable summarizes the activities of WP5 during the second year of the TeraFlow project. The
objective of this document is to describe the ongoing efforts towards i) continuously improving the
processes adopted by TeraFlowSDN for integration, ii) designing the metrics collection framework that
the components for performance assessment can leverage, and iii) refining the scenario definition and
further detailing how the components will interact with each other to realize the scenario objective.
In addition, we also focus on the definition and initial measurement of KPIs and KVIs that will quantify
the benefits of TeraFlowSDN.

The document starts with an introductory section that highlights the purpose of this deliverable, its
relationship with other deliverables, and a detailed description of the document's structure. The
second section presents an overview of the TeraFlowSDN architecture. The third section offers an
integration report. It describes the modifications adopted by the TeraFlow project over the past year
of development, as well as the initiatives and documentation provided to facilitate the introduction
of TeraFlowSDN to new users. Finally, in the fourth section, we introduce the metrics collection
framework for TeraFlowSDN to consolidate the performance assessment of all the components in a
single solution and enable in-depth scalability and performance analysis.

The second half of the document includes sections 5, 6 and 7; these are devoted to the three scenarios
used to evaluate TeraFlowSDN. Each scenario introduces its motivation and challenges. The alignment
with TeraFlow architecture specifies how the scenario will utilize TeraFlowSDN and which components
and use cases are relevant to each scenario. The scenario setup highlights the infrastructure adopted
for realizing the scenario and evaluating the performance of TeraFlowSDN. Each scenario also details
relevant metrics - in the form of KPIs and KVIs - and how these metrics are measured. The workflows
and current deployment specify how the components of TeraFlowSDN communicate the
functionalities needed by the scenario. A preliminary performance evaluation illustrates the progress
towards achieving all the KPIs and KVIs specified. Finally, each scenario highlights the pending work
that will be the target of the remaining project efforts.

Finally, this deliverable concludes with a short description of the next steps to be adopted by each one
of the scenarios.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 5 of 112

Table of contents
Executive Summary ... 4

List of Figures .. 8

List of Tables ... 10

Abbreviations .. 11

1. Introduction .. 15

1.1. Purpose ... 15

1.2. Relationship with other Deliverables .. 15

1.3. Structure ... 15

2. Architecture Overview .. 16

3. Integration Report .. 18

3.1. European Telecommunications Standards Institute (ETSI) ... 18

3.2. GitLab .. 19

3.2.1. Feature Request Procedure .. 19

3.2.2. Feature Lifecycle ... 22

3.2.3. Bug Report Procedure ... 23

3.2.4. Wiki ... 23

3.3. Slack .. 23

3.4. CI/CD Environment ... 24

3.5. Release Documentation .. 27

3.5.1. Installation Instructions .. 27

3.5.2. Wiki ... 28

3.5.3. Tutorial and TeraFlowSDN Virtual Machine.. 29

4. Metrics Collection Framework .. 31

4.1. Micro-service gRPC Calls ... 32

4.2. Prometheus ... 33

4.3. Grafana.. 35

4.4. Metric Definitions ... 36

5. Scenario 1: Autonomous Network Beyond 5G ... 38

5.1. Scenario Introduction ... 38

5.2. Alignment with TeraFlow Architecture ... 39

5.3. Scenario Setup .. 40

5.4. Scenario Metrics ... 46

5.5. Workflows and Current Deployment .. 47

5.5.1. Zero-touch Device Automation ... 47

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 6 of 112

5.5.2. L2/L3VPN Service Management and Integration with ETSI OpenSource MANO 49

5.5.3. Slice Grouping and End to End Slice Provisioning with SLA .. 51

5.5.4. Service Restoration with P4 Devices ... 53

5.5.5. Energy-efficient Path Computation .. 56

5.6. Preliminary Performance Evaluation .. 57

5.6.1. Zero-touch Device Automation ... 57

5.6.2. L3VPN Service Management and Integration with ETSI OpenSource MANO 58

5.6.3. Slice Grouping and End to End Slice Provisioning with SLA .. 60

5.6.4. Service Restoration with P4 devices ... 62

5.6.5. Energy-Efficient Path Computation .. 62

5.7. Pending Work and Summary .. 64

6. Scenario 2: Inter-domain .. 65

6.1. Scenario Introduction ... 65

6.2. Alignment with TeraFlow Architecture ... 66

6.3. Scenario Setup .. 68

6.4. Scenario Metrics ... 69

6.5. Workflows and Current Deployment .. 70

6.5.1. Inter-domain Provisioning using Transport Network Slices with SLA 70

6.5.2. Distributed Ledger Technologies .. 71

6.5.3. Service/Slice Request Scalability ... 72

6.5.4. Location-aware Service Updates... 73

6.6. Preliminary Performance Evaluation .. 74

6.6.1. Inter-domain Provisioning using Transport Network Slices with SLA 74

6.6.2. Distributed Ledger Technologies .. 75

6.6.3. Service/Slice Request Scalability ... 78

6.6.4. Location-aware Service Updates... 78

6.7. Pending Work and Summary .. 78

7. Scenario 3: Cybersecurity.. 79

7.1. Scenario Introduction ... 79

7.2. Alignment with TeraFlow Architecture ... 80

7.3. Scenario Setup .. 81

7.3.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments ... 81

7.3.2. Emulated Optical Setup for Optical Cybersecurity Experiments 82

7.4. Scenario Metrics ... 84

7.5. Workflows and Current Deployment .. 86

7.5.1. Layer 3 Cybersecurity .. 87

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 7 of 112

7.5.2. Optical Cybersecurity .. 90

7.6. Preliminary Performance Evaluation .. 94

7.6.1. Layer 3 ... 94

7.6.2. Optical ... 104

7.7. Pending Work and Summary .. 109

8. Conclusions and Next Steps .. 111

References .. 112

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 8 of 112

List of Figures
Figure 1. TeraFlowSDN architecture for release 2.0 ... 17
Figure 2. ETSI OSG TFS governance ... 18
Figure 3. Gitlab For a new feature request ... 20
Figure 4. Example of new feature request .. 21
Figure 5. An example of the TeraFlowSDN Slack .. 24
Figure 6. TeraFlowSDN updated GitLab repository structure ... 25
Figure 7. Global .gitlab-ci.yml configuration file ... 26
Figure 8. Code coverage of the Monitoring component .. 27
Figure 9. List of pages composing the TeraFlowSDN public wiki .. 28
Figure 10. TeraFlowSDN extended architecture encompassing the metrics collection framework 31
Figure 11. Architecture of the service mesh with sidecar proxy and service container 32
Figure 12. LINKERD dashboard during a Scenario 3 experiment .. 33
Figure 13. Example of Prometheus exported metrics .. 34
Figure 14. Screenshot of Prometheus WebUI with metrics collected from Python 35
Figure 15. The Grafana dashboard for the OFC’22 demonstration .. 36
Figure 16. Scenario 1 high-level architecture ... 39
Figure 17. Scenario 1 E2E TeraFlow instantiation ... 40
Figure 18. iFusion Testbed .. 41
Figure 19. Openstack and IP router scenario interconnected through iFusion Testbed 42
Figure 20. AS7315-30X chassis layout ... 42
Figure 21. Spirent N12U chassis layout... 43
Figure 22. Edgecore DRX-30 chassis layout .. 43
Figure 23. Dell R730 .. 44
Figure 24. Dell R720xd .. 44
Figure 25. ASNK ODU radio link .. 45
Figure 26. Scenario 1 workflow: Adding a device ... 48
Figure 27. Scenario 1 workflow: Device bootstrap ... 48
Figure 28. Scenario 1 workflow: Activate Device Monitoring .. 49
Figure 29. Scenario 1 workflow: Monitor Device Ports .. 49
Figure 30. Integration of NFV-O and Transport SDN Controller ... 50
Figure 31. Scenario 1 workflow: NS Provisioning ... 51
Figure 32. Example of ietf-l2vpn-svc:site-network-access.. 51
Figure 33. Transport Network Slice grouping on a hierarchical multi-layer SDN scenario 52
Figure 34. Slice grouping sequence diagram .. 53
Figure 35. Policy-driven service restoration on a P4-based topology .. 55
Figure 36. Basic network Service Creation relying on the PathComp component output: route and
resource selection ... 57
Figure 37 Screen capture of specific device information obtained after Device Automation 58
Figure 38. OSM screen capture with provisioned NS instance ... 58
Figure 39. IETF L2VPN Extensions for end-to-end disjoint paths .. 59
Figure 40. OSM-TFS Wireshark capture to deploy end-to-end network service 59
Figure 41. Example of slice templates .. 60
Figure 42. Applying slice grouping on new slice request depending on previously deployed slices 61
Figure 43. Elbow method applied to slice grouping ... 61
Figure 44. Allocated network slices and their slice groups ... 62

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742814
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742815
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742816
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742817
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742822
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742823
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742824
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742825
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742826
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742827
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742828
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742829
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742830
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742831
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742832
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742833
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742834
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742835
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742836
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742837
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742838
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742839
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742840
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742841
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742848
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742850

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 9 of 112

Figure 45. PathComp: REST API requesting a network service with energy-based Context Information
 .. 63
Figure 46. Scenario 2 high-level architecture ... 66
Figure 47. Scenario 2 TeraFlow instantiation in a single domain ... 67
Figure 48 Interconnected CSWGs at CTTC Testbed .. 68
Figure 49. Telenor's testbed ... 68
Figure 50. Scenario 2 workflow: Inter-domain E2E slice provisioning .. 70
Figure 51. PDL proposed architectures, Full PDL (left); Complementary PDL (right) 71
Figure 52. Scenario 2 workflow: Sequence diagram for DLT use.. 72
Figure 53. Scenario 2 workflow: Service Request Scalability .. 73
Figure 54. Scenario 2 workflow: Location-aware Service updates ... 74
Figure 55. Wireshark capture of Authenticate sequence ... 75
Figure 56. Inter-domain End-to-End Transport Network Slice deployment ... 75
Figure 57. Transport Network topology for DLT evaluation ... 76
Figure 58. CDF for the DLT Delay .. 76
Figure 59. Inter-domain Transport Network Slice that includes sub-slices .. 77
Figure 60. Sub-slice information details ... 77
Figure 61. Cybersecurity scenario and threats ... 79
Figure 62. TeraFlow components used in the cybersecurity scenario ... 81
Figure 63. Deployment of the cybersecurity scenario focusing on L3 .. 82
Figure 64. Simplified view of the emulated deployment .. 83
Figure 65. Scenario 3 workflow: General communication when creating a new service 87
Figure 66. Scenario 3 workflow: Traffic Capture and Feature Extraction Workflow 87
Figure 67. Scenario 3 workflow: Attack Detection Workflow (Layer 3).. 88
Figure 68. Scenario 3 workflow: Attack Mitigation Workflow (Layer 3) ... 88
Figure 69. Scenario 3 workflow: Cybersecurity KPIs Monitoring Workflow (Layer 3) 90
Figure 70. Scenario 3 workflow: Initialization of the optical cybersecurity components 91
Figure 71. Scenario 3 workflow: Receiving service events from the Context component 92
Figure 72. Scenario 3 workflow: Periodical optical cybersecurity monitoring using supervised learning
 .. 93
Figure 73. Scenario 3 workflow: Periodical optical cybersecurity monitoring using unsupervised
learning ... 93
Figure 74. Energy consumption reduction obtained with each optimization strategy in the inference
phase with respect to the non-optimized model using a batch size of 256. 102
Figure 75. Training performance of the ANN for attack detection and identification 105
Figure 76. Confusion matrices for the ANN .. 106
Figure 77. Number of active optical services (y axis) over time (x axis) in the network as collected by
Prometheus ... 107
Figure 78. Time taken for the optical cybersecurity monitoring loop (y axis, in seconds) over time (x
axis) as collected by Prometheus .. 108
Figure 79. Average response time over all replicas (y axis, in seconds) of the optical attack detector
over time (x axis) as measured by Prometheus .. 109

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742852
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742853
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742856
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742857
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742858
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742859
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742860
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742867
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742868
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742869
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742870
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742871
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742872
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742873
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742874
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742875
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742876
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742877
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742878
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742878
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742879
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742879
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742880
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742880
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742881
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742882
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742883
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742883
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742884
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742884
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742885
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742885

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 10 of 112

List of Tables
Table 1. Summary of metrics relevant for the TeraFlow project .. 36
Table 2. KPIs and KVIs for the Scenario 1 .. 46
Table 3. Target and achieved KPIs and KVIs for Scenario 1 .. 64
Table 4. KPIs and KVIs for the Scenario 2 .. 69
Table 5. Target and achieved KPIs and KVIs for Scenario 2 .. 78
Table 6. KPIs and KVIs for Scenario 3 .. 84
Table 7. Selected features of the Crypto dataset to train the cryptomining detector. 96
Table 8. Energy efficiency optimization strategies considered in the experimental framework. 100
Table 9. Summary of the results of unsupervised learning detecting unknown optical physical layer
attacks ... 106
Table 10. Target and achieved KPIs and KVIs for Scenario 3 .. 109

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.2/TeraFlow_D5-2_v0.7.docx#_Toc124742892

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 11 of 112

Abbreviations
ACL Access Control List

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ASBR Autonomous System Boundary Router

B5G Beyond 5G

BGP Border Gateway Protocol

CAD Centralized Attack Detector

CCAM Cooperative, Connected and Automated Mobility

CD Continuous Delivery

CDF Cumulative distribution function

CI Continuous Integration

CO Central Office

CotS Commercial off-the-Shelf

DAD Distributed Attack Detector

DB Database

DC Data Centre

DLT Distributed Ledger Technology

DNN Deep Neural Network

EAR Energy-Aware Routing

ECA Event-Condition-Action

E2E End-to-End

ETSI European Telecommunications Standards Institute

FEC Forward Error Correction

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

gNMI gRPC Network Management Interface

gRPC gRPC Remote Procedure Call

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 12 of 112

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPM Intelligent Pluggables Manager

IT Information Technology

KPI Key Performance Indicator

KVI Key Value Item

L2 Layer 2

L2VPN Layer 2 Virtual Private Network

L3 Layer 3

L3NM Layer 3 Network YANG Model

L3VPN Layer 3 Virtual Private Network

LG Leadership Group

MANO Management and Orchestration

MDG Module Development Groups

MEC Multi-access Edge Computing

ML Machine Learning

MPLS Multiprotocol Label Switching

MW Microwave

NBI North-Bound Interface

NFV Network Function Virtualization

ODU Optical Data Unit

OLS Open Line System

ONF Open Networking Foundation

OPM Optical Performance Monitoring

OS Operating System

OSG TFS Open Source Group TeraFlowSDN

OSI Open Systems Interconnection

OSM Open-Source MANO

OSS/BSS Operation Support System/Business Support System

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 13 of 112

OTA Over-the-Air

OXC Optical Crossconnect

PE Provider Edge

PCEP Path Computation Element Protocol

PDL Permissioned Distributed Ledger

PMC Power Management Controller

RAPL Running Average Power Limit

ReLU Rectified Linear Unit

REST Representational State Transfer

ROADM Reconfigurable Optical Add/Drop Multiplexer

RPC Remote Procedure Call

SASE Secure Access Service Edge

SBI South-Bound Interface

SDN Software-Defined Networking

SD-WAN Software-defined Wide Area Network (SD-WAN)

SLA Service Level Agreement

SLE Service Level Expectation

SLO Service Level Objective

TAPI Transport API

TSC Technical Steering Committee

TF Task Forces

TLS Transport Layer Security

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

TR Technical Reference

VIM Virtual Infrastructure Manager

VNF Virtualized Network Functions

VPN Virtual Private Network

WAN Wide Area Network

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 14 of 112

YAML YAML Yet Another Markup Language

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 15 of 112

1. Introduction
The second version of TeraFlowSDN delivers state-of-the-art open-source cloud-native Software-
Defined Networking (SDN). It provides efficient, reliable, scalable, and flexible control for B5G (Beyond
5G) networks. In this context, it is crucial to ensure that TeraFlowSDN correctly interacts with existing
networking devices and can take advantage of existing protocols. WP5 performs the TeraFlowSDN
integration, followed by experimentation, validation, and evaluation using a range of KPIs and KVIs.

Given the highly distributed nature of the TeraFlowSDN development, it is vital to enumerate,
evaluate, and select suitable techniques, processes, and tools that can be used to assist the partners
during the development of TeraFlowSDN components and scenarios. Moreover, the adopted setup
needs to support collaboration among all partners while ensuring the consistency and reliability of the
resulting software.

The project leverages the infrastructure available at the partners’ premises to build testbed setups,
realizing three scenarios described in this deliverable. The scenarios are first described, highlighting
their context and motivation. Then, details of the scenarios related to the setup, metrics, workflows,
deployments, and preliminary performance evaluation are presented.

1.1. Purpose

The purpose of D5.2 is threefold. The first objective is to describe the development and progress made
since D5.1 in terms of code integration, documentation, and development environment. The second
objective is to report the design of the metrics collection framework developed for TeraFlowSDN,
which enables partners and users to obtain a detailed performance analysis of the internal
TeraFlowSDN components, potentially enabling further code optimizations. Finally, this deliverable
reports on the efforts in refining and implementing the scenarios.

1.2. Relationship with other Deliverables

D5.2 takes input from MS2.2, where new details on use cases, and requirements via feedback, have
been defined, including an updated architecture of TeraFlowSDN. Moreover, the components tested
in the scenarios reported in this deliverable are thoroughly described in D3.2 and D4.2.

1.3. Structure

This deliverable is structured as follows. Section 2 presents an architectural overview of TeraFlowSDN.
Section 3 offers an integration report summarising our most recent code integration efforts and
documentation. Section 4 introduces the metrics collection framework developed for TeraFlowSDN,
which uses state-of-the-art open-source software to provide a comprehensive monitoring framework
for TeraFlowSDN and its components. Sections 5, 6, and 7 detail the three scenarios used to evaluate
the performance of TeraFlowSDN. Each section introduces the context and motivation for the
scenario, the partner setup to test TeraFlowSDN, the relevant metrics, workflows, and deployment,
and a preliminary performance evaluation. Finally, section 8 concludes this deliverable by presenting
final remarks and describing the next steps for each one of the initiatives related to WP5.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 16 of 112

2. Architecture Overview
A detailed architecture description for TeraFlowSDN release 2.0 is provided in D2.2. In this section,
we briefly describe the overall architecture to make the deliverable self-contained by introducing the
main design of TeraFlowSDN.

The SDN controller cloud-native architecture consists of stateless micro-services interacting with each
other to fulfill network management tasks, in addition to a few stateful micro-services responsible for
keeping the state of the network. TeraFlowSDN relies on Kubernetes to handle the containers
supporting the micro-services. Kubernetes is a state-of-the-art container orchestrator that provides a
broad set of management capabilities and can operate geographically distributed infrastructures.

Figure 1 shows the proposed micro-service-based architecture. Following the design principles from
cloud-native applications, each component is implemented as a micro-service that is able to export a
set of Remote Procedure Call (RPC) services to other components. Each micro-service can be
instantiated once or with multiple replicas, which allow the application of load balancing techniques.
By adopting stateless micro-services, requests can be handled by any replica of the micro-service. Load
balancing works by establishing an endpoint that will receive all the requests for a service. The
endpoint acts as a load balancer by delegating each request to one of the replicas of the service. The
load balancer is also responsible for keeping track of the replicas, i.e., tracking the addition and
deletion of replicas and updating its internal list of replicas. Depending on the RPC implementation
adopted, we may use the built-in Kubernetes load balancer, or adopt an external one. Each replica is
composed of a Pod, i.e., a collection of containers that are managed by Kubernetes as a single entity.
More information is provided in Sec. 4.1.

Context component stores the network configuration (e.g., topologies, devices, links, services) and its
status as managed by the TeraFlowSDN components in a No-SQL database to optimize concurrent
access. Internally, it implements a Database API enabling to switch between different backends. The
TeraFlowSDN controller uses its North-Bound Interface (NBI) component (previously known as
Compute) to receive Layer 2 Virtual Private Network (L2VPN) requests and convert them to necessary
connectivity services or Transport Network Slices via the Slice and Service components. The Service
component is responsible for selecting, configuring, and deploying the requested connectivity service
through the South-Bound Interface (SBI). To this end, the SBI component interacts with the network
equipment through pluggable drivers. In addition, a Driver Application Programming Interface (API)
has been defined to facilitate the addition of new network protocols and data models to the SBI
component. The Automation component implements several Event-Condition-Action (ECA) loops
defining the automation procedures in the network. Monitoring manages the different metrics
configured for the network equipment and services, stores monitoring data related to selected Key
Performance Indicators (KPI), and provides means for other components to access the collected data.
Internally, the Monitoring component relies on a database to store the monitoring data as time series,
exploiting its powerful querying and aggregation mechanisms for retrieving the collected data.

North-Bound Interface (NBI) component serves as the interface from internal gRPC (gRPC Remote
Procedure Call) and protocol buffers towards external Representational State Transfer (REST)-like
requests. It provides a Representational State Transfer API (REST-API)–based to NBI external systems,
such as Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC) frameworks.
We also include a Web-based User Interface (WebUI) that uses the gRPC-based interfaces made
available by the TeraFlowSDN components to inspect the network state and issue operational
requests to the TeraFlowSDN components.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 17 of 112

Figure 1. TeraFlowSDN architecture for release 2.0

TeraFlowSDN Release 2 provides extended and validated support for OpenConfig-based routers and
interaction with optical SDN controllers through the Open Networking Foundation (ONF) Transport
API (TAPI). Moreover, TeraFlowSDN release 2 includes complete integration for microwave network
elements (through the Internet Engineering Task Force - IETF - network topology YANG model), and
Point-to-Multipoint integration of XR optical transceivers and P4 routers. New features for P4 routers
include loading a P4 pipeline on a given P4 switch; getting runtime information (i.e., flow tables) from
the P4 switch; and pushing runtime entries into the P4 switch pipeline, thus allowing total usage of P4
switches.

Service Level Agreement (SLA) validation has been re-engineered through all the workflows, from
Device monitoring to Service and Slice life cycle management. Thus, the Slice, Service, Policy, Device
and Monitoring Components have been updated to support the necessary network automation
workflows. Moreover, Slice grouping has also been introduced, along with the Path Computation
Component. This component allows new use cases, such as energy-aware service placement.

Cybersecurity mechanisms have been updated, including novel components for attack detection
(either distributed or centralized), attack inference, and attack mitigation. In addition, several novel
use cases are supported. Distributed Ledger Technology (DLT) has also been extended to interact with
the Inter-domain Component and use the deployed Hyperledger Fabric.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 18 of 112

3. Integration Report
The previous section outlined the TeraFlowSDN architecture which is also the reference point for the
integration process. In the following, we will overview the tools used for the component integration
and some helpful documentation and instructions for installing the TeraFlowSDN controller.

We will first present the new GitLab repository hosted by European Telecommunications Standards
Institute (ETSI), including all the new features in addition to the ones inherited from the previous
repository. Then, we will introduce our primary communication channel, i.e., Slack, followed by a
summary of our Continuous Integration/Continuous Delivery (CI/CD) environment and its updates
since D5.1. Finally, we will overview the different documentation available for the users.

3.1. European Telecommunications Standards Institute (ETSI)

The ETSI Open Source Group (OSG) TeraFlowSDN (TFS) defines a framework for developing a cloud-
native SDN controller for high-capacity networks aiming to support future networks beyond 5G. Based
on a cloud-native, micro-services architecture, the software will be able to integrate with existing
frameworks (NFV, MEC) and provide a toolbox for different ETSI groups to experiment with new
features for flow aggregation, management (service layer), network equipment integration
(infrastructure layer), AI/ML (Artificial Intelligence/Machine Learning)-based security, and forensic
evidence for multi-tenancy.

The OSG TFS is established on the initiative of a group of ETSI Full, Associate and Applicant members.
The project is responsible for defining its own detailed Working Procedures within the limits of the
ETSI Terms of Reference. It will also be responsible for the validation of the source code it produces,
together with any associated documentation.

Figure 2. ETSI OSG TFS governance

The governance of OSG TFS is shown in Figure 2 and it is mainly structured into the following bodies:

• Leadership Group (LG)
• Technical Steering Committee (TSC)
• Module Development Groups (MDG)
• Dedicated Task Forces (TFs)

Organizations participating in these bodies and involved in code contributions shall sign the OSG TFS
Member or Participant agreements to guarantee their adherence to the Terms of Reference and

https://portal.etsi.org/Portals/0/TBpages/TFS/Docs/TFS_Working_Procedures_v1_0.pdf
https://portal.etsi.org/Portals/0/TBpages/TFS/Docs/OSG_TFS_Terms_of_Reference_D-G_Approved_20220331.pdf

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 19 of 112

license(s) used in the project.

For more detailed information, we suggest to access https://tfs.etsi.org/legal/

3.2. GitLab

After the creation of the ETSI TeraFlowSDN community, we have moved from the original Gitlab
towards a GitLab hosted inside the ETSI Laboratories:

https://labs.etsi.org/rep/tfs/controller

All features from the previous GitLab repository are available in the new one.

This section presents the features used and the project-defined workflows for feature requests,
feature lifecycle, bug reporting and technical wiki.

3.2.1. Feature Request Procedure

Two kinds of feature requests are considered in this procedure:

- New Feature: a big change that potentially affects several components and requires an
appropriate design phase;

- Enhancement: a relatively small change enhancing TFS that does not require a design phase.

Project features go through a discussion and approval process. To propose both types, TFS uses the
issues on its GitLab code repository.

- Important: a feature request is about functionality, not about implementation details;
- Please describe WHAT you are proposing and WHY it is important;
- DO NOT describe HOW to do it. This is done when the new feature is approved by TSC by

populating the design details.

3.2.1.1. Procedures
1. Go to New Issue page

https://labs.etsi.org/rep/tfs/controller/-/issues/new

You need to be authenticated.

2. Create a New Issue for your feature. Figure 3 shows the Gitlab form for new feature request.

https://tfs.etsi.org/legal/
https://labs.etsi.org/rep/tfs/controller
https://labs.etsi.org/rep/tfs/controller/-/issues/new

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 20 of 112

Figure 3. Gitlab For a new feature request

- Title: A concise high-level description of the feature (see some other examples in GitLab)
- Type: Issue
- Description: Choose the "new-feature" or "enhancement" project templates and fill-in the

auto-generated template describing the feature/enhancement.
- Labels:

o Select the type of request: type::new-feature / type::enhancement
o If you foresee the components affected by the request, please pick the appropriate

labels.
 Component labels have the form comp-<component-name>.

o PLEASE: Do not set other types of labels (to be set by TSC).
- PLEASE: Do not set the following fields (to be set by TSC): EPIC, Assignee, Milestone, Weight,

Due Date
- Submit the Issue
3. Interact with the TSC and the Community throughout the issue.

TSC will review your request. It will be approved if it makes sense and its purpose is clear. Otherwise,
TSC will provide questions for clarification.

3.2.1.2. Designing a Feature
Once a feature has been approved, the design phase starts. The design should be included within the
feature description (GitLab issue description) by concatenating the Design Feature Template (see
below) and correctly filling it in. If the feature description becomes too long, attached files could also
be submitted.

The design is expected to be socialized with the relevant stakeholders (e.g. MDLs and TSC). Dedicated
slots can be allocated in the TECH calls on a per-request basis to discuss and refine it.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 21 of 112

For writing the design, you can check the design of existing features or use the design templates below.

3.2.1.3. New Feature / Enhancement Request Template
The following describes the template for new features or enhancements in TFS.

Proposers
- name-of-proposer-1 (institution-of-proposer-1)
- name-of-proposer-2 (institution-of-proposer-2)
...
Description
Describe your proposal in ~1000 characters.
You can reference external content listed in section "References" as [Ref-1].
Demo or definition of done
Describe which high level conditions needs to be fulfilled to demonstrate this feature
implementation is completed.
You can reference external content (example, demo paper) listed in section "References" as [Ref-
2].
References
1. [Reference name](https://reference-url)
2. Author1, Author2, Author3, et. al., “My demo using feature,” in Conference-Name Demo Track,
20XX.

The Figure 4 below shows an example of a new feature request.

Figure 4. Example of new feature request

3.2.1.4. Feature Design Template
The following text describes a Feature design template to be completed when submitting a feature
request.

Feature Design
Clarifications to Expected Behavior Changes
Existing component logic and workflows between components that need to be altered to realize
this feature.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 22 of 112

Remember to justify these changes.
...
References

List of relevant references for this feature.
...
Assumptions
Enumerate the assumptions for this feature, e.g., fix XXX is implemented and merged, specific
configurations, specific
components deployed.
...
Impacted Components
List of impacted components: Context, Device, Service, PathComp, Slice, Monitoring, Automation,
Policy, Compute, etc.
Just an enumeration, elaboration of impacts is done below.
Component1 Impact
Describe impact (changes) on component1.
...
Component2 Impact
Describe impact (changes) on component2.
...
Testing
Describe test sets (unitary and integration) to be carried out.
This section can include/reference external experiments, demo papers, etc.
...

3.2.2. Feature Lifecycle

Once approved, a feature request could transition through the following steps:

o Approved: Feature approved by TSC; design phase can start;
o Design: Feature under design; discussing on HOW to do it. Only for New Features;
o Development: Design approved; feature under development/implementation;
o Testing and Review: Feature implemented and under review and testing by the developers

and the community;
o Completed: Testing and review completed, and feature merged;
o Abandoned: Feature abandoned.

Important: An approved feature is not a guarantee for implementation.

Implementing a feature requires resources, and resources come from the members, participants and
individual contributors within the TFS Community, which might have prioritized the development of
other features based on their interests and the interests expressed by the LG, the TSC, and the MDGs.

Once a Feature is mature, e.g., Testing, Review, Completed, it can be accepted for inclusion in a
specific Release.

This is accomplished by including the issue ticket in the respective EPIC "ReleaseX.Y".

For instance, to see the features included in Release X.Y, check EPIC "ReleaseX.Y".

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 23 of 112

3.2.3. Bug Report Procedure

Project bugs go through a review, confirmation, and resolution process. TFS uses the issues on its
GitLab code repository for bug reporting and tracking. Important: New bugs must be properly
documented. Details are requested on the details on the deployment environment (Operating System,
MicroK8s, etc.), the TFS version (or branch/commit), the TFS deployment settings (components,
particular configurations, etc.), the particular sequence of actions that resulted in the bug, the TFS
components affected by the bug (if you know them), the expected behaviour (if you know it).

Without this minimal information, it might be difficult to reproduce and resolve the bug and validate
the solution's completeness.

The reporting procedure is described as follows.

1. Go to New Issue page https://labs.etsi.org/rep/tfs/controller/-/issues/new.

You will then need to be authenticated.

2. Create a New Issue for your bug
o Title: A concise high level description of your bug (see some other examples in GitLab)
o Type: Issue
o Description: Choose the "bug" project template and fill-in the auto-generated template

describing the bug.
o Labels:

o Select the type of request: type::bug
o If you foresee the components affected by the bug, pick the appropriate labels for

them.
 Component labels have the form comp-<component-name>.

o PLEASE: Do not set other types of labels (to be set by TSC).
o PLEASE: Do not set the following fields (to be set by TSC): EPIC, Assignee, Milestone,

Weight, Due Date
o Submit the Issue

3. Interact with the TSC and the Community through the issue.

The TSC will review the reported bug and try to reproduce it. If we succeed in reproducing it, we will
mark it as confirmed, and include its resolution in the development plans. Otherwise, TSC will provide
questions for clarification.

3.2.4. Wiki

The documentation using the Git Wiki page is described later in Section 3.5.2.

3.3. Slack

Slack [SLK] is the main communication platform used by the TeraFlowSDN project consortium. Slack is
an instant messaging platform with different add-ins and workplace tools, or as they say, “a single
place for messaging, tools, and files”. Slack provides two communication methods: topic-based group
chats and direct person-to-person chats. In the TeraFlowSDN Slack, we set multiple channels for
different purposes. Some of them are public to the consortium, and some others are private for direct
communication among a reduced number of partners.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 24 of 112

Figure 5. An example of the TeraFlowSDN Slack

Figure 5 depicts an example of the slack interface. Our main communication channel is the #general
channel, where all the consortium members are participants. There are also dedicated channels for
specific task purposes, such as the #wp3, #cicd, #release-v1, or #integration-demo-validation-wp5,
where only the contributing partners are participants. We also have private channels like #atos-cttc
and #ubitech-atos devoted to straightforward communication between partners, especially useful for
component integration purposes. In addition to the channels where multiple users can participate,
there are direct messages that can be used to contact any consortium person directly.

It is worth noting that Slacks provides a formatting toolbar with dedicated formatting options for code
and code blocks, which is especially useful for software development and component integration. In
addition to the chats, Slack also provides tools for audio/video calls and file sharing. The consortium
uses these options less since we usually use Microsoft Teams for resource-sharing purposes.

3.4. CI/CD Environment

The CI/CD environment is still based on GitLab CI, fully integrated within GitLab, which is the source
code management tool used in the project. The CI/CD methodology was already described in D5.1,
presenting the infrastructure, the GitFlow, the branch naming schema, and the testing methodology.
However, some minor changes have been applied to the project file structure since the release of
D5.1. Figure 6 shows the updated repository structure. As can be seen, the root folder is named
controller and contains the following files and folders:

• proto: this folder contains the data models of the TeraFlowSDN components in a .proto file;
• manifests: this folder contains the Kubernetes manifest files for the deployment of the

TeraFlowSDN services in a Kubernetes environment;
• src: this folder contains the source code of the micro-services with the following folders inside:

o common: this folder contains some common resources for the development of the
micro-services (tools folder, multiple scripts, and logger.py) as well as symbolic links
to the compiled protocol buffers that are generated during the installation phase
inside the /proto/src folder

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 25 of 112

o uService_i: this folder contains the source code of the uService_i. Within this folder,
you can find the client, service, and tests folders, the Dockerfile and the .gitlab-ci.yml
file for the Gitlab CI pipeline of that micro-service.

• .gitlab-ci.yml: this is the global Gitlab CI configuration file. It defines the stages of the CI/CD
pipeline and includes each micro-service's individual .gitlab-ci.yml files;

• Deployment scripts: the root folder also contains a set of scripts for the deployment of the
TeraFlowSDN controller into a Kubernetes infrastructure;

• INSTALL.md and README.md: installation and readme files for the users.

Figure 6. TeraFlowSDN updated GitLab repository structure

There are two main components in a Gitlab CI pipeline, jobs, and stages. Jobs define what to do and
stages when to execute the jobs. Stages are sequential and determine the order in which jobs should
be completed. As can be seen in Figure 6, the Gitlab CI configuration file (.gitlab-ci.yml) is
hierarchically structured, defining the stages of the pipeline in the global Gitlab CI configuration file

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 26 of 112

located in the root folder (Figure 7) and defining the jobs for each micro-service in the individual files
located under the /src/uService_i folder that are included as local files in the global .gitlab-ci.yml.

Figure 7. Global .gitlab-ci.yml configuration file

As illustrated in Figure 7, in the TeraFlowSDN CI/CD pipeline, we defined the following six stages:

• dependencies: this stage is devoted to deploying the dependency services of the TerFlowSDN
Kubernetes cluster;

• build: this stage is in charge of building the micro-services and uploading the images to the
Gitlab container registry;

• unit_test: this stage is dedicated to the unit testing of the micro-services, i.e., testing isolated,
small portions of code of individual micro-services;

• integ_test: this stage is associated with integration testing, aiming to check whether multiple
micro-services can properly work together;

• deploy: this stage has been created for deploying the micro-service in the development
infrastructure to perform end-to-end testing;

• funct_test: this stage is dedicated to functional testing, aiming to find any problems in fulfilling
an end-to-end function.

Therefore, each micro-service implements its jobs based on the six stages defined in the global
configuration file. To properly assure the testing stages' effectiveness and facilitate the integration
between components, we measure the code coverage, a software testing metric specifying the code
percentage and the number of code lines successfully validated during the testing phase. An example
of code coverage of the monitoring component can be found in Figure 8. The report shows the code
coverage of each file and the lines that have not been tested as well as the total code coverage of the
monitoring component (e.g., in the Monitoring component is 78%). At the moment of writing this
report, the code coverage reported in the master branch is 87%.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 27 of 112

3.5. Release Documentation

In this subsection, we provide an overview of the documentation provided with the release of the
TeraFlowSDN controller. Then, we provide the installation instruction to facilitate the execution of an
instance of the software locally in any environment. We also present the TeraFlowSDN wiki and some
tutorials to test the functionalities of the software. Finally, we introduce the TFS virtual machine we
have created with an environment that contains all the requirements for adequately deploying the
TeraFlowSDN controller.

3.5.1. Installation Instructions

TeraFlowSDN is based on micro-service architecture and is composed of multiple containers. For
properly orchestrating these containers, we recommend installing TeraFlowSDN in a Kubernetes
cluster. There are multiple Kubernetes distributions. For the sake of simplicity, we recommend
MicroK8s, a powerful, lightweight, and reliable Kubernetes distribution that offers multiple add-ons
out of the box with a minimal disk and memory footprint. A guided tutorial on installing MicroK8s can
be found in the Wiki described in Sec. 3.5.2.

Once a Kubernetes distribution is installed, it is required to clone the repository from the ETSI-hosted
GitLab (https://labs.etsi.org/rep/tfs/controller.git). Once the repository is cloned, the desired branch
must be selected. By default, the repository points to the master branch.

The next step is to prepare the environment for the deployment of the TeraFlowSDN controller. For
this purpose, we designed a script (i.e., my_deploy.sh) that sources the deployment settings. This
script can be found in the repository root folder. Once the environment is ready, the controller can be
deployed using the deploy.sh script in the root directory of the repository. This script builds, tags, and
pushes the images to the repository of the local Kubernetes distribution. Additionally, the script
creates a dedicated namespace for the deployment, deploys all the micro-services, creates an ingress
controller for the WebUI, and initializes the Grafana dashboard. A more detailed tutorial with all the
installation instructions can be found in the Wiki described in Sec. 3.5.2.

Figure 8. Code coverage of the Monitoring component

https://labs.etsi.org/rep/tfs/controller.git

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 28 of 112

3.5.2. Wiki

The TeraFlowSDN offers a comprehensive set of guidelines in the form of a wiki page hosted in the
GitLab of the project. The wiki provides new and experienced users with reference material that can
be followed when new installations of TeraFlowSDN are being created or when required to reproduce
experiments. Figure 9 shows the list of pages currently available at the TeraFlowSDN wiki. The wiki
pages are constantly being developed and updated to reflect the latest developments of the
components.

There are currently four categories of pages:

1. Deployment guide: These pages detail how to set up an environment (i.e., install a Linux OS in
a virtual machine or bare metal), install dependencies, and deploy TeraFlowSDN in its
reference architecture;

2. Run experiments: These pages show how to reproduce experiments using TeraFlowSDN. Most
of the currently available experiments are related to the demonstrations presented at
conferences. However, for the final version, we will also include specific documentation on
how to run the scenario experiments;

3. Features and bugs: These pages document how new feature requests should be placed and
how bugs should be reported;

Figure 9. List of pages composing the TeraFlowSDN public wiki

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 29 of 112

4. Development guide: These pages are currently under development. The main objective is to
document how to create a new component from scratch using the main languages supported
by TeraFlowSDN, e.g., Python and Java.

3.5.3. Tutorial and TeraFlowSDN Virtual Machine

To onboard users to ETSI TeraFlowSDN, we prepared an intuitive virtual tutorial, which includes all
the basic knowledge to understand and use ETSI TeraFlowSDN.

This tutorial offers an overview and hands-on experience in programming the necessary tools to
control and monitor the packet optical networks while introducing ETSI TeraFlowSDN as the cloud-
native SDN controller that enables innovative connectivity services for future networks beyond 5G.
Furthermore, this new class of cloud-native SDN controllers allows rapid prototyping and
experimentation in R&D and standardization activities.

First, an overview of the YANG data modelling language and NETCONF protocol is presented. Later,
TeraFlowSDN controller is introduced. Then, we detail the dynamic establishment of L3VPN using
OpenConfig routers. Later, RESTconf interfaces are explained, and ONF Transport API is exploited to
obtain network information.

 The tutorial enables participants to:

• Learn and use open-source tools to control and monitor packet optical networks;
• Develop simple code for NETCONF agents and clients, including learning to create the

necessary bindings;
• Understand OpenConfig data models and how to use them to control and monitor network

equipment;
• Obtain practical hands-on experience on RESTconf-based interfaces for Control of Transport

Networks;
• Develop a monitoring application using gRPC and gNMI (gRPC Network Management

Interface) protocols;
• Understand and implement publish/subscribe mechanisms for data using Kafka broker.

This tutorial is prepared for the following audience:

• Network Operators and Service providers who want to get first-hand operational experience
with TeraFlowSDN Controller;

• System Integrators who want to develop their expertise with TeraFlowSDN;
• Academia and Universities who are using or considering TeraFlowSDN as a platform for their

research activities in networking;
• TeraFlowSDN developers and users that want to share and test with the community;
• Members of other research projects that may be interested in using TeraFlowSDN Controller

in their research and proof-of-concept activities.

The tutorial recordings can be found at:

1) Controlling and Monitoring Optical Networks, by Lluis Gifre and Ricard Vilalta (CTTC)
2) Introduction ETSI TeraFlowSDN, Deployment, Onboarding Network Devices, Programmable

L3 Routers, by Ricard Vilalta and Lluis Gifre (CTTC)
3) Introduction to P4 and a mini P4 demo, by Georgios P. Katsikas and Panagiotis Famelis

(UBITECH)

http://www.youtube.com/watch?v=4erxoo5_nq4
http://www.youtube.com/watch?v=4J1EXndyxng
http://www.youtube.com/watch?v=4J1EXndyxng
http://www.youtube.com/watch?v=nax5IsdMxXI
http://www.youtube.com/watch?v=nax5IsdMxXI

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 30 of 112

The tutorial slides are available at:

1) Controlling and Monitoring Optical Networks, by Lluis Gifre and Ricard Vilalta (CTTC)
2) Introduction ETSI TeraFlowSDN, Deployment, Onboarding Network Devices, Programmable

L3 Routers, by Ricard Vilalta and Lluis Gifre (CTTC)
3) Introduction to P4 and a mini P4 demo, by Georgios P. Katsikas and Panagiotis Famelis

(UBITECH)

The necessary TFS Virtual Machine to follow tutorial can be downloaded at:
https://www.dropbox.com/s/gbqyybdv6nndufn/TFS-HF-VM.rar?dl=0

More information is available at:

https://labs.etsi.org/rep/groups/tfs/-/wikis/TFS-HACKFEST-1

https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/af90e1414c7c0c1772f60839c2ee4f7e/TFS_HF_2022_-_Session_1.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/abcd754af092e9cb8eee5dce302976e0/TFS_HF_2022_-_Session_2.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/abcd754af092e9cb8eee5dce302976e0/TFS_HF_2022_-_Session_2.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/addc67f7182d3e97e6742c145b7fc207/TFS_HF_2022_-_Session_3.pdf
https://labs.etsi.org/rep/groups/tfs/-/wikis/uploads/addc67f7182d3e97e6742c145b7fc207/TFS_HF_2022_-_Session_3.pdf
https://www.dropbox.com/s/gbqyybdv6nndufn/TFS-HF-VM.rar?dl=0
https://labs.etsi.org/rep/groups/tfs/-/wikis/TFS-HACKFEST-1

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 31 of 112

4. Metrics Collection Framework
TeraFlowSDN offers a built-in metrics collection framework that can benchmark and monitor the
performance of the internal components. Unlike the Monitoring component, which is responsible for
collecting KPI data from the infrastructure, the metrics collection framework is concerned with KPI
data coming from the TeraFlowSDN components. For instance, we may want to monitor how long a
specific method takes to run (e.g., how long does the Context component take to reply with a list of
current services?).

This section introduces the Metrics Collection Framework and suggests several metrics definitions that
are relevant for the different scenarios. Later, these metrics are detailed in next sections on per-
scenario basis.

The metrics collection framework is developed by integrating state-of-the-art open-source software
into the TeraFlowSDN architecture. As illustrated in Figure 10, two leading open-source software
platforms are used:

1. Prometheus: a solution for exposing and collecting metrics about the software performance
at run time. Its adoption has two main steps: (i) instrumenting your component to capture the
relevant metrics and (ii) configuring the main Prometheus server to extract the exposed
metrics periodically;

2. Grafana: a solution for creating graphical dashboards combining multiple data sources. This
last characteristic is essential for TeraFlowSDN because we need dashboards depicting data
collected from the devices (therefore coming from the database used by the Monitoring
component) and data related to the performance of TeraFlowSDN itself (i.e., using the
information coming from Prometheus).

In addition to these two main pieces of software, we rely on a service mesh software capable of
performing load balancing for gRPC requests. Among the alternatives, Istio and Linkerd are regarded
as the two most used service mesh implementations. Adopting Prometheus, Grafana, and a service
mesh grants TeraFlowSDN a wide range of functionalities that can be used to understand the system's
performance and identify potential bottlenecks or targets for optimization.

Figure 10. TeraFlowSDN extended architecture encompassing the metrics collection framework

Monitoring

Context

Automation

Inter-
domain

OSS/BSS

Self-healingLoad
Balancing Auto ScalingCentralized

attack detector

Service DLT

NBI

TE

SBIPolicy PathComp

Forecaster

Distributed
Attack Detector

Attack
Mitigator

Slice
Attack

inference

Web
UI

Service Mesh

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 32 of 112

4.1. Micro-service gRPC Calls

TeraFlowSDN adopts gRPC as the standard protocol for internal communication among components.
The adoption of gRPC is motivated by several factors: (i) the explicit definition of services and
messages provided by the protobuffers, (ii) the binary format that provides lower communication
overhead, and (iii) the easy use and interoperability across programming languages. However, the
gRPC protocol leverages HTTP/2 as the transfer protocol, i.e., gRPC is built on top of HTTP/2. Unlike
HTTP/1.1, HTTP/2 allows for connection multiplexing, i.e., the same transport connection can be used
for sending several application requests concurrently. While this feature is beneficial in terms of
reducing signaling overhead (e.g., connection establishment time), it makes it harder to provide load
balancing when gRPC is used in environments with multiple replicas of the same service, as it is the
case of TeraFlowSDN. This happens because once a gRPC client establishes a connection with a gRPC
server, the tendency is that the same connection will continue to be used as long as the client (i.e.,
the client object) still exists, or it times out due to inactivity. This prevents the client from taking
advantage of any load balancing among existing replicas.

To solve this issue, TeraFlowSDN adopts a service mesh, a specific piece of software responsible for
facilitating the load balancing among different gRPC server replicas. In addition to providing the basic
functionality of gRPC load balancing, most service mesh implementations provide built-in monitoring
for the health and detailed parameters of the connections among all components within a
deployment. For instance, service mesh monitoring can measure how many requests per second a
component/service or replica receives and the response time distribution for such calls.

Figure 11. Architecture of the service mesh with sidecar proxy and service container

Cluster

Service mesh control plane

Component 1

Service Cont.

Sidecar proxy

Component 2

Service Cont.

Sidecar proxy

Component 3

Service Cont.

Sidecar proxy

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 33 of 112

Figure 11 illustrates the architecture of a service mesh deployment, specifically, the deployment of
Scenario 3 in the optical layer (described in Sec. 7.5.2). Each component is configured to let the service
mesh control plane act over it. The main actions that the service mesh control plane performs are to
include a new container in the Pod called sidecar proxy. The sidecar proxy is responsible for
intercepting any outgoing communication to other components and routing it through their respective
sidecar proxies. The control plane is responsible for disseminating information about replicas to all the
sidecar proxies. This way, the load balancing is not done in the transport layer (the default in
Kubernetes) but rather in the application layer. When new replicas are added, sidecar proxies are
included in the new Pod and start being part of the pool of replicas soon after. Potential candidates
for deployment are the Istio service mesh, and the Linkerd service mesh. Both tools are free to use and
open source. In addition, their core functionalities are pretty similar.

Figure 12 shows the Linkerd dashboard during the execution of a scenario 3 experiment with optical
physical layer attacks. We can see that the service mesh measures the number of requests per second
and statistics about the response time and success rate of requests. This dashboard can analyse
component performance, and help identify bottlenecks and communication issues.

Figure 12. LINKERD dashboard during a Scenario 3 experiment

4.2. Prometheus

Prometheus is an open-source software widely used to implement monitoring of internal software
performance. Prometheus is composed of two parts, the metrics exporter and the server. The metrics
exporter is embedded into the code being monitored. This encompasses launching a web server that
exposes the current state of the metrics upon request to a specific URL. The code in Figure 13
illustrates the response of a Prometheus exporter upon a request, specifically after instrumenting a
TeraFlowSDN component (i.e., the optical attack detector) written in Python. There are two comments

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 34 of 112

before every value or set of values (i.e., lines starting with #). The two comments are called HELP and
TYPE. The HELP line is used to export the metric description.

The TYPE describes which type is associated with the metric, out of the ones available in Prometheus.
The types of metrics that can be stored in Prometheus are:

• Counter: numerical metrics that can only be incremented and are reset when the process
restarts;

• Gauge: numerical metrics that can have their value set, incremented, or decremented;
• Summary: a vector that can be used to store observations and further processed to obtain

averages and other statistics;
• Histogram: it categorizes the observed events based on predefined ranges (referred to as

buckets). This enables the calculation of probability distributions and more advanced statistics
over the observed values.

Figure 13. Example of Prometheus exported metrics

HELP python_gc_objects_collected_total Objects collected during gc
TYPE python_gc_objects_collected_total counter
python_gc_objects_collected_total{generation="0"} 580.0
python_gc_objects_collected_total{generation="1"} 315.0
python_gc_objects_collected_total{generation="2"} 8.0
HELP process_start_time_seconds Start time of the process since unix
epoch in seconds.
TYPE process_start_time_seconds gauge
process_start_time_seconds 1.67031966977e+09
HELP process_cpu_seconds_total Total user and system CPU time spent
in seconds.
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 40.8
HELP optical_security_loop_seconds Time taken by each security loop
TYPE optical_security_loop_seconds histogram
optical_security_loop_seconds_bucket{le="1.0"} 22779.0
optical_security_loop_seconds_bucket{le="2.5"} 22779.0
optical_security_loop_seconds_bucket{le="5.0"} 22779.0
optical_security_loop_seconds_bucket{le="7.5"} 22779.0
optical_security_loop_seconds_bucket{le="10.0"} 22779.0
optical_security_loop_seconds_bucket{le="12.5"} 22779.0
optical_security_loop_seconds_bucket{le="15.0"} 22779.0
optical_security_loop_seconds_bucket{le="17.5"} 22779.0
optical_security_loop_seconds_bucket{le="20.0"} 22779.0
optical_security_loop_seconds_bucket{le="22.5"} 22779.0
optical_security_loop_seconds_bucket{le="25.0"} 22779.0
optical_security_loop_seconds_bucket{le="27.5"} 22779.0
optical_security_loop_seconds_bucket{le="30.0"} 22779.0
HELP optical_security_loop_seconds_created Time taken by each
security loop
TYPE optical_security_loop_seconds_created gauge
optical_security_loop_seconds_created 1.6703196713060427e+09
HELP optical_security_active_services Active optical services
currently in the network
TYPE optical_security_active_services gauge
optical_security_active_services 0.0

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 35 of 112

The second part of Prometheus is the server. The server has three primary responsibilities:

• Metrics collector: responsible for collecting all the metrics based on a list of
places/components to be monitored;

• Database: The time-series database responsible for persisting/storing the collected metrics;
• Web-based UI and API: The user interface where users can query and visualize the data stored

in the database. The API allows access to the same information without the GUI, which
becomes ideal for extracting only the data.

Figure 14. Screenshot of Prometheus WebUI with metrics collected from Python

Figure 14 shows a screenshot of the Prometheus WebUI. The plot shows the collected metrics from
the Python processes during experiments of scenario 3 for optical physical layer attack detection. In
particular, the plot shows the average number of objects collected by the garbage collector of Python.
This detailed monitoring of the internal performance of the components enables TeraFlowSDN users
(e.g., network operators) to obtain deep insight into potential bottlenecks that may arise, facilitating
the analysis of such bottlenecks.

4.3. Grafana

Grafana is the final open-source software used in the metrics collection framework. Grafana is focused
on visualizing different KPIs, allowing for their concurrent analysis. This is done through the creation
of dashboards. A significant feature of Grafana is that it enables the creation of dashboards that
combine data from different data sources. For instance, in the case of TeraFlowSDN, we have the
Monitoring component responsible for monitoring services and devices currently active in the
network. In addition, we also have Prometheus, where the internal monitoring data is stored.
Therefore, Grafana makes it easy to generate dashboards combining data from the monitoring
database and Prometheus.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 36 of 112

Figure 15. The Grafana dashboard for the OFC’22 demonstration

Figure 15 shows a screenshot of the dashboard used for monitoring L3 services. This dashboard was
created for the demonstration in [OFC22]. Filters in the top left corner also allow the user to select
which devices, endpoints, and KPI types to show in the dashboard. For the final version of
TeraFlowSDN, each scenario will provide a custom dashboard in Grafana where all the relevant KPIs
can be analyzed near real-time.

4.4. Metric Definitions

This section provides a complete overview of the relevant metrics for the TeraFlow project. They have
been expanded from D5.1. Table 1 contains the overview of the metrics. In each specific scenario
section, the metrics are further detailed in the context of the scenario.

Table 1. Summary of metrics relevant for the TeraFlow project

Metric Definition Relevant
scenarios

Device on-
boarding time

Control plane latency to on-board a new device and upload its
configuration. Does not consider the necessary time to
communicate with the device.

1

Service setup
delay

Required time to setup a new service, from control plane
perspective only. Does not consider the necessary time to
communicate with device.

1,2

Slice setup delay Required time to setup a new slice, from control plane perspective
only. Does not consider the necessary time to communicate with
device.

1,2

Data rate Amount of data transmitted during a specific time period over a
network

1

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 37 of 112

Latency Latency is the time it takes for a device to send one small 'echo'
packet to the serving content server and the corresponding 'echo-
reply' packet to return to the device. This time is also called the
round-trip time. It has become common practice to use the terms
synonymously.

1

Energy Measuring the reduction in total average energy consumption and
average resource utilization metrics

1,3

Economic Cost reduction both in CAPEX (disaggregated networks) and OPEX
(automation).

1, 2

Resource
efficiency

Measurement of the resources needed to serve a given traffic
request with and without using integrated resource orchestration.

1

Multi-tenancy Stress the slice/service management system and measure
allocated slices

2

Trust Secured deployment of services through DLT 2
Privacy Percentage of exposure of physical topological details
DLT transaction
delay

Measurement of the delay introduced by the usage of DLT instead
of other inter-domain communication mechanisms

2

Positioning Deployment of a position-based technique for all vehicles 2
Security Attacks need to be detected with high accuracy to make sure they

do not remain undetected or unaddressed in the network
3

Reliability Measuring the performance of the model on detecting unseen
adversarial attacks

3

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 38 of 112

5. Scenario 1: Autonomous Network Beyond 5G
This section presents the first scenario in TeraFlow. It focuses on the evolution of autonomous
networks beyond 5G. It can be considered an operator-led scenario, as it focuses on the evolution of
transport networks through the hierarchical integration of SDN and NFV technologies. Firstly, we
introduce the scenario. Secondly, we present its alignment with TeraFlow architecture. Thirdly, we
present the scenario setup in the laboratories. Fourthly, we present the relevant metrics and KPIs for
the scenario. Fifthly, we introduce the designed workflow and the current deployments. Sixthly, a
preliminary performance evaluation is presented when available. Finally, we provide a summary of
pending work and the next steps.

5.1. Scenario Introduction

Scenario 1 has the motivation that with 5G networks comes the opportunity to deploy new services
in an automated manner. In this sense, network operators can migrate to 5G based on templates for
services and network slices hard-coded into their systems. In this case, each service and network slice
selects its deployment type from a list of predefined specifications, defining specific network
resources and having requirements or constraints.

It has become clearer during the duration of TeraFlow that this approach does not scale for B5G
scenarios, where the network should adapt to the end users’ needs in a dynamic and on-demand
manner. This means that the network (operated by the network slice controller) should compute a
deployment plan (considering relevant and needed network service functions) together with a service
provisioning and configuration plan. This needs to be done dynamically and intelligently to match the
requested service, provide adaptation capabilities during the service operation, and relate the
requested services to the specific underlying network resources that are offered and available. If most
of the services will require resources from different domains, these network resources need to be
orchestrated to provide multi-layer and multi-domain services. Network automation is the only way
to deal with such adaptive environments. SDN promised the capability to program the network, and
there are tools to do it. However, each tool has its own APIs, their associated data models may vary
and be proprietary, so integration is a costly and time-consuming process.

TeraFlowSDN controller supports a set of operator-driven use cases and workflows that include the
objectives of this scenario dealing with the programmability of network elements and technology-
based SDN controllers with the north bound and south bound interface requirements.

Figure 16 provides the high-level architecture of the envisioned scenario. A set of multiple integrated
network elements are considered in network technological domains and used to support the
autonomous provisioning and subsequent configuration and management of transport network slices,
consisting of multiple Virtual Private Network (VPN) services such as Layer 2 (L2VPN) and Layer 3
(L3VPN) services with dedicated Service Level Agreements (SLA) (more details in D3.2). Another
possibility is the interaction of an NFV Orchestrator (e.g., ETSI OpenSource MANO) with TeraFlowSDN
North-Bound Interfaces (NBI), which includes provisioning L2/L3VPN connectivity. The TeraFlowSDN
controller can trigger the necessary handlers to interact with the underlying technological domains in
all these service requests.

The optical network domain can be managed using the Open Networking Foundation (ONF) Transport
API (TAPI). The TAPI is used as an SBI towards an Optical Line System (OLS) or optical SDN controller,

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 39 of 112

which is responsible for optical network elements, such as optical transceivers, Reconfigurable Optical
Add/Drop Multiplexers (ROADMs) or Optical Crossconnects (OXCs).

The microwave transport network follows the ONF Technical Reference (TR) 352 and Internet
Engineering Task Force (IETF) Network Topology data models. To this end, a dedicated microwave SDN
controller is used, which can interact with TeraFlowSDN SBI based on ETSI mWT 024.

The Layer 3 (L3) routers can be controlled using OpenConfig data models. In this setting, the
TeraFlowSDN Controller can be instantiated as a dedicated Internet Protocol (IP) SDN controller and
can interact with a parent TeraFlowSDN controller instantiated as an End-to-End Orchestrator.

The L3 routers can also be controlled using Path Computation Element Protocol (PCEP). In this setting,
the TeraFlowSDN Controller can be instantiated as a dedicated PCEP SDN controller and interact with
a parent TeraFlowSDN controller instantiated as an End-to-End Orchestrator.

P4 switches also can be controlled using the TeraFlowSDN controller with a dedicated instance. In
addition, this controller can interact with a parent TeraFlowSDN controller instantiated as an End-to-
End Orchestrator.

5.2. Alignment with TeraFlow Architecture

Figure 17 shows the instantiation (configuration and TFS templates) for the End-to-End (E2E)
TeraFlowSDN controller running as an SDN orchestrator. It may be observed that The ETSI
OpenSourceMANO (OSM) NFV orchestrator is used to provision the network services and delegates
to the TeraFlowSDN (TFS) controller, which is used as a Wide Area Network (WAN) Infrastructure
Manager (WIM), the establishment of the inter-Data Centre (DC) connectivity through the WAN
infrastructure. The OSM orchestrator uses the IETF L2VPN WIM connector to interact with the TFS
controller.

This scenario involves the following components:

• NBI
• Forecaster

Figure 16. Scenario 1 high-level architecture

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 40 of 112

• Slice
• Service
• Context
• TE
• Path Computation
• Monitoring
• Automation
• SBI

The following use cases from D2.2 are of interest for testing the validity of these components and
the overall scenario:

• Zero-touch device automation
• L3VPN Service Management
• Integration with ETSI OpenSource MANO
• Slice grouping
• Service restoration with P4 devices
• End-to-End Slice Provisioning with SLA

5.3. Scenario Setup

This section briefly describes the scenario setup, including references to the lab equipment that
supports the performance evaluation work. The multiple partners, facilities and network elements
required in this scenario and use cases are described below. The different partner premises will be
connected utilising secure VPN tunnels forming a distributed testbed where the use case on

Figure 17. Scenario 1 E2E TeraFlow instantiation

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 41 of 112

Autonomous Network Beyond 5G will be assessed from the control plane perspective. Network
elements residing in the same laboratory will also be interconnected through data plane connectivity,
but verifying and assessing the TFS control plane performance is not required.

Telefónica contributes with their Future Network Lab, providing access to different IP routers and
optical devices. IP routers include Infinera DXR-30, ADVA and IP-Infusion whiteboxes based on
EdgeCore CSR310. For the optical network, equipment includes 3 FSP 3000 optical nodes and an SDN
controller from ADVA.

The test environment is based on the iFusion Testbed deployed in the Telefonica CTIO lab in Sur 3
Building in Madrid. The iFusion Testbed replicates the IP/Multiprotocol Label Switching (MPLS)
Network of a Telefonica Business Unit. The access and cell site gateways usually form regions
concentrated in an aggregator router in flexible hierarchy levels depending on the topology, as shown
in Figure 18. The naming convention starts in HL5 for a Cell Site, continuing to HL4 for Access Routers
working as intermediate hubs towards the Aggregator Provider Edge (PE) referred to as HL3. The HL2
hierarchical level comprises only PE routers transmitting data between regions. The testbed has two
zones, and a backbone interconnecting them. The routers belonging to a region and the backbone act
as Autonomous System Boundary Router (ASBR) routers. Thus, to forward the traffic from the
L3VPN/L2VPN services, the ASBR routers from each region establish an external Border Gateway
Protocol (eBGP) session against the core routers. Each region runs IS-IS as an IGP protocol and has a
full mesh of BGP sessions between the nodes.

Figure 18. iFusion Testbed

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 42 of 112

The IP/MPLS testbed is connected to microstack servers where the services run directly or via a
microwave link installed at Telefonica Lab. The microwave link is connected to an HL5 site, emulating
the real scenarios in Telefonica Network, as illustrated in Figure 19.

The following paragraphs provide more insight into the tested platform.

• Hardware and Software used:

Role Device Version Qty
HL5 Edgecore AS7315-30X NOS-OPX-B-21.1.1 (8769) 1
HL5 Edgecore DRX-30 NOS-OPX-B-21.1.1 (8769) 2

Generator Ubuntu virtual machine 20.04.TLS 2
Generator SpirentTest Center STC 5.20 1

MW Siae AGS-2 003 2

• Cell Site Gateway Bare-Metal Hardware AS7315-30X.

The Edgecore AS7315-30X in Figure 20 is an open cell site gateway platform that provides a
combination of 1GE, 10 GE, 25 GE and 100GE interfaces utilizing merchant silicon and an x86 processor
to optimize performance for mobile networks.

• Spirent SPT-N12U

The Spirent N12U Mainframe Chassis in Figure 21 provides test solutions for 800/400/200/100/50G,
FlexE (Flex Ethernet) testing to address 5G transport, unified Layer 2 to Layer 7 traffic generation,
investment protection with QSFP-DD, CFP8, and OSFP interfaces and wide-scale adoption by world’s
largest NEMs, Service Providers, and Enterprises.

Figure 19. Openstack and IP router scenario interconnected through iFusion Testbed

Figure 20. AS7315-30X chassis layout

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 43 of 112

This testing scenario has been used to verify the correct connectivity between the devices.

A datasheet and additional information can be found at [SPI22].

• Edgecore DRX-30.

The DRX-30 devices (highlighted in Figure 22) are unbundled routers that combine a carrier-class white
box portfolio with Infinera's scalable and proven CNOS software. For the equipment used in testing
the scenario, the software has been modified by implementing a version of ADVA.

These devices are an open cell site gateway platform that combines 1GE, 10 GE, 25 GE and 100GE
interfaces using commercial silicon to provide a cost-effective, software-centric, and flexible solution
for network routing.

Figure 21. Spirent N12U chassis layout

Figure 22. Edgecore DRX-30 chassis layout

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 44 of 112

• Virtualization servers:
o Dell PowerEdge R730 (fsociety): It has 56 CPU intel Xeon E5-2690 v4 @ 2.60GHz cores

capable to boost up to 3.50GHz, 125GB of DDR4 RAM and 2.7TB of hybrid storage
(SSD and HDD). It runs Ubuntu 20.04.4 LTS and 10Gbps network interfaces. One
illustration is provided in Figure 23.

o Dell PowerEdge R720xd (wopr): It has 32 CPU intel Xeon E5-2680 @ 2.70GHz cores
capable to boost up to 3.50GHz, 125GB of DDR4 RAM and 100GB of SSD storage. It
runs Ubuntu 20.04.5 LTS and 10Gbps network interfaces. One illustration is provided
in Figure 24.

• Microwave radio equipment:
o AGS-20: it is L2/L3 capable, compact, an indoor unit with up to 10GbE ports. It also

integrates basic L3 networking, compatible with SNMP and NETCONF with YANG
models (ONF and IETF). Both ends are linked using outdoor units with a 40dB
attenuator to simulate the channel.

o ASNK ODU (Figure 25): this takes the intermediate frequency of the AGS-20 and
converts it to 23GHz. It is capable up to 4096 QAM modulation. These ODUs can
transmit radio at 23dBm but we have configured them at 4dBm so as not to melt the
receiver at the other end.

Figure 23. Dell R730

Figure 24. Dell R720xd

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 45 of 112

SIAE contributes with their SDN controller and Microwave (MW) link equipment. The SDN controller
will oversee the MW equipment through the ONF TR-352 Driver. It interacts with the E2E TeraFlowSDN
controller using ETSI mWT 024 interface.

Infinera contributes with XR VTI mode Nx25G bandwidth allocation and verifies its interoperability
with Intelligent Pluggables Manager (IPM). XR VTI mode optical transport port is presented as
{device}/{port}.{vlan}. Other components on environment includes 400G SONiC device (Edgecore
DSC240) hosting XR pluggables and XR-CA, 400G XR tranceivers, optical splitter/decoupler and
external traffic generator/analyzator.

Infinera integrates and ports XR-CA software components to standard whiteboxes DCS240 (and NOS
SONIC) with management interface support. It has also enhanced SONiC CMIS support, and CLI
commands for XR pluggable and has verified/hardened the requisites for SONiC features with XR-CA
and non XR-CA use cases with DHCPv4/ND/NTP. The environment is used to verify XR pluggables on
different operation modes and optical parameters with SONiC. The environment is multipurpose,
allowing for example, XR module 4x100G breakout mode verification. Furthermore, different XR
pluggable firmware versions are verified, providing feedback on XR transceivers interoperability in the
open SONiC Environment.

IPM provides the necessary REST API to the TeraFlowSDN SBI driver to provide the necessary
configuration parameters for XR constellation.

Ubitech contributes with a 32-port 400 GbE Intel Tofino-2 P4 switch acting as a high-performance
network fabric. The device will be controlled through the P4 SDN Controller, also instantiated by
Ubitech.

Stritzinger contributes with virtual routers based on Free Range Routing (FRR). They also provide an
instantiation of the PCE-based SDN controller, which interacts with E2E TeraFlowSDN.

ADVA contributes the Ensemble Activator for whitebox devices in the Telefonica Future Lab and for
Telenor, offering IP routing capabilities with OpenConfig APIs.

CTTC contributes with the ADRENALINE testbed®, providing an SDN/NFV packet/optical transport
network and edge/core cloud infrastructure for 5G and Internet of Things (IoT) services. For this
scenario, it includes an SDN-enabled disaggregated Optical Transport Network (OTN), consisting of a
photonic mesh network (PMN) with 4 nodes (2 ROADMs and 2 OXCs) and 5 bidirectional flexi/fixed-

Figure 25. ASNK ODU radio link

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 46 of 112

grid DWDM amplified optical links up to 150 km, controlled using a proprietary Open Line System
(OLS) that acts as an optical SDN controller, offering an ONF Transport API.

CTTC also provides its Kubernetes-based infrastructure to execute the TeraFlowSDN Continuous
Development/Continuous Integration environment.

5.4. Scenario Metrics

This section describes the scenario Key Performance Indicators (KPIs) to be reported as final
achievements of the project. We have identified the necessary metrics and provided preliminary
results in this document (D5.2). In deliverable D5.3, we will provide the complete measurements
indicated in Table 2.

Table 2. KPIs and KVIs for the Scenario 1

Name Description Relevance Definition of
measurement

Component

Device on-
boarding time

< 50ms Initial device
Bootstrap in day
0 scenario.

Control plane latency to
on-board a new device
and upload its
configuration. Does not
consider the necessary
time to communicate with
the device.

Automation

Service setup
delay

< 50ms Very high.
Necessary base
time to deploy
new services.

Required time to setup a
new service, from control
plane perspective only.
Does not consider the
necessary time to
communicate with device.

Service

Slice setup delay < 50ms Very high.
Necessary base
time to deploy
new slices.

Required time to setup a
new slice, from control
plane perspective only.
Does not consider the
necessary time to
communicate with device.

Slice

Data rate > 50% Multi-layer
optimization,
introduction of
optical layer
closer to the edge
and inclusion of
novel optical
technologies
(SDM, FlexE,
disaggregated
flexigrid).

Percentatge of increase of
overall network resources
when using multi-layer
optimization in
comparison with available
network resources
without network
optimization.

Offline
measurement
based on the
multi-layer
topology

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 47 of 112

Latency < 30% Delay budget
computation
including traffic
offloading
mechanisms to
optical layer.

Latency reduction
percentatge when
comparing multi-layer off-
loading with and without.

Offline
measurement
based on the
multi-layer
topology

Energy < 30% Significant KPI Reduction of energy
consumption due to
multi-layer optimization.

Path
Computation

Economic <20% cost Significant
relevance as is
the main trigger
for network
upgrades.

Cost reduction both in
CAPEX (disaggregated
networks) and OPEX
(automation).

Offline
measurement
based on the
multi-layer
topology

Resource
efficiency

> 50% Traffic
optimization.

Measurement of the
resources needed to serve
a given traffic request
with and without using
integrated resource
orchestration.

Offline
measurement
based on the
multi-layer
topology

5.5. Workflows and Current Deployment

Several workflows, including specific aspects of the proposed scenario, are presented in this section.
These workflows and current deployments include: zero-touch device automation, L3VPN service
management and integration with ETSI OpenSourceMANO, Slice grouping and End-to-End slice
provisioning with SLA, Service restoration with P4 devices, and Energy-efficient Path Computation.

5.5.1. Zero-touch Device Automation

The automation component implements several Event-Condition-Action (ECA) loops defining the
automation procedures in the network. These control loops deal with automation tasks such as
bootstrapping new devices, configuring interfaces and forwarding tables, etc. They are triggered by
relevant events (e.g., the addition of a device), when specific conditions are met (e.g., not configured),
and they apply a set of actions (e.g., bootstrap the device) in response to these events.

The zero-touch device bootstrapping and monitoring workflow (Figure 26) is triggered by adding a
new device in the TeraFlowSDN, for instance, through the WebUI.

The WebUI adds the new device through the SBI component, which triggers a connection to the
physical device and the retrieval and storage of its current inventory and configuration in the Context
database.

Such action triggers the distribution of a “Device Created”.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 48 of 112

When Automation receives the event, it retrieves the information and configuration of the new device
from Context (see for reference Figure 27). If the device is not configured, it is bootstrapped by
performing the following actions:

1. Retrieving from SBI the initial configuration template the driver defines for this device;
2. Populates the template with the appropriate values;
3. Configures the device through SBI, and;
4. Updates in Context database the configuration and new state of the device.

The update on the device triggers the distribution of a “Device Updated” event.

When Monitoring receives this event, if the device is enabled but not being monitored, the former
creates a set of KPIs for this device and starts monitoring them through the SBI component (Figure
28).

Figure 26. Scenario 1 workflow: Adding a device

TeraFlowSDN Controller

OSS/BSS WebUI SBI Context Automation
SDN

Agent

Add Device

Create Device
Select Driver

Instantiate Driver Driver

Connect

Connect To Device Keep connection alive

Get Config

Retrieve Device Config

Create Device

Event: New Device Workflow: Device Bootstrap

Figure 27. Scenario 1 workflow: Device bootstrap

TeraFlowSDN Controller

Context Automation SBI

Event: New Device

Get Device

alt [device not configured]
Get Initial Config Template

Populate Config Template

Configure Device with Initial Config Workflow: Configure Device

Update DeviceSet Enabled

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 49 of 112

At this point, the samples coming periodically from the device are issued to the Monitoring
component, which stores and makes them available for the other components (e.g., Grafana, Figure
29).

5.5.2. L2/L3VPN Service Management and Integration with ETSI OpenSource
MANO

The architecture used for this workflow is depicted in Figure 30. It shows two geographically-distant
Data Centers (acting as Virtual Infrastructure Manager - VIM) that must be interconnected through a
transport network slice. Each DC has network connectivity access through Customer Edge (CE)
equipment connected to Provider Edge (PE) equipment, each located at a network operator's Point of
Presence (PoP).

Figure 28. Scenario 1 workflow: Activate Device Monitoring

TeraFlowSDN Controller

Context Monitoring SBI

Event: New Device

Get Device

alt [device not monitored]
Create KPI

Monitor KPI (KpiID, params) Workflow: Configure Device

Figure 29. Scenario 1 workflow: Monitor Device Ports

TeraFlowSDN Controller

SDN
Agents SBI Monitoring InfluxDB Grafana User

Collect KPI data from Devices

loop periodically
Samples

IncludeKpi(KpiID,time,KpiValue)

KpiSample

OK

Plot data in Grafana

Plot request

Retrieve data

Plot data

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 50 of 112

For instance, DC1 has its CE connected to data net, as well as DC2.

In this scenario, a transport network slice is deployed over a network connectivity service.

Figure 31 shows the complete provisioning of a Network Service (NS) through multiple VIMs. To this
end, multiple VIMs are requested to deploy the allocated Virtual Network Functions (VNFs). Later, the
point-to-point Service management workflow is triggered when OSM requests creating a new VPN
service. Such a request has two phases. First, a new empty service is created to obtain a service
identifier. Second, the endpoints are added to the service. When NBI receives the service creation
request, it forwards the request to Service, which completes the missing required fields with default
values, creates the service in the Context database, and returns the service identifier to OSM.

When NBI receives the request to add the endpoints to the service, it issues a service update request
towards Service that identifies the devices owning the endpoints to be connected, identifies the device
drivers they support, and chooses the appropriate service handler for the service.

This workflow first chooses and instantiates the Layer 3 Network Model (L3NM) service handler to
configure an L3 VPN using Netconf/OpenConfig. Then it forwards the service request to that service
handler. Next, the service handler creates the configuration rules for each involved device and
configures them through SBI. Finally, it returns a confirmation to OSM.

Figure 30. Integration of NFV-O and Transport SDN Controller

mgmt
net

VNF 1

internal
net

VDU 1 - mgmt VM

VDU 2 - data VM

VNF 2

internal
net

VDU 1 - mgmt VM

VDU 2 - data VM
data
net

NFV Orchestrator

Virtual Infrastructure
Manager

Virtual Infrastructure
Manager

WAN Infrastructure
Manager

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 51 of 112

The IETF L2VPN YANG data model for Service Delivery [RFC8466] enables to describe the transport
network slices required by an OSS/BSS or an NFV orchestrator. An SDN controller can then consume
the requests to provision the transport network connectivity services, as shown in Figure 32.

5.5.3. Slice Grouping and End to End Slice Provisioning with SLA

This workflow focuses on validating the proposed Network Slice grouping described in D3.2. As a
reminder, we define a slice group as an entity consisting of one or multiple slices with a unique group
identifier. One slice belongs to one and only one slice group. Slice grouping requires a mechanism to
map a slice into its slice group, also known as a slice template or slice blueprint. From our transport
network perspective, slice grouping can be based on mapping slice SLA requirements to the existing

Figure 31. Scenario 1 workflow: NS Provisioning

Figure 32. Example of ietf-l2vpn-svc:site-network-access

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 52 of 112

set of slice groups. Thus, slice grouping introduces the need for a clustering algorithm to find service
optimization while preserving the slice SLA.

Figure 33 shows the proposed architecture to evaluate Slice Grouping and End to End Slice
Provisioning with SLA using hierarchical orchestration/control where the TeraFlowSDN orchestrator
interacts and coordinates the underlying dedicated domain SDN controllers, namely: IP TeraFlowSDN
controller, Microwave (MW) SDN controller, IPM, and Optical Lines System (OLS). Each domain SDN
controller configures a particular network technology.

The workflow depicted in Figure 34 provides slice clustering based on slice requests that demand
randomly distributed service availability and allocated bandwidth. Step 1 shows the request for the
transport network sli*ce, received from the NorthBound Interface (NBI) via a RESTconf interface. The
request is then translated/mapped into the TeraFlowSDN protocol buffer and sent to the Slice
component for processing (Step 2). Finally, in Step 3, the slice grouping algorithm is triggered, detailed
below in Section 5.6.3. The outcome of the slice grouping algorithm can result in two options:

i) the slice request is mapped to an existing slice group, or;
ii) a new slice group might be required.

In the first case, the slice resources are related to a current/existing slice group. Then, using steps 8
and 9, Operation Support System (OSS) and Business Support System (BSS) are notified with the
allocated resources.

In case new resources need to be allocated, the Slice component requests the necessary connectivity
services to the Service component. The resources are then allocated following the necessary SDN
orchestration mechanisms (steps 4-7). The underlying resource orchestration applied by TeraFlowSDN
has been previously demonstrated, for IP over DWDM networks, as in the previous section.

Figure 33. Transport Network Slice grouping on a hierarchical multi-layer SDN scenario

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 53 of 112

5.5.4. Service Restoration with P4 Devices

This section presents the service restoration workflow assuming a given topology with several P4
devices. The key component to realize service restoration is the Policy component of the TeraFlowSDN
controller, which offers an intuitive way to create event-driven SLAs by exploiting the alarm subsystem
of the Monitoring component.

Device and link provisioning stage: The workflow shown in Figure 35 begins from an external OSS/BSS
system, which uses the WebUI to add devices and links, thus establishing a topology of connected (P4)
devices. These two initial parts of the workflow are highlighted as “Device provisioning” and “Link
provisioning” in Figure 35.

Service creation stage: Then, the OSS/BSS requests the TeraFlowSDN NBI to create a new service on
top of the established network, following the “Service creation” part of the workflow. The NBI passes
the requests to the Service component, which creates a new service and stores it to the Context
component. A relevant event is generated after the successful service creation, which notifies the
WebUI and the OSS/BSS accordingly.

Policy creation stage: After the service is established, a new service-level policy can be applied to the
network through the Policy component. This allows the OSS/BSS to map a service with an SLA.
Specifically, the “policy creation” stage begins with a “policy add” call from the OSS/BSS to the Policy
component, as shown in Figure 35. This call provides the Policy component with a Policy rule object
which contains several internal objects denoting the service associated with the policy rule, a set of
conditions for this rule to apply, and a set of actions to be enforced once the condition(s) is(are) met.
First, the Policy component parses the received policy and validates that the policy rule object refers
to a valid service ID and a valid set of KPIs and actions. Next, the input policy rule conditions are parsed

Figure 34. Slice grouping sequence diagram

TeraFlowSDN

OSS/BSS NBI Slice Service SBI

1Create Slice with SLA (Slice)

2 Slice

3 Slice grouping (Slice)

alt [Slice can be grouped to other Slice services]

Map current services to requested slice

[Slice needs new services]
Trigger Slice with SLA workflow

4Create Service

5 ConfigureDevice

6 DeviceId

7 Service

8 Slice

9 Slice

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 54 of 112

to identify which KPIs need to be requested from the Monitoring component. This entails the (i)
creation of a KPI in case it does not already exist, (ii) monitoring of the KPI at the data plane, (iii) setting
a KPI alarm which registers the Policy component to events when the KPI exceeds some range of values
or specific threshold, and (iv) getting a stream of alarm responses when the KPI condition will be met.
Once all these RPCs succeed, the policy rule transitions to the PROVISIONED state and the WebUI and
OSS/BSS are notified via an event.

Potential SLA violation stage: At a later stage, an asynchronous event will be generated by the
Monitoring component, when a KPI meets the associated policy condition(s). Upon receiving a KPI
alarm, the policy rule transitions to the ACTIVE state, as the Policy component is ready to apply the
corresponding policy action(s). Therefore, to avoid violating the SLA, the OSS/BSS should specify
appropriate policy conditions which will trigger service restoration before the KPI reaches the critical
threshold/range. This way, service restoration could be triggered just in time.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 55 of 112

Policy enforcement for service restoration stage: The last stage of the service restoration workflow
is the one that applies the necessary policy action(s), when an alarm is received. First, the affected
service is retrieved from the Context component, and its local configuration is updated by applying
the list of policy actions. Then, to enforce the updates, the UpdateService RPC is called, which in turn
results in Service component interactions, e.g., with (i) the Path Computation component (to compute
a new path for the service) and (ii) the various underlying devices through the Device component. At

Figure 35. Policy-driven service restoration on a P4-based topology

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 56 of 112

that point, the service is restored and the policy rule transitions to the ENFORCED state, which finally
results in a relevant event being sent to the WebUI and the OSS/BSS.

More details about the Policy component are provided in D3.2, where the design, interfaces,
operational workflows, and evaluation benchmarks of this component are introduced.

5.5.5. Energy-efficient Path Computation

One of the objectives of the TeraFlow project is to attain a reduction of the consumed energy when
deploying network services involving both cloud and networking resources. In this context, as tackled
in WP4 T4.3 activities, it is planned to exploit the PathComp component of the TeraFlow SDN
controller to execute an energy-efficient routing algorithm. In summary, upon receiving a new
network connectivity service request, the PathComp component is queried to devise a route and
selected network resources, reducing the overall consumed network power. An energy-consumption
model needs to be defined to accomplish this macroscopic objective, which is detailed in D4.2. The
model considers that devices and links forming the underlying network can be in different operational
states: active, asleep, or de-activated. The operational status affects the power consumed by both the
device and the linecards (hosting the links/ports). An analytical model is presented in D4.2, describing
the consumption of both devices and links according to their operational state. Then, for a given
network connectivity requests, the algorithm at PathComp can compute the instantaneous network
consumed energy depending on the traffic being transported over all active links and devices. The
target is that the devised energy-aware routing policy reduces the overall network energy
consumption while minimizing network degradation performance (e.g., network resource utilization,
network service blocking, etc.). These metrics are intended to be assessed in a dynamic network
service scenario and reported in D5.3.

Figure 36 depicts the basic workflow for processing any incoming network service request regardless
of the adopted algorithm in the PathComp (whether energy-aware or not). Before triggering the path
and resource selection algorithm, the PathComp needs to retrieve an updated view of the underlying
transport network infrastructure, i.e., Context. To tackle the energy-efficient routing, specific device
and link Context extensions need to be provided (please refer to D4.2 for the energy model description
to complement the following information):

• Extended device attributes to i) determine the operational status; ii) specify the power idle in
Watts. For the sake of clarification, the device power idle is the energy consumed regardless
of data traffic being switched/transported over the device. This power/energy is mainly
caused by interactions with the TeraFlow SDN controller, fans, etc.;

• Extended Link attributes to i) determine the operational status; ii) specify the energy/bit (i.e.,
J/bit). The links/ports are hosted in linecards equipped with memories for storing the packets,
and a programmable look-up table (i.e., TCAM), etc. The consumption on the links/ports are
proportional to the transported data rate.

Once the path (e.g., devices and links) is selected by the PathComp, this is passed to the Service
Component to coordinate the programmability of the chosen network resources carried out by the
Device/s components.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 57 of 112

Figure 36. Basic network Service Creation relying on the PathComp component output: route and resource selection

Bearing the above in mind, the idea is to evaluate, over a single transport network domain, the
performance of the proposed energy-aware routing with respect to a benchmark routing algorithm
without energy-awareness. The network services will arrive and depart dynamically with
heterogeneous network requirements in terms of bandwidth and maximum permitted latency.

Different traffic loads will be used to obtain a more complete performance comparison. This will be
done considering the average network power consumption and average bandwidth blocked ratio
metrics. Other metric could be potentially considered such as average PathComp execution time, or
average amount of used devices and links.

5.6. Preliminary Performance Evaluation

In this section, we present some preliminary results for the proposed scenario. Results are provided
in tables, plots, diagrams, and screenshots. The final evaluation of the scenario will be performed
during 2023 and documented in D5.3.

5.6.1. Zero-touch Device Automation

This workflow has been demonstrated in [OFC22]. To this end, the device automation workflow is
triggered when a new device is introduced to TeraFlowSDN to configure it. Figure 37 shows a screen
capture of the received information after a device automated configuration.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 58 of 112

Figure 37 Screen capture of specific device information obtained after Device Automation

Name Value Comment
Device on-boarding time - This KPI will be analysed in D5.3

5.6.2. L3VPN Service Management and Integration with ETSI OpenSource
MANO

This workflow has been demonstrated in [OFC22] and [ECOC22]. To this end, the experimental setup,
illustrated in Figure 30, has been built on top of the CTTC's ADRENALINE Cloud Platform Testbed.

Figure 38. OSM screen capture with provisioned NS instance

The ETSI OpenSourceMANO (OSM) v10.0 (Figure 38) has been used as an NFV orchestrator to
provision network services. At the same time, establishing the inter-DC connectivity through the WAN
infrastructure is delegated to the TFS controller, which is used as a WAN Infrastructure Manager
(WIM).

The OSM orchestrator uses the IETF L2VPN WIM connector to interact with the TFS controller.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 59 of 112

This OSM WIM connector has been extended to support the request for disjoint paths. The proposed
extensions for the IETF L2VPN connector have been contributed to the OSM source code and will be
detailed in [D6.4]. Details of the extensions are provided in Figure 39.

On the TFS controller side, it uses its OpenConfig Device Driver to control the different IP routers and
the TAPI Device Driver to control the optical core network, as previously demonstrated in [OFC22].
The VIMs are managed through OpenStack, controlled through the OpenStack REST-API by the OSM
orchestrator.

Figure 39. IETF L2VPN Extensions for end-to-end disjoint paths

The preliminary results of this scenario include a WireShark capture detailing the interactions between
the OSM orchestrator and the TFS controller in Figure 40.

The interaction follows OpenConfig L2VPN provisioning as described in D3.2. It starts with a query of
services available, followed by creating the VPN service handler. Then, each site network access is
added to the VPN service handler, and finally, the status of the VPN service is verified.

Figure 40. OSM-TFS Wireshark capture to deploy end-to-end network service

The live validation has showcased the entire provisioning and configuration procedure from OSM, the
changes and operations performed by the TFS SDN controller, and the programming of the underlying
network equipment in Telefónica premises. D5.3 will follow with the performance evaluation of the
significant KPIs.

Name Value Comment

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 60 of 112

Service setup delay - This KPI will be analysed in D5.3
Data rate - This KPI will be analysed in D5.3
Latency - This KPI will be analysed in D5.3

5.6.3. Slice Grouping and End to End Slice Provisioning with SLA

The results of this proposed use case on slice grouping have been submitted and will be demonstrated
at [OFC23], including hierarchical control of the underlying network technologies.

Figure 41 shows two network slice templates considered to allocate the requested transport network
slices. The first one, referred to as gold, offers a service availability of 90% and a guaranteed bandwidth
of 10 Gb/s. The second one, named platinum, provides a service availability of 99% with an allocated
bandwidth of 100Gb/s.

Figure 41. Example of slice templates

Figure 42 provides an example of a slice request. The requested slice includes a service-id along with
a requested Service Level Objective (SLO) and Service Level Expectation (SLE) policy. By doing so,
several metrics can be included, for example, SLO “one-way minimum guaranteed bandwidth” and
SLO “guaranteed availability”. These are the two metrics considered in this work, but the network slice
definition is flexible enough to support multiple SLO/SLE requirements.

{
 “id": “slice-template-gold",
 "service-slo-sle-policy":
 {
 "metric-bounds":
 {
 "metric-bound":
 [
 {
 "metric-type": "service-slo-one-way-bandwidth",
 "metric-unit": "mbps"
 "bound": "100"
 },
 {
 "metric-type": "service-slo-availability",
 "bound": "99.9%"
 }
]
 }
 }
}

{
 “id": “slice-template-platinum",
 "service-slo-sle-policy":
 {
 "metric-bounds":
 {
 "metric-bound":
 [
 {
 "metric-type": "service-slo-one-way-
bandwidth",
 "metric-unit": "mbps"
 "bound": "1000"
 },
 {
 "metric-type": "service-slo-availability",
 "bound": "99.999%"
 }
]
 }
 }
}

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 61 of 112

We use the K-Means clustering algorithm to support the slice grouping based on the requested
SLO/SLE. This is an unsupervised machine learning algorithm, that groups data into a pre-determined
(i.e., K) number of clusters. This number is defined by the user, and the K-Means algorithm groups the
data into that specific number of clusters. This is the reason why a technique is needed to determine
the optimal number of clusters for every specific case.

Figure 43 shows the application of the Elbow method to select the number of clusters on the received
requests, on the x axis we have the selected number of cluster and on y axis we have the distance cost
of the requests to the allocated clusters. We have run K-means algorithm for clustering the requests
based on requested availability and bandwidth for a number of clusters (K value) ranging from 1 to
10. We have computed the sum of the squared distances from each point to its assigned center for
each result. These plotted values allow us to determine the best value of K (i.e., 2 clusters in the
proposed demonstration). The elbow method shows us that 2 is a possible good candidate for the
number of clusters.

Figure 43. Elbow method applied to slice grouping

Figure 42. Applying slice grouping on new slice request depending on previously deployed slices

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 62 of 112

Finally, Figure 44 plots the received transport slice requests (each blue dot refers to a single request
in terms of availability and bandwidth) and the clusters to which they are related (in red).

Now that the slice grouping approach has been validated, in D5.3 the necessary KPIs will be evaluated.

Name Value Comment
Slice setup delay - This KPI will be analysed in D5.3
Economic - This KPI will be analysed in D5.3
Resource
efficiency

- This KPI will be analysed in D5.3

5.6.4. Service Restoration with P4 devices

The results are not available yet. However, the plan is to present these measurements in D5.3.

Name Value Comment
 End-to-end
service latency

5ms
(indicative)

The actual value depends on the topology setup. For example,
hardware switches are faster than software switches, while
software switches perform better on better Commercial off-
the-Shelf (COTS) hardware. Therefore, this value may vary.

The plan for this scenario is to use a software-based P4
topology atop Mininet, measure end-to-end service latency,
and trigger service restoration using an appropriate threshold.

5.6.5. Energy-Efficient Path Computation

The results are not yet available. The plan is to present these measurements in D5.3.

Figure 44. Allocated network slices and their slice groups

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 63 of 112

Name Value Comment
Energy < 30% The target is to attain a network power reduction around

30% upon adopting a energy-aware routing algorithm for
serving the dynamic connectivity service requests.
Different traffic loads and emulated network scenario will
be considered for the final performance evaluation
aiming at approaching a power reduction up to 30%.

As mentioned above in Section 5.5.5, the execution of the energy-aware routing at the PathComp
requires that the Context device and link attributes are extended to provide specific power-based
information (i.e., operational status, device power idle, link consumed energy/bit). Figure 45 shows
the REST API POST message sent by the PathComp Front-End to the Back-End to request the execution
of the Energy-Aware Routing (EAR) algorithm. The serviceList contents also carry the network
endpoints, the constraints to be met, etc. The Context information is divided into the DeviceList and
the linkList. In the former, each device is specified its operational status and the nominal value of the
idle. For the links, it is described the operational status and the J/bit value for every individual link.
Consequently, with this information, the PathComp component can trigger the EAR algorithm to
accommodate a service while reducing network power consumption.

Figure 45. PathComp: REST API requesting a network service with energy-based Context Information

Per device power-based
information: status and power
idle

Per link energy-based
information: status and energy
per bit

Path Computation Algorithm to be executed:
EAR (Energy-Aware Routing)

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 64 of 112

5.7. Pending Work and Summary

The Metrics Collection Framework has allowed us to start the recollection of KPIs, but until now, we
are fixing several integration issues that preclude us from providing accurate results. To this end, we
are fixing the reported issues, and the measurements will be provided in D5.3. Table 3 summarizes
this status.

Table 3. Target and achieved KPIs and KVIs for Scenario 1

KPI Target Validation results
Device on-boarding time < 50ms This KPI will be completed in D5.3.
Service setup delay < 50ms This KPI will be completed in D5.3.
Slice setup delay < 50ms This KPI will be completed in D5.3.
Data rate > 50% This KPI will be completed in D5.3.
Latency < 30% This KPI will be completed in D5.3.
Energy < 30% This KPI will be completed in D5.3.
Economic < 20% cost This KPI will be completed in D5.3.
Resource efficiency > 50% This KPI will be completed in D5.3.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 65 of 112

6. Scenario 2: Inter-domain
This section presents the second scenario studied in TeraFlow. It focuses on the inter-domain
deployment of transport network slices. It can be considered an operator-led scenario, as it focuses
on the evolution of transport networks through peer orchestration of multiple domains. It also
considers scalability and traceability. Firstly, we introduce the scenario. Secondly, we present its
alignment with TeraFlow architecture. Thirdly, we present the scenario setup in the laboratories.
Fourthly, we present the relevant metrics and KPIs for the scenario. Fifthly, we introduce the designed
workflow and the current deployments. Finally, a preliminary performance evaluation is presented
when available. Finally, pending work and summary is discussed.

6.1. Scenario Introduction

Several challenges need to be overcome when looking at the deployment of Cooperative, Connected
and Automated Mobility (CCAM) services over a distributed edge and cloud infrastructure.

First, we need unified computing, storage, and networking resources management. In this respect,
the TeraFlowSDN Controller, together with an NFV orchestrator (e.g., OSM), will be able to deploy
integrated services (i.e., to provision cloud and edge computing resources, and connectivity between
them) and optimize the cloud and network resources (i.e., packet/optical) concurrently.

Second, we must address multi-domain networking, where resources must be assigned in each
domain and combined for an end-to-end service. In this respect, the TeraFlowSDN Controller will
deploy several per-domain slice instances and compose them to create end-to-end transport network
slices.

Finally, the different domains involved might belong to different network operators. This calls for
methods enabling interdomain slicing between different operators while keeping internal network
details private. In this respect, the TeraFlowSDN Controller will be equipped with a Distributed Ledger
Technology (DLT) component, based on blockchain technologies, to preserve the confidentiality of the
data exchanged between the per-domain TeraFlowSDN instances, if needed.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 66 of 112

Figure 46 provides an example of the envisioned CCAM scenario. At the infrastructure layer, the
scenario comprises several packet and optical transport networks for the metro and the core
segments providing connectivity to the distributed cloud and edge computing infrastructure. CCAM
services can be deployed in micro-DCs at the edge nodes (e.g., cell sites, street cabinets, lampposts),
small-DCs (e.g., in a central office) for low/moderate-computation capacity and low response time,
and core-DCs in the core network for high-computational capacity and moderate response time.

Transport and cloud infrastructures are administratively partitioned into different domains, each
controlled by a TeraFlowSDN Controller instance. In addition to selected uplink-heavy and latency-
sensitive scenarios, the intention is to focus on Over-the-Air (OTA) software updates, which are
software improvements that a car company sends wirelessly to vehicles. These OTA updates need to
reach a moving target; thus, we provide an inter-domain scenario for moving connectivity services
based on the position of the network elements. Testing and experimentation will be necessary to
address the role of the Transport Network Slice and its endpoints regarding the interaction with
adjacent access and service edge (SDN) control domains in this inter-domain scenario.

6.2. Alignment with TeraFlow Architecture

Figure 47 shows the single domain instantiation (configuration and TFS templates) of the
TeraFlowSDN controller. It can be observed that interdomain connectivity will be provided either with
DLT or inter-domain components, between multiple instances of the TFS controller.

Figure 46. Scenario 2 high-level architecture

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 67 of 112

This scenario involves the following components:

• NBI
• Load Balancing
• AutoScaling
• Self-healing
• Inter-domain
• Web UI
• Slice
• DLT
• Policy
• Monitoring
• Service
• Context
• Path Computation
• SBI

Use cases described in D2.2 of interest for testing the validity of these components and apps are:

• Operate TeraFlow at Scale
• Host tracking
• Flow Descriptors for IoT Services
• Using DLT for Inter-Domain Service Provisioning and SLA Violation Detection
• E2E Routing and SLA Violation Detection

Figure 47. Scenario 2 TeraFlow instantiation in a single domain

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 68 of 112

6.3. Scenario Setup

The testbed envisioned to test the use cases belonging to this scenario involves the following partners
and facilities:

• CTTC contributes with the ADRENALINE testbed® providing an SDN/NFV packet/optical
transport network and edge/core cloud infrastructure for 5G and IoT services.

To validate this scenario, we will take advantage of the TAPI-enabled OLS controller and the underlying
optical transport network infrastructure. Moreover, we have two whiteboxes cell-site gateways
(CSGW) [EDG22] with IP Infusion OcNOS available and controlled using TeraFlowSDN (Figure 48).

Figure 48 Interconnected CSWGs at CTTC Testbed

• NEC contributes with the blockchain infrastructure and runtime providing the means to
interconnect different instances of the TeraFlowSDN for the different domains. More details
are provided in D4.2 [D42].

• Telenor Telenor’s testbed includes one server (HPE Proliant DL360 Gen10) and two Whitebox
switches (Edge-Core AS7316-26XB), which are interconnected by the FS S5860-20SQ switch,
as shown in Figure 49.

The physical server will deploy the TeraFlow SDN (TFS) and emulated domains/devices over Microk8s.
In addition, TFS will be responsible for configuring the Whitebox switches, which runs the ADVA-NOS
(Ensemble Activator).

Figure 49. Telenor's testbed

xe4:10Gbps
xe12:10Gbp

ce0:100Gbp

ce0:100Gbp

eth0: MGMT

eth0: MGMT

HPE Proliant DL360 Gen10

FS S5860-20SQ

Edge-Core AS7316-26XB

…

Edge-Core AS7316-26XB

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 69 of 112

The plan is to run experiments with one/multiple domains using emulated devices. Later, we hope to
be able to configure the Whitebox switches and run experiments using physical devices.

• ADVA contributes the Ensemble Activator for whitebox devices in the Telefonica Future Lab
and for Telenor, offering IP routing capabilities with OpenConfig APIs.

The different partner premises will be connected utilizing secure VPN tunnels forming a distributed
testbed where the inter-domain scenario will be assessed. The setup will comprise two domains
controlled by two different instances of the TeraFlowSDN Controller.

6.4. Scenario Metrics

This section describes significant metrics to be considered as scenario Key Performance Indicators
(KPIs) to be reported as final achievements of the project. To this end, in D5.2, we have identified the
necessary metrics and provided preliminary results when available. D5.3 will provide the complete
measurements indicated in Table 4.

Table 4. KPIs and KVIs for the Scenario 2

Name Description Relevance Definition of
measurement

Component

Service setup
delay

< 50ms Very high.
Necessary base
time to deploy
new services.

Required time to setup a
new service, from control
plane perspective only.
Does not consider the
necessary time to
communicate with device.

Service

Multi-tenancy > 100
tenants

Scalability Stress the slice/service
management system and
measure allocated slices

Slice/Service

Trust 100%
Secured
Conn.

Provide DLT for
traceability

Secured deployment of
services through DLT

DLT

Privacy 0% Related to provide
security and trust
in multi-
stakeholder
scenario.

Percentage of exposure of
physical topological
details

Topology,
DLT

DLT transaction
delay

10s Have a vision of
which transactions
can be recorded in
DLT

Measurement of the delay
introduced by the usage
of DLT instead of other
inter-domain
communication
mechanisms

DLT

Positioning 100%
vehicles

Consider location
in Service as a
constraint

Deployment of a position-
based technique for all
vehicles

Service

Economic < 20% cost Reduction of OPEX
costs

Reduction of Opex
through automatic
interconnection in

Off-line

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 70 of 112

comparison with manual
intervention.

6.5. Workflows and Current Deployment

Several workflows, including specific aspects of the proposed scenario, are presented in this section.
These workflows and current deployments include inter-domain provisioning using transport network
slices, distributed ledger technologies, service/slice request scalability, and location-aware service
updates.

6.5.1. Inter-domain Provisioning using Transport Network Slices with SLA

Figure 50 displays the sequence diagram regarding service preparation and activation. The workflow
is initiated by a customer which can be any entity consuming TeraFlow services such as the OSS or
other management domains including end-to-end service management. The slice component handles
the customer’s request, which forwards the end-to-end transport slice request to the inter-domain
component. The inter-domain component, in turn, decomposes the end-to-end transport slice into
per-domain sub-slices and requests their creation in the respective TeraFlow domains through the
corresponding inter-domain components. This inter-domain communication is performed securely by
mutual authentication before exchanging sub-slice requests.

If an appropriate sub-slice can be provided, the remote inter-domain component informs the
requesting inter-domain component, and the latter can order the slice. Otherwise, a corresponding
slice is created alongside its insertion into the catalogue and establishment of connectivity, triggering
interaction with slice and service components, respectively.

Finally, the same sub-slice creation and connection establishment procedure is performed at the local
TeraFlow domain (domain #1 in the figure).

Figure 50. Scenario 2 workflow: Inter-domain E2E slice provisioning

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 71 of 112

6.5.2. Distributed Ledger Technologies

Figure 51 illustrates two architectures based on the options that Blockchain may offer using each
transport domain SDN controller as the peer participating in the Blockchain network.

The first model called "Full PDL", uses Blockchain as the key element in any interaction among the
transport SDN controllers. In this model, Blockchain takes care of storing and distributing the
information among the peers, moreover, the use of SCs may remove easy and repetitive tasks from
the transport SDN controller solutions, making the Blockchain technology an even more integrated
element within the inter-domain actions. In both proposed approaches, all the transport controllers
are part of a Permissioned Distributed Ledger (PDL), as this avoids any non-desired entity may join the
whole network and becoming a threat without the peer's knowledge. More information is provided
in D4.2.

While having all the information within the Blockchain brings positive advantages in terms of security
and immutability, it is not the best solution regarding latency. As presented in D4.1, this model needs
to be carefully implemented, taking into account possible issues in terms of latency. This is because
the validation and acceptance of new/updated information within the Blockchain may take a
minimum of some seconds, which is a high delay compared to certain SDN actions that can be done
in less than a second.

A second model called “Complementary PDL” was designed to solve the previous issue. In this case,
Blockchain technology is used to store and distribute specific information samples, leaving the
communication among peers to other existing communication protocols. In this model, Blockchain
acts as a database for specific sets of information. Two possible use cases for this second model are:

a) the topology export and;
b) elements traceability.

In the first use case and as similarly done in D4.1, Blockchain is used only to store and distribute the
static information related to the SDN topology using abstraction models. In the second use case, as
there is no central authority on top of all domains, the use of Blockchain focuses on the immutability
and transparency offered in order to check, if necessary, the owner of used resources or the
responsibility of a committed element (i.e., Service Level Agreement).

Both models should not be considered as opposites but as two possibilities that may be implemented
depending on the specific needs of a scenario.

Figure 51. PDL proposed architectures, Full PDL (left); Complementary PDL (right)

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 72 of 112

For this reason, the transport SDN controllers should be adaptive enough to work with both models.
In addition, TeraFlowSDN architecture based on micro-services allows the quick prototyping of the
proposed use cases.

The main module that gives the adaptation capability to this SDN controller is the “DLT” component.
Due to the cloud-native nature of the architecture, any module can interact with the others. So the
two previous use cases (i.e., topology export and traceability) can be easily configured as the workflow
to interact in the Blockchain is always the same (Figure 52). First, each DLT domain has to subscribe to
the Peer (i.e., Blockchain system) to accomplish the "initialization" phase. Then, for each new data to
record (i.e., Record{X}), the module owning the outcome (e.g., Inter-domain or Context) sends it to
the DLT, which triggers the transaction with the "RecordtoDlt" and "DltRecordStatus" requests using
the Peer. Then, the Peers (i.e., Blockchain) synchronize the data, and after it, an event is generated to
distribute the record identifier (record_id) among all domains. Finally, the DLT of each domain obtains
the Record{X} information and passes it to the corresponding module (Context or Inter-domain).

6.5.3. Service/Slice Request Scalability

This workflow shows the capability of TeraFlowSDN to handle a large amount of requests, verifying its
scalability. To this end, we will perform a large number of requests, also considering a high load of
requests per second in order to evaluate how well TeraFlowSDN performs. TeraFlowSDN uses load
balancing and Horizontal Pod Autoscaler (HPA), as used inds D3.2 to evaluate context, but to deploy
multiple replicas of several components, such as Service, Slice and Context, in order to serve the
requests. Scalability will be measured in terms of total number of requests handled, as well as
demonstrated service and slice creation per second. Figure 53 provides the necessary workflow to
evaluate Service scalability.

Figure 52. Scenario 2 workflow: Sequence diagram for DLT use

Domain #A
TeraFlowSDN

Domain #N
TeraFlowSDN

Context or
Inter-domain DLT Peer Peer DLT

Context or
Inter-domain

Initialization

SubscribeToDlt

SubscribeToDlt

Sharing Process for Entity X (x in [Context, Topology, Device, Link, Service, Slice])

Record{X}

RecordToDlt

DltRecordStatus

sync changes

Event(<record_id>)

Get(<record_id>)

Record{X}

SetRecord{X}

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 73 of 112

6.5.4. Location-aware Service Updates

The workflow in Figure 54 proposes the establishment of a connectivity service that includes
information about its location, instead of the endpoints. Location and endpoints shall be matched at
TeraFlow Service Handler in order to best provision the necessary endpoints depending on location.
Once the service is provisioned, an update of the service is provided including new location. New
endpoints shall be computed, and service updated following a break-before-make strategy.

Figure 53. Scenario 2 workflow: Service Request Scalability

TeraFlowSDN

OSS/BSS NBI Service Routers

Service establishment

loop [1T times]
CreateService

CreateService

Use Service with SLA
establishment workflow

ServiceId

ServiceId

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 74 of 112

6.6. Preliminary Performance Evaluation

In this section, we describe the preliminary results for the proposed scenario. Results are provided in
form of tables, plots, diagrams, and screenshots. Final evaluation of the scenario will be performed
during 2023 and documented in D5.3.

6.6.1. Inter-domain Provisioning using Transport Network Slices with SLA

This workflow has been validated and demonstrated in [OECC22]. The design of the inter-domain
component is based on three use cases:

a) service preparation and activation,
b) service modification, and
c) synchronization of service monitoring data between domains.

In order to validate the proposed workflow in previous Section 6.5.1, Figure 55 shows the
authentication sequence between two IDC from different TeraFlowSDN controllers. The permissioned
TeraFlowSDN peer information is stored in the configuration file.

Figure 54. Scenario 2 workflow: Location-aware Service updates

TeraFlowSDN

OSS/BSS NBI Service SBI PathComp Routers

Service establishment

CreateService

CreateService

Use Service with SLA
establishment workflow

ServiceId

ServiceId

Follow-me Service

Update Service(Service)

Update Service(Service)

Compute(Path)

Path

Remove old Service

Configure Device

Configure

ACK

DeviceId

Create new Service

Configure Device

Configure

ACK

DeviceId

ServiceId

ServiceId

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 75 of 112

Figure 55. Wireshark capture of Authenticate sequence

Once TeraFowSDN controllers are authenticated, an E2E Transport Network Slice request can be
triggered (for example from OpenSourceMANO). It can be observed as they are requested from inter-
domain TeraFlowSDN controller 1 to controller 2. Figure 56 provides the wireshark traces between
multiple instances of TeraFlowSDN controllers, and highlights the inter-domain provisioning.

Figure 56. Inter-domain End-to-End Transport Network Slice deployment

After scenario validation, in D5.3 we will analize the following Metrics for this workflow.

Name Value Comment
Service setup delay - This KPI will be analysed in D5.3
Economic - This KPI will be analysed in D5.3

6.6.2. Distributed Ledger Technologies

This workflow has been validated and demonstrated in [NFV22]. From the outside, it might seem
similar to the previously presented workflow, but in this case, we are using DLT component to interact
between multiple TFS instances.

In Section 6.5.2, we have detailed the workflow for establishing an inter-domain transport network
slice. In our validation, we have provisioned an inter-domain Transport Network Slice. Figure 57 details
a Wireshark capture with the externally-visible messages involved in this test, and taken from D4.2. It
is worth noting that the DLT Connector and DLT Gateway run within the same pod and Kubernetes is
not exposing these packets, so Wireshark cannot capture them. In that figure, an arbitrary
TeraFlowSDN component issues a request to add a device into the Context component (messages
2009 and 2015). Then, that component triggers the recording of that device into the Blockchain
(message 2030). To do that, the arbitrary component issues a “RecordDevice” request to the DLT
component, that is received by the DLT Connector. The DLT connector then retrieves the device details
from the Context component (not shown since it is an internal Kubernetes communication) and
forwards the request to the DLT Gateway that triggers the upload into the Blockchain hosted by NEC
in Germany (messages 2056-2885) Upon the operation is done, the DLT Gateway replies to the DLT
Connector and the later replies to the requesting component (message 2888).

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 76 of 112

Figure 57. Transport Network topology for DLT evaluation

Figure 58 shows the Cumulative distribution function (CDF) of the DLT latency for the generated 100
requests. We observe that the delay takes around 10 seconds. The main contribution of this delay is
due to the cost of uploading the record into the blockchain due to the consensus and ordering
constraints that need to be fulfilled.

Figure 58. CDF for the DLT Delay

Figure 59 shows the complete information for an inter-domain transport network slice as shown in
TeraFlowSDN User Interface. It may be observed that multiple sub-slices have been required.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 77 of 112

Figure 59. Inter-domain Transport Network Slice that includes sub-slices

Figure 60 provides the details of the local (from the initial domain perspective) requested sub-slice.

Figure 60. Sub-slice information details

After scenario validation, in D5.3 we will analize the following Metrics for this workflow.

Name Value Comment
Trust/privacy - This KPI will be analysed in D5.3
DLT transaction delay 10s This KPI will be further analysed in D5.3

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 78 of 112

6.6.3. Service/Slice Request Scalability

Only context evaluation has been provided with regard to scalability in D3.2. We aim to evaluate the
KPI in D5.3, following the approach described in the related workflow.

Name Value Comment
Multi-tenancy >100 tenants This KPI will be analysed in D5.3

6.6.4. Location-aware Service Updates

This use case has not been validated and tested. Details of the use case and its evaluation will be
provided in D5.3.

Name Value Comment
Positioning - This KPI will be analysed in D5.3

6.7. Pending Work and Summary

The Metrics Collection Framework has allowed us to start the recollection of KPIs, but until now, we
are fixing several integration issues that preclude us from providing accurate results. To this end, we
are fixing the reported issues, and the measurements will be provided in D5.3. and Table 5 summarizes
their status.

Table 5. Target and achieved KPIs and KVIs for Scenario 2

KPI Target Validation results
Multi-tenancy > 100 tenants This KPI will be completed in D5.3.
Trust/privacy 100% secured connections This KPI will be completed in D5.3.
DLT transaction delay 10s This KPI will be completed in D5.3.
Positioning 100% vehicles This KPI will be completed in D5.3.
Social < 20% cost This KPI will be completed in D5.3.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 79 of 112

7. Scenario 3: Cybersecurity
This section presents the third scenario in TeraFlow, focusing on cybersecurity. It can be considered
an operator-led scenario, as it focuses on analysing and mitigating security attacks on multiple
network layers, spanning data and control planes. Firstly, we introduce the scenario. Secondly, we
present its alignment with the TeraFlow architecture. Thirdly, we present the scenario setup in the
laboratories. Fourthly, we present the metrics and KPIs that are relevant for the scenario. Fifthly, we
introduce the designed workflows and the current deployments. Sixthly, preliminary performance
evaluation numbers are presented, where available. Finally, pending work and summary are provided.

7.1. Scenario Introduction

Nowadays, when an operator moves towards an automated environment, security becomes a key
feature since network operations are done by software components operating without human
intervention or oversight. Moreover, the pervasive softwarisation of network and infrastructure
components is further increasing their attack surface. Indeed, security must undergo a similar
technological evolution to enable the resilience of SDN controllers, the automation of security policies
over the network, the use of Machine Learning (ML) to detect and identify attacks, the utilization of
DLT to ensure configuration and forensic capacity, and the deployment of NFV security functions.

In this context, the same tools can be used for attacks, such as malicious VNFs, or weaponized Artificial
Intelligence (AI). Therefore, it is crucial to provide a combination of innovative solutions that are
scalable in a production environment and resilient to sophisticated attacks in a common framework
that integrates different security technologies to detect, identify, and mitigate both traditional and
new generations of attacks across different technology domains, e.g., optical and IP layers.

Figure 61 depicts an example of the envisioned Cybersecurity scenario and of the threats in the
context of an automated network. Attacks may target the IP or the optical layers at the data plane.
Attacks exploiting the IP layer traverse or target devices located in the access segment (e.g., edge DCs),
the core network, or core DCs. In this case, per-packet inspection is necessary to detect and identify
attacks, enabling their mitigation. However, inspecting packets is a demanding operation. Executing
this process at a central packet inspector instance is impractical. Packets must be transported from
the remote site, e.g., Central Office (CO) or DC, to a central location, incurring significant traffic and
computing loads. Therefore, designing distributed packet inspection becomes necessary for efficient
and effective attack detection at the IP layer. Moreover, it is necessary to coordinate the distributed

Figure 61. Cybersecurity scenario and threats

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 80 of 112

packet inspectors, which means that a central entity is still necessary, but only for consolidating and
coordinating the network's security status.

Attacks at the data plane can also exploit the optical layer. In this case, malicious access to premises
hosting optical equipment may lead to disruption of the traffic of entire fibre links, to the perturbation
of the quality of the transmission of certain portions of the spectrum, or even to unwarranted access
to the data being transmitted. Therefore, designing accurate, fast, and scalable optical attack
detection, identification, and mitigation mechanisms becomes critical to avoid or minimize data losses
and breaches. We focus on the scalable attack detection problem in this deliverable, while mitigation
aspects will be tackled in the next deliverable.

At the control plane, the SDN controller and the ML models that support its operations may also be
the target of malicious attacks. ML models can be induced to report false errors and make
mispredictions by carefully tailoring the data fed to the model (i.e., a process known as adversarial
attacks). The control plane must ensure that the ML models are not exposed or vulnerable to these
attacks. To this end, Generative Adversarial Networks are combined with ML-based models using a
Black-Box approach to generate variations of attacks that help in training ML models immune to such
adversarial attacks.

7.2. Alignment with TeraFlow Architecture

The Cybersecurity scenario will validate several components, use cases, NBI/SBI interfaces, and
protocols. Three components compose the Cybersecurity assessment within TeraFlowSDN:
Centralized Attack Detector (CAD), attack inference, and attack mitigator. The main components
involved in this scenario are highlighted in Figure 62. They are deployed in different containers to take
advantage of the scalability and reliability features of cloud-native applications. The Cybersecurity
components integrate with TeraFlowSDN core components in several ways, as illustrated in Figure 62.
The Service component is used for provisioning and (re)configuration tasks necessary to mitigate
detected attacks. Integration with the Device component is also needed to perform changes to specific
devices when mitigation actions are needed. The Context component is used to detect service updates
(i.e., creation and deletion) and retrieve service details. The Monitoring component is used both to
retrieve monitoring data as well as to store the result of the security assessment process.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 81 of 112

In addition to the components deployed within TeraFlowSDN, a Distributed Attack Detector (DAD)
located at remote sites interacts with the TeraFlowSDN Controller. Note that the DAD is an external
component running outside the TeraFlowSDN. We refer to D4.1 for a complete description of the
components responsible for the Cybersecurity assessment. Use cases of interest for testing the validity
of these components and apps are monitoring, service, context, device, NBI, and path computation.
More details about these use cases are provided in D2.2.

7.3. Scenario Setup

In the following, we describe the setup used to validate the implementation of Scenario 3. As Scenario
3 has two main targets (i.e., optical and IP layers), we present two separate setups. First, for the Layer
3 cybersecurity experiments, the target is to prepare a setup that allows us to reproduce previously
recorded cryptomining attacks. We first capture packets from the cryptomining attack that are
reproduced in the setup environment. Second, the objective of the optical physical layer attacks is to
reproduce previously-capture Optical Performance Monitoring (OPM) data from malicious attack
conditions.

7.3.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments

Classical VPN services provided by network operators are not aware of cybersecurity attacks, because
such capability would require additional appliances or solutions (Firewalls, Intrusion Detection System
- IDS, etc.) to cope with attacks, in client facilities or through traffic engineering (redirection to a
cleaning center) on the network operator side. This has been considered a disadvantage if we compare
it with Software-Defined WAN (SD-WAN) or Secure Access Service Edge (SASE) overlay solutions. This
demonstration setup aims to represent a common situation where TeraFlowSDN can monitor MPLS
VPN traffic and apply ML techniques to detect and mitigate a complex representative attack such as

Figure 62. TeraFlow components used in the cybersecurity scenario

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 82 of 112

cryptomining. The setup considered for this demonstration is illustrated in Figure 63. A Level 3 VPN
service (L3VPN) is deployed using the TeraflowSDN controller in the Telefónica facilities (details in D5.1
section 6.2), including Mouseworld Lab for traffic attack generation and Future network Lab for IP
devices and SDN deployment. The TeraFlowSDN Controller activates this service using provisioned
templates over the standardized IETF NETCONF southbound interface against the different Provider
Edge (PE) routers from ADVA manufacturer. In this demonstration, branch and central office, are
implemented with Mouseworld OpenStack resources through virtual machines that replay a mix of
normal traffic with a cryptomining malware activity. Also, the central office provides internet access.

As part of the VPN service provisioning process done by the TeraFlowSDN Controller, a mirror of the
traffic in the logical interfaces that conform to the L3VPN is also enforced to copy the traffic towards
the distributed attack detector co-located with the ADVA router. This distributed attack detector
component will extract and calculate statistical features from network flows to be delivered to the
TeraFlowSDN Controller for further processing. The Cybersecurity components will identify the attack
as a cryptomining activity and propose a mitigation solution to the TeraFlowSDN core components
that will trigger the mitigation. This mitigation will be instantiated as a new customized Access Control
List (ACL) rule in the ADVA router with specific parameters (transport protocol, destination IP address
and destination port). This rule can be enforced in additional PE routers that are part of the L3VPN to
increase the mitigation capacity.

7.3.2. Emulated Optical Setup for Optical Cybersecurity Experiments

The objective of this setup is to enable us to reproduce OPM data from optical physical layer attacks
captured in a real-world testbed. Since scalability is a key concern in this scenario, we need to be able
to quickly create a high number of optical services being operated with the help of TeraFlowSDN.
Then, TeraFlowSDN is responsible for its optical cybersecurity assessment.

Due to the high complexity, time constraints, and cost associated with reproducing experiments with
real optical devices, we decided to use an emulated optical infrastructure. The high complexity comes
from the fact that imposing attacks on the physical layer of optical networks require special
equipment, and very specific configurations. Moreover, there are several time constraints. For
instance, once (re)configured, optical devices may require a few minutes to a few hours to reach a
stable working condition, making it impractical for experiments to be reproduced several times, as
required in our case.

Figure 63. Deployment of the cybersecurity scenario focusing on L3

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 83 of 112

Figure 64 presents a simplified illustration of the setup considered. We use TeraFlowSDN at the control
plane. The components tested are the Centralized Attack Detector (referred to hereinafter as Attack
Detector in the context of the optical layer), Attack Inference, and Attack Mitigator. The Monitoring
component and Prometheus are used as data sources for the visualizations, which are created using
Grafana. We also created a custom script that acts as an OSS/BSS and can be configured to perform
optical service requests to TeraFlowSDN’s SBI.

The emulated optical network was configured to replay the dataset reported in [JLT2019]. The dataset
consists of OPM samples collected from a real testbed using commercial equipment. The equipment
consisted of coherent transceivers, able to report detailed OPM parameters with a frequency of once
per minute. The data was collected using a custom-made agent and consolidated into a dataset. The
OPM features captured are:

• Chromatic dispersion
• Differential group delay
• Optical signal-to-noise ratio
• Polarization-dependent loss
• Q-factor
• Block errors before FEC
• Bit error rate before FEC
• Uncorrected blocks
• Bit error rate after FEC
• Optical received power
• Optical received frequency
• Loss of signal

In addition to normal operating conditions, the setup was configured to emulate three types of attack:
in-band jamming, out-of-band jamming, and polarization scrambling. For each type of attack, a light
and a strong intensity were imposed, forming seven attack conditions:

Figure 64. Simplified view of the emulated deployment

Emu OLS

Context

OSS/BSS

Service

SBIPathComp

RESTConf NBI

Attack
DetectorMonitoring

Attack
Inference

Attack
Mitigator

Emulated Optical Network Recorded dataset

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 84 of 112

1. Normal operating conditions
2. Light in-band jamming attack
3. Strong in-band jamming attack
4. Light out-of-band jamming attack
5. Strong out-of-band jamming attack
6. Light polarization scrambling attack
7. Strong polarization scrambling attack

Each attack condition was captured for 24 hours, which accounts for any transition period that the
transmission might undergo (i.e., instability of the channel due to changes).

The dataset was used by a custom-made OLS that communicates with TeraFlowSDN emulating the
optical network. The emulation happens in the optical service provisioning and the optical service
monitoring phases. The emulated OLS makes it easy to accommodate any request without resource
constraints during optical service provisioning. This enables us to perform stress tests and validate the
scalability properties of the cybersecurity component.

During optical service monitoring, the OLS reports OPM values to TeraFlowSDN according to a
configurable setting. By default, new optical services will replay data pertaining to normal operating
conditions. However, each channel can be associated with a particular attack condition, upon which
the emulated OLS will start replaying, for that specific service, the data captured from the attack
condition. This allows us to validate the attack mitigator's scalability and actions, which are planned
for D5.3.

7.4. Scenario Metrics

Scenario 3 integrates several components and implements several workflows that need to be
evaluated. Table 6 summarizes the KPIs and KVIs to be evaluated, their relevance, and the definition
of how they are measured.

Table 6. KPIs and KVIs for Scenario 3

Name Description Relevance Definition of
measurement

Component

Layer 3 Optical
Security > 99%

accuracy
(known
attacks)

Attacks need to be detected with
high accuracy to make sure they
do not remain undetected or
unaddressed in the network

Measuring the
performance
of the trained
model over a
testing dataset

CAD and
Attack
Inference.
Offline
measurement
based on the
ML model
characteristic
and collected
dataset

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 85 of 112

 > 90%
accuracy
(unseen
attacks)

- (Not
relevant due
to specific
focus on
cryptomining
attacks

Detecting attacks
that are not
present in the
current catalogue
of attacks
improves
network
preparedness

Measuring the
performance
of the model
over attacks
that are not
present in the
training
dataset

Attack
Inference.
Offline
measurement
based on the
ML model
characteristic
and collected
dataset

 > 30%
reduction of
attack
response
latency

Attacks
should be
detected as
early as
possible to
minimize the
damage they
can cause

- (Not relevant
due to the
significant time
required to
reconfigure
optical devices)

* Attack
mitigator

Reliability > 90%
accuracy in
detecting
and avoiding
known
adversarial
attacks

Adversarial
L3 attacks
generated by
malicious
actors need
to be
detected
with high
accuracy to
prevent
attackers
being able to
bypass the
detection
system

- (Not relevant
due to
information flow
traversing only
core
components)

Measuring the
performance
of the model
on detecting
unseen
adversarial
attacks

Offline
measurement
based on the
ML model
characteristic
and collected
dataset

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 86 of 112

Energy > 25%
resource
consumption

The machine
learning
model
responsible
of detecting
L3 attacks
should be
optimized to
be as energy
efficient as
possible with
minimal
degradation
in accuracy

- (Not relevant
due to low
frequency of
inferences with
respect to the L3)

Measuring the
reduction in
total average
energy
consumption
and average
resource
utilization
metrics of the
machine
learning model
responsible for
detecting L3
attacks using
thirteen
different
combinations
of state-of-the-
art
optimization
techniques

Offline
measurement
based on the
ML model
characteristic
and collected
dataset

* Measuring the latency between the connection start and the detection of the attack. We will
measure the latency reduction with and without using an ML model deployed at the edge (i.e., at
the Distributed Attack Detector). The measurements will include the mean, minimum, maximum,
and standard deviation of the time required to detect a cryptocurrency mining attack in different
repetitions with and without an ML model deployed at the Distributed Attack Detector.

7.5. Workflows and Current Deployment

In the case of Scenario 3, two complimentary yet distinct workflows need to be implemented. One is
related to monitoring Layer 3 flows, which work with a monitoring cycle that depends on the (user)
traffic under exam. The second is the monitoring of optical connectivity services, which work with a
monitoring cycle that the TeraFlowSDN administrator can define.

This section presents a few general workflows that illustrate how the Cybersecurity component
interacts with other TeraFlowSDN core components. Later, the specifics of the Layer 3 and Optical
workflows will be detailed.

Figure 65 shows the general communication among the core and cybersecurity components when a
new service is created. Firstly, during start-up, the Cybersecurity component subscribes to service
events from the Context component. Then, when a service request is received, the service setup stage
is triggered, performing the necessary changes involving several components of TeraFlowSDN. A
detailed workflow of the service setup can be found in D3.2. After the service is set up, the service
identifier is returned to the customer who requested the service. Then, the KPI setup stage starts. At
this stage, the Cybersecurity component is notified by the Context component about creating the new
service. Then, the Cybersecurity will create relevant KPIs in the Monitoring component. The specifics
of this workflow for Layer 3 and Optical Cybersecurity will be detailed later in this section.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 87 of 112

7.5.1. Layer 3 Cybersecurity

In this section, we will describe the specific workflows that implement the detection and mitigation of
network attacks at the IP layer.

7.5.1.1. Traffic Capture and Feature Extraction at the Network Edge

Figure 65. Scenario 3 workflow: General communication when creating a new service

Core NetApps

Customer Service Context Monitoring Device Cybersecurity

Startup

GetServiceEvents()

Service Request

CreateService(Service)

Service setup

Internal communication for service
setup involving several components

Service Reply

ServiceId

KPI setup

ServiceEvent

SetKpi(KpiDescriptor)Include security-related KPI(s)
associated with the service

Figure 66. Scenario 3 workflow: Traffic Capture and Feature Extraction Workflow

Remote site TeraFlow SDN Controller
Packet Processor(s) Distributed Attack Detector Centralized Attack Detector Context

sendTraffic(packets)

AggregatePackets()

GetServiceId(context_id)

ListServices(context_id)

service_list

GetEndpointId(context_id)

ListServices(context_id)

service_list

SendInput(L3CentralizedattackdetectorMetrics)

Empty(message)

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 88 of 112

We assume that the DAD receives a copy of the traffic (i.e., all the packets) traversing the endpoint
being monitored for L3 attacks. After the DAD receives the traffic, it is grouped into flow-level statistics
using the TSTAT files. Figure 66 shows that the DAD communicates via RCP methods with the Context
component to obtain the service_id and endpoint_id attributes, so the connection is traceable in the
TeraFlowSDN, and the mitigation strategies can later be implemented on the correct devices. Once all
the connection data is grouped into an L3CentralizedattackdetectorMetrics object, it is sent via de RCP
method SendInput to the CAD.

7.5.1.2. Detect Known Attacks using Supervised ML

Figure 67 shows the workflow for the detection of known attacks. The CAD component receives and
stores flow statistics from L3CentralizedattackdetectorMetrics objects. A function is then called with
these objects as the input to perform the Machine Learning inference that will classify the data as
either belonging to a cryptomining attack or not. If the flow statistic has been classified as a
cryptomining attack, the SendOutput RCP method will be called. It will send the necessary flow data
and inference data to the Attack Mitigator component in an L3AttackmitigatorOutput object.

7.5.1.3. Mitigate Detected Attacks

Figure 68 shows that after the AM component receives the connection data belonging to a
cryptomining attack, it will create a mitigation strategy. As of now, that mitigation strategy is to
generate a rule to drop the connection. AM will then need to communicate with the Context
component to receive the Service instance belonging to the service_id that is included in the
connection data. After receiving the Service object, the ComposeMitigation method will add the new
rule to drop the connection to it. After calling the RCP method UpdateService with the modified

Figure 67. Scenario 3 workflow: Attack Detection Workflow (Layer 3)

TeraFlow SDN Controller
Centralized Attack Detector Attack Mitigator

make_inference(L3CentralizedattackdetectorMetrics)

alt [prediction tag = crypto]
SendOutput(L3AttackmitigatorOutput)

Empty(message)

Figure 68. Scenario 3 workflow: Attack Mitigation Workflow (Layer 3)

TeraFlow SDN Controller
Attack Mitigator Context Service Device Router

GetMitigation()

GetService(ServiceId)

Service

ComposeMitigation()

Execute Mitigation

UpdateService(Service)

GetDevice(DeviceId)

Device

ConfigureDevice(Device)

editConfig(NetConf)

DeviceId

ServiceId

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 89 of 112

service instance, the Teraflow OS will propagate the changes to the Device component, and it will
modify the ACL rules in the Router to drop the connection, thus finishing the current mitigation
strategy.

7.5.1.4. Monitor Relevant Cybersecurity-related Metrics
The Centralized Attack Detector monitors five relevant KPIs for each active service. Below, we list the
cybersecurity KPIs that are observed and recorded and their associated KPI sample type:

• Cryptomining detector confidence in security status over the last time interval
(KPI_ML_CONFIDENCE);

• Security status against cryptomining attacks of the service in a time interval
(KPI_L3_CRYPTO_SECURITY_STATUS);

• Number of attack connections detected in a time interval (KPI_UNIQUE_ATTACK_CONNS);

• Number of unique compromised clients of the service in a time interval
(KPI_UNIQUE_COMPROMISED_CLIENTS);

• Number of unique attackers of the service in a time interval (KPI_UNIQUE_ATTACKERS).

The values of KPI_L3_ML_CONFIDENCE are collected for predictions that take place during a specific
time interval (e.g., 5 seconds). This is done separately for predictions that correspond to an attack and
predictions that correspond to normal traffic. At the end of each time interval, the values of both lists
are aggregated independently calculating the average. If an attack connection occurred during that
time interval, the average confidence of the predictions corresponding to an attack are sent to the
Monitoring component as KPI_L3_ML_CONFIDENCE and "1" as KPI_L3_SECURITY_STATUS_SERVICE.
Otherwise, the average confidence of the predictions corresponding to normal traffic is sent to the
Monitoring component as KPI_L3_ML_CONFIDENCE and "0" as KPI_L3_SECURITY_STATUS_SERVICE.

The KPI_L3_UNIQUE_ATTACK_CONNS counts the number of unique attack connections that were
detected in each time interval. Like the previous KPIs, these values are collected during each time
interval. Once the interval is over, these values are aggregated and sent to the monitoring component.
Note that the packet aggregator running in the Distributed Attack Detector component aggregates
the new packets from the same connections as soon as they are received, and the characteristics are
sent to the ML model. For this reason, if subsequent packets are received from the same connections,
the Decentralized Attack Detector will produce new statistics that the ML model will also ingest. For
this reason, connections may be detected as an attack more than once. However, in
KPI_L3_UNIQUE_ATTACK_CONNS we will only count these repeated connections once.

Similar to KPI_L3_UNIQUE_ATTACK_CONNS, KPI_UNIQUE_COMPROMISED_CLIENTS measures the
number of compromised cryptocurrency clients in each time interval by counting the number of flows
that correspond to the same source IP. On the other hand, KPI_UNIQUE_ATTACKERS measures the
number of unique attackers in each time interval by counting the number of flows that correspond to
the same destination IP. KPI_L3_UNIQUE_ATTACK_CONNS provides a measure of the intensity with
which compromised clients attack the network. KPI_UNIQUE_COMPROMISED_CLIENTS and
KPI_UNIQUE_ATTACKERS extend this information by revealing the scale of the compromised network
and quantifying how many attackers are involved in attacking the network.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 90 of 112

Figure 69 shows that the Centralized Attack Detector creates these KPIs at launch time by registering
KpiRequest for each KPI through the Monitoring client and requesting the Monitoring service process
to create and add them to the Management Database (DB). For each KpiRequest, a KpiDescriptor
includes service information, device and endpoint identifiers, and the description and KPI sample type
of each KPI. After successful creation, the KPIs can be effectively monitored by sending samples to the
Monitoring service via the IncludeKpi RPC method. When the Monitoring service receives each
sample, they are introduced into the Metrics DB to be accessible through the Grafana dashboard.

7.5.2. Optical Cybersecurity

For the optical cybersecurity, the Centralized Attack Detector (hereinafter denoted simply as Attack
Detector) has three main tasks:

1. To maintain a list of the currently active optical services, their identifiers, and relevant KPI
identifiers;

2. To periodically trigger the cybersecurity assessment loop for each active optical service;
3. To coordinate the cybersecurity assessment of each service.

These responsibilities are too extensive for a single component and diverge in terms of how they are
triggered and processed. For instance, to maintain an updated list of the currently active services, the
cybersecurity app needs to subscribe to Context events related to services (i.e., service creation,
service update, service deletion). These events will be reported whenever changes happen. On the
other hand, the cybersecurity assessment loop needs to be executed periodically, irrespective of other
events. Moreover, this task needs to be done by a single instance, i.e., the component responsible for

Figure 69. Scenario 3 workflow: Cybersecurity KPIs Monitoring Workflow (Layer 3)

TeraFlow OS SDN Controller Remote site
Context Monitoring Centralized Attack Detector Distributed Attack Detector Packet Processor(s)

Cybersecurity monitoring workflow from the Centralized Attack Detector component

Register new KPIs

loop [(for monitored service)]

loop [(for monitored kpi)]
CreateKpi(KpiRequest)

SetKpi(LpiRequest)

KpiID

Monitor KPIs periodically

Collect KPIs data

sendTraffic(packets)

AggregatePackets()

GetServiceId(context_id)

ListServices(context_id)

service_list

GetEndpointId(context_id)

ListServices(context_id)

service_list

SendInput(L3CentralizedattackdetectorMetrics)

Empty(message)

Send KPIs data

loop [(for monitored service)]

loop [(for monitored kpi)]
ComputeKpiSample(KpiID)

IncludeKpi(KpiID, timestep, KpiValue)

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 91 of 112

this task cannot be replicated. Finally, the execution of the assessment for each service needs to be a
scalable process, meaning that the component performing this task needs to scale.

These facts translate into the need for one stateful component and another stateless one. Stateful
components maintain the internal state necessary for their correct functioning. Nevertheless, on the
other hand, they are hard (if not impossible) to replicate due to the need to establish a protocol to
share the state. On the other hand, Stateless components handle each request as an isolated process,
and no state is saved across requests.

Due to these reasons, we divided the Attack Detector into two variations:

• Attack Manager: a stateful component with a single replica (i.e., does not scale) responsible
for maintaining a list of current active optical services in the network, and for triggering the
assessment of each optical service;

• Attack Detector: a stateless component that can have multiple replicas, where each call refers
to the task of performing the assessment of a single optical service.

These two components cooperate in order to realize the optical cybersecurity assessment loop. For
example, during the initialization of the Attack Manager, as illustrated in Figure 70, the Attack
Manager queries the Context component for a list of current services. Note that this initialization
procedure allows the Cybersecurity app to be resilient to restarts, which means that it can be started
or restarted whenever needed. Furthermore, it means that the Cybersecurity app can be put into
operation at any point in time (as opposed to having to activate it only during the startup of the entire
TeraFlowSDN).

Naturally, as the network is operated, new services will be created, and old services will be terminated.
Therefore, the optical cybersecurity component needs to have an updated list with the active services.
This could be obtained by repeating the workflow in Figure 70 for every new loop that is starting, i.e.,
querying the Context for a list of services. However, this approach would incur in substantial added
load to the Context. To have keep the load of the optical cybersecurity loop as low as possible, we
took advantage of the streaming capabilities of the Context to receive events related to services.

Figure 71 shows the workflow used to maintain an updated list of active services. For the sake of
space, we focus on the service creation part, with the service deletion being very similar except for
the triggering event. The figure shows that the Attack Manager is notified upon the creation of a new
service. This allows the Attack Manager to include the newly created service in its internal list of active
services and create relevant KPIs in the Monitoring.

Figure 70. Scenario 3 workflow: Initialization of the optical cybersecurity components

Core NetApps
Context Manager

ListServices()

ServiceList

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 92 of 112

Once the Attack Manager has a list with the optical services currently under operation in the network,
the periodical cybersecurity assessment loop can take place. The specific steps and components
involved in the loop will depend on the type of ML model used by the Attack Inference component.
Supervised learning algorithms learn the properties of the system during training, which means that
for the inference only the new(est) sample(s) are needed, i.e., the ones that were not assessed so far.
On the other hand, unsupervised learning models do not have a training step, which means that they
need a substantial number of samples at each inference to be able to determine which one(s) of the
samples, if any, are anomalies (or attacks, as it is in our case).

One potential solution for both cases would be to rely on the Monitoring component to provide all
the samples for all the inferences, regardless of the ML model used. However, this would incur a
substantial load on the Monitoring component, since it would need to retrieve many samples at each
loop for each service.

Another potential solution would be to cache the latest samples within the Attack Detector
component, but this approach would make it stateful (i.e., bound to specific services). In addition, this
would increase the complexity of managing replicas, making the scalability more complex.

The third approach is the one adopted by TeraFlowSDN. In this approach, a cache is deployed as an
external component. The cache stores the latest samples of all the active services in the network. By
adopting an in-memory cache, the response time can be orders of magnitude lower than the
Monitoring component (which uses an in-disk persistent database).

Figure 72 illustrates the communication among components for the case where the Attack Inference
uses a supervised learning model. For each service, the Attack Manager invokes the Attack Detector.
The Attack Detector, responsible for a single service at a time, queries the Monitoring for the latest
OPM sample(s), i.e., the ones that have not yet undergone the attack detection. The Monitoring
returns the list of samples used to build a detection request sent to the Attack Inference. Once the
inference result is received, the relevant KPIs are included in the time series related to this service.
The Attack Detector then returns an empty message to the Attack Manager, representing that the
assessment for this service has been completed. Finally, after receiving the completion message from
all the services, the Attack Manager computes how much time the loop took and reports it to the
Monitoring. This value is also reported to Prometheus.

Figure 71. Scenario 3 workflow: Receiving service events from the Context component

Core NetApps

Customer NBI Service Monitoring Context SBI Attack Manager

CreateService(Descriptor)

Internal communication
for service setup

ServiceId

ServiceEvent

CreateKpi(KpiDescriptor) Include KPI associated
with the analysis

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 93 of 112

Figure 73 shows the communication among components for the case where an unsupervised learning
algorithm is used by the Attack Inference. We focus only on the differences from the previous
workflow. The first difference is that, upon receiving a detection request, the Attack Detector gets the
latest samples from the cache. Then, based on the latest OPM sample available in the cache, it queries
the new(est) OPM sample(s) from the monitoring component. The number of new samples may
change depending on the ratio between the monitoring cycle and the cybersecurity cycle. For
instance, if the monitoring cycle is executed at every 30 seconds, but the cybersecurity cycle runs at
every 1 minute, each cybersecurity cycle will process 2 new OPM samples. The n new samples are
added to the array of samples obtained from the cache, while discarding the oldest n samples. The
new array of samples is sent back to the cache to be used in the next cycle.

Once the needed samples are gathered, the Attack Detector composes a detection request to the
Attack Inference and sends it. The Attack Inference executes the unsupervised learning model and
returns the detection response with an array of integers with the same cardinality as the samples.
Each item in the array represents whether or not that sample was considered an anomaly (i.e., an
attack in our case).

Once an attack is detected, an attack mitigation strategy must be triggered. We leave the attack
mitigation part for the next iteration of the Cybersecurity component to be reported in D5.3.

Figure 72. Scenario 3 workflow: Periodical optical cybersecurity monitoring using supervised learning

Core NetApps

Customer Service Context Monitoring Device Attack Manager Attack Detector Attack Inference

loop [for each optical service]

DetectAttack(DetectionRequest)Attack manager has an updated
list of TAPI services

QueryKpiData(KpiQuery)

KpiList

Detect(DetectionRequest)

DetectionResponse

IncludeKpi(DetectionResultKpi)

Empty

IncludeKpi(LoopTimeKpi)

Figure 73. Scenario 3 workflow: Periodical optical cybersecurity monitoring using unsupervised learning

Core NetApps

Customer Service Context Monitoring Device Attack Manager Attack Detector Cache Attack Inference

loop [for each optical service]

DetectAttack(ServiceId)Manager has an updated
list of optical services

Get(ServiceId)

Samples

QueryKpiData(KpiQuery)

KpiList

Set(ServiceId, Samples)

Detect(DetectionRequest)

DetectionResponse

IncludeKpi(DetectionResultKpi)

Empty

IncludeKpi(LoopTimeKpi)

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 94 of 112

7.6. Preliminary Performance Evaluation

In this section, we report the preliminary performance of the Cybersecurity components for the two
types of attacks investigated: Layer 3 attacks represented by cryptomining and optical physical layer
attacks represented by six different attacks described in Section 7.3.2.

7.6.1. Layer 3

This section describes the performance and energy efficiency evaluation of the cybersecurity
components that address attack detection and mitigation at Layer 3 of the seven-layered Internet
model.

7.6.1.1. Security
In this section, the performance evaluation will focus on the machine learning model integrated in the
Centralized Attack Detector responsible for identifying malicious cryptocurrency traffic in the network.

A major change from the initial design was the replacement of the Random Forest algorithm with a
Deep Neural Network for detecting malicious cryptocurrency traffic. This decision was made because
the Deep Neural Network (DNN) provided higher accuracy than the Random Forest. In addition, a DNN
is easily parallelizable and can scale to adapt to different network environments with different data
throughputs, allowing for better scalability than the Random Forest algorithm. In addition, another
deciding factor for this change was the fact that the energy-efficient optimization of Random Forest
algorithms is not yet well established, making them less suitable for the implementation of a
centralized attack detector.

7.6.1.1.1. Analysis of the Cryptomining Detector
In this section, we describe in detail the model we used to address the detection of cryptomining
attacks at the network layer. First, we describe the setup we used to collect the training data. Next,
we present the structure of the model and the procedure that was followed to train it. Finally, we
evaluate the model using several standard performance metrics.

7.6.1.1.2. Training of the Cryptomining Detector
The dataset used to train the DNN model for the task of cryptomining detection has been developed
for the precise task of detecting cryptomining attacks [PAS20]. This dataset is provided by Telefónica
R&D as part of ML research for defences against network traffic attacks generated in their
Mouseworld lab.

The experiments that can be deployed in the Mouseworld Lab [PAS18] allow the capture, storage, and
processing of network traffic representative of the attacks to be reproduced. The processing
performed on the network traffic captured in the Mouseworld Lab is oriented toward the training and
validation of ML models for detecting network attacks. To this end, the Mouseworld Lab provides a
way to launch clients and servers and collect their traffic, even if they interact with clients and servers
outside Mouseworld on the Internet. In this way, the Mouseworld lab can be used to set up and
emulate attack scenarios in a controlled way and to generate and collect in a PCAP file all packets of
the attack and normal traffic to be used later for the training and testing of ML algorithms. This
emulation environment allows configuring and executing specific attacks mixed with normal traffic
instantiating virtual machines that deploy specific attack clients connected to real servers located at
different points on the Internet. In addition, the emulation environment allows configuring other

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 95 of 112

virtual machines on which normal traffic clients and servers (e.g., web, file hosting, streaming) are
deployed. Finally, a commercial tool called BreakingPoint from Ixia allows a wide variety of realistic
traffic types to be configured and injected into the network. Once a configuration is deployed, all
packets exchanged by the clients and servers with each other and other servers on the Internet can
be captured. The captures are stored in PCAP format files to be used later for training and validation
of ML-based attack detectors.

We used the Mouseworld lab to emulate a cryptomining attack scenario over a 5G network. In this
scenario, the attack consists of several cryptomining clients sending cryptomining traffic to a real
server located on the Internet. Normal traffic was also injected into the network using the
BreakingPoint tool, and several virtual machines were configured to emulate the normal traffic (e.g.,
web, file hosting, streaming). The captures of both attack and normal traffic were stored in PCAP files.
The PCAP files were then used to generate the dataset used in this case study.

The data collected in the Mouseworld lab contains traffic samples represented by flow statistics
derived from network packets using the Tstat tool. This traffic data was labelled to create the dataset
used to train the cryptomining detector. In particular, two types of traffic can be found in the dataset,
samples (rows) corresponding to normal traffic, and samples corresponding to cryptomining attacks.
In this case, each row of the dataset was tagged as either 0 (normal traffic) or 1 (cryptomining attack
traffic) using the IPs and ports of the known attack connections.

We used the TensorFlow library to train a Fully Connected Neural Network (FCNN) classifier to predict
whether a connection corresponds to cryptomining activity or not according to all features derived
from Tstat statistics except IPs and ports, as they are used to label the dataset (class labels) and
therefore cannot be used to train the model.

The structure of each of the FCNN model that was used as baseline is specified below. In particular,
the model consists of a stack of three fully connected layers with 20, 30 and 10 with Rectified Linear
Unit (ReLU) activation followed by a fully connected layer with two neurons and SoftMax activation
as output layer. The training hyperparameters are as follows. We use a batch size of 4096. We also
use Adam optimizer with a learning rate of 0.001. Furthermore, we use the early stopping technique
to automatically terminate the training process if the validation loss does not improve for 20 epochs,
restoring the model weights to those obtained in the epoch with the lowest validation loss after
training is complete. For the validation procedure, we reserve 20% of the training data for the
validation split. Finally, as a loss function, we use the categorical cross-entropy function.

Although the accuracy of the model using all these features is already high, it was observed that many
of them do not contribute significantly to the prediction performance and can be ignored to improve
the training efficiency and model inference. Therefore, we decided to make a random selection of the
most commonly used features and managed to reduce the required input to ten features, while the
F1 score was still high (> 95%). We list the features that we selected in Table 7. Note that if a feature
has a CS (Client-Server) and SC (Server-Client) identifier, it is because it has been measured in both
directions. However, if a feature has only one identifier, it is because it has been measured in the
direction indicated by the identifier type (CS or SC).

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 96 of 112

All data were standardized to ensure that the mean of the sample was 0 and the standard deviation
was 1. This was done so that the scale of each variable did not cause one variable to dominate the
results. We found that standardisation significantly improved the results.

7.6.1.1.3. Performance Evaluation of the Cryptomining Detector
The trained model was converted to an ONNX format. ONNX is an open-source format for
representing deep learning models in an intermediate format that allows for interoperability between
different frameworks, such as TensorFlow, PyTorch, and Caffe2. ONNX is a well-suited format for
deploying deep learning models in production, since it enables faster performance and a smaller file
size. In addition, this conversion process allows the model to be deployed and used in various
environments, including web services and mobile devices, and a variety of hardware platforms. The
conversion process of the DNN model from the TensorFlow/Keras format to ONNX was done using the
tf2onnx library. Once the conversion is complete, the model can be deployed using the ONNX Runtime
library, which provides an execution engine for the ONNX models.

Once the model was successfully converted to ONNX, it was evaluated in an offline fashion. This was
done by first selecting a test set of data and then running inference on it using the ONNX Runtime
library. The model's performance was then evaluated by comparing the predicted results to the actual
labels of the data. Once the model was successfully converted to ONNX, it was evaluated offline. To
do this, a test data set representing 20% of a reserved portion of the total data set that was never
used for model training was first selected, and then inference was run on it using the ONNX Runtime
library. The performance of the model was then evaluated by comparing the predicted results with

Table 7. Selected features of the Crypto dataset to train the cryptomining detector.

CS
ID

SC
ID Name Type Description

13 27 SYN count Numeric Number of SYN segments observed (including rtx).

70 93 flow control Numeric Number of retransmitted segments to probe the receiver
window.

71 94 unnece rtx RTO Numeric Number of unnecessary transmissions following a
timeout expiration.

72 95 unnece rtx FR Numeric Number of unnecessary transmissions following a fast
retransmit.

73 96 != SYN seqno Binary 1 = retransmitted SYN segments have different initial
seqno.

74 97 HTTP Request
count Numeric Number of HTTP Requests (GET/POST/HEAD) seen in

the C2S direction (for HTTP connections).

76 98 First HTTP
Response Numeric First HTTP Response code seen in the server->client

communication (for HTTP connections).

77 99 PSH-separated
C2S Numeric Number of push separated messages C2S.

78 100 PSH-separated
S2C Numeric Number of push separated messages S2C.

- 90 reordering Numeric Number of packet reordering observed.

CS: Client to server traffic.
SC: Server to client traffic.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 97 of 112

the actual labels on the data. The metrics used to measure model performance include three well-
known metrics: precision, balanced accuracy, F1 score and confusion matrix. We incorporated
balanced precision among the evaluation metrics to account for imbalances that exist in the data set.
A brief explanation of each metric is provided below.

• True Negative (TN): number of cases in which the model correctly predicted a negative
outcome. The True Negative Rate (TNR) measures the rate of negative outcomes correctly
predicted as negative;

• False Positive (TP): number of cases in which the model incorrectly predicted a positive
outcome. The False Positive Rate (FPR) measures the rate of negative samples that were
mislabeled as positives;

• False Negative (FN): number of cases in which the model incorrectly predicted a negative
outcome. The False Negative Rate (FNR) measures the rate of positive samples that were
mislabeled as negative;

• True Positive (TP): number of cases in which the model correctly predicted a positive
outcome. The True Positive Rate (TPR) measures the rate of positive samples that were
correctly labeled as positive;

• Accuracy: rate of correct predictions made by the model. It is calculated by taking the ratio of
true positives and true negatives to the total number of predictions. The formula is given by:
Accuracy = (TP + TN) / (TP + TN + FP + FN);

• Balanced Accuracy: accuracy of the model in predicting both positive and negative classes.
The formula is given by: Balanced Accuracy = (TP/P + TN/N) / 2 where P is the total number of
positive examples, and N is the total number of negative examples;

• Precision: true positive rate of all positive predictions made by the model. The formula is as
follows: Precision = (TP) / (TP + FP);

• Recall: true positive rate of all true positive examples in the data set. The formula is as follows:
Recall = (TP) / (TP + FN);

• F1 Score: it is calculated by taking the harmonic mean of precision and recall. The formula is
given by: F1 Score = 2 * (precision * recall) / (precision + recall);

• Confusion Matrix: The confusion matrix is a visual representation of the model's performance
and is used to analyze the model's ability to correctly classify the data into different classes.

The results of the evaluation are shown below.

• Accuracy: 0.99996
• Balanced Accuracy: 0.99543
• Precision: 0.99998
• Recall: 0.99543
• F1 score: 0.99541
• Confusion matrix:

 Predicted Negative Predicted Positive
Actual Negative 97120 0
Actual Positive 4 434

From the evaluation results, it can be seen that the ONNX DNN model achieved excellent performance,
with an accuracy of 0.99996, a balanced accuracy of 0.99543, a precision of 0.99998, a recall of 0.99543,

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 98 of 112

and an F1 score of 0.99541. This shows that the model is capable of accurately predicting the labels of
the data set with a high degree of accuracy.

Once the offline evaluation was successfully completed, the ONNX model was integrated into the
Centralized Attack Detector (CAD) component. In this context, we validated the performance of the
model by re-injecting the same packets contained in the test dataset and observed that the
performance of the ONNX model was consistent with the offline evaluation results.

7.6.1.2. Energy Efficiency
In this section, we evaluate the energy efficiency optimization of the deep neural network deployed
in the Centralized Attack Detector component responsible for the cryptomining detection task. We
present a comparison of the energy efficiency achieved with different state-of-the-art techniques,
discuss the energy efficiency trade-offs arising from the model optimization, and identify the best
performing approaches for the task at hand according to a variety of criteria considering different
energy efficiency and accuracy requirements.

7.6.1.2.1. Experimental Framework for the Cryptomining Detector Energy
Efficiency Optimization

In this section, we describe the experimental framework we applied for analysing the energy efficiency
and resource utilization of DNN-based systems deployed in production environments. First, we explain
the energy measurement process followed to collect energy consumption data and discuss the main
statistics collected to analyse the resource utilization of the resulting models. Next, we describe how
the most appropriate optimization strategy for the problem at hand is selected. Next, we describe the
energy optimization techniques that were applied.

7.6.1.2.2. Measuring Energy Consumption
To measure the energy consumption obtained with the different optimization approaches, we use the
Running Average Power Limit (RAPL) interface, which estimates power consumption based on the
Power Management Controller (PMC) values that can be collected from Intel family processors. In
particular, we use the RAPL interface through the powerstat command line profiling tool to collect the
CPU power consumption of the ML models during the training, model optimization, inference, and
model loading phases.

For each combination of techniques to be applied, the baseline model that was analysed in section
7.6.1.1.1 is trained and then the optimization techniques are applied sequentially depending on the
order specified in the optimization strategy defined by the particular combination to be applied.

Once the model has been trained and optimized, its inference performance is evaluated. To evaluate
the inference performance of the model obtained with each combination of techniques, the model is
converted from TensorFlow/Keras to TensorFlow Lite format. Considering that the inference phase is
the most energy-consuming in ML applications, converting the model to TensorFlow Lite format to
speed up and optimize the inference process has proven to be a great gain in terms of both energy
and performance.

In the inference stage, various batch sizes are tested to evaluate the variation in power consumption
and resource utilization. By default, the small (32), medium (256) and large (1024) batch sizes are
tested, although they can be configured by the user depending on the application requirements.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 99 of 112

In addition, the predictive performance of the optimized ML model obtained with each combination
of techniques is also measured. In this case, since the model to be optimized is a classifier, we use the
F1 accuracy and F1 score, as well as the balanced accuracy to account for the class imbalance that
exists in our data.

Once all repetitions have been performed, the metrics obtained at each time step among all
repetitions are aggregated using the mean, standard deviation, and maximum value.

In addition, a second aggregation is also performed, but on this occasion on the time axis to show the
mean value, standard deviation, and maximum of each statistic measured throughout the test. as a
summary of the results. At this point, the total energy consumed in the test is obtained by multiplying
the average energy consumption by the average duration of the test. Furthermore, the percentage of
reduction in total average energy consumption is also calculated by computing the difference between
the average total energy consumption of each test with that obtained for the same test performed
with the baseline model and dividing the result by the average total energy consumption of the test
performed with the baseline model. In this way, a percentage is obtained that can be used as a metric
of the improvement in energy efficiency achieved by the proposed optimizations. The obtained value
can be positive or negative depending on the change in the energy consumption of the optimizations
with respect to the baseline. A positive value shows that the optimizations perform better than the
baseline, while a negative value shows that the optimizations consume more energy than the baseline.

7.6.1.2.3. Selection of the Best Optimization Strategy
Three different optimization profiles have been considered in the optimization process, which
determine the selection of the most suitable optimization technique according to the particular needs
of the application. Details of these profiles are given in D4.2. A summary is given below.

A. Energy efficiency profile: This profile is designed to minimize the power consumption of the
optimized model as much as possible, while providing acceptable performance measured
against a given metric and a specific threshold;

B. Performance profile: This profile is designed to maximize the performance of the optimized
model as much as possible, while providing an energy efficiency gain equal to or greater than
a given threshold;

C. Balanced profile: This profile is designed to balance performance and energy efficiency by
applying the optimization strategy that provides the best balance between both metrics
according to the parameters that control the importance of each one during the selection.

Regarding the selection of the most appropriate combination of techniques to apply, an exhaustive
search of all combinations of optimization strategies is performed. More specifically, a set of all
possible combinations of techniques that can be applied to the DNN model is first built and then each
combination is applied and evaluated. At the end, the most appropriate combinations to apply
according to each optimization criterion are selected.

7.6.1.2.4. Selected Model Optimization Strategies
Three different sets of optimization strategies were selected for the experimental evaluation. Each
optimization strategy contains several different combinations of the most promising state-of-the-art
optimization techniques that were identified. The tests were performed offline to evaluate the most
effective approach to minimize the total energy consumption of an ML model during the training,

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 100 of 112

inference, and loading stages by performing a quantitative analysis of the energy consumption
metrics.

The first set contains combinations of quantization techniques that can be applied as a post-processing
step after training the ML model. The second set contains various methods of compressing the
physical representation of an ML model (number of total model parameters or the in-memory size of
each parameter), in order to reduce the amount of energy consumed by an ML model during the
inference stage and in subsequent retraining that might be necessary due to a change in the
underlying data distribution during the operational stage. Finally, the third set contains combinations
of the individual techniques included in the other two sets.

The specific combinations of techniques in each set are listed in Table 8. It should be noted that, in
order to reduce the computational cost and time spent on the third test set, only the optimal post-
training quantization technique according to the results of the first test set in terms of the selected
optimization profile is applied to the models of the third set. The reason for this choice is that all the
post-training quantization techniques have a negligible computational cost compared to that of the
techniques found in the second set. Therefore, by evaluating them beforehand and selecting the
optimal one as the one used for the combinations present in the third test set, the total evaluation
time is considerably reduced. After preliminary validation, we conclude that this approach does not
affect the results obtained with the third set in any meaningful way. Specific details of the application
of these techniques are described in D4.2.

Table 8. Energy efficiency optimization strategies considered in the experimental framework.

Set Opt.
Strategy Id.

Opt. Strategy

N/A 0 No optimizations (baseline)

Post-Training
Optimization
Techniques

1 1) Full 8-bit Integer (INT8) Weight Quantization

2 1) Half-precision Floating-point (FP16) Weight Quantization

3 1) Full Integer Weight Quantization with 16-bit Integer
(INT16) Activations and 8-bit Integer (INT8) Weights

Training-aware
Optimization
Techniques

4 1) Pruning-aware Model Fine-tuning

5 1) Quantization-aware Model Fine-tuning

6
1) Neural Architecture Search
2) Knowledge Distillation

Combined
Optimization
Techniques

7
1) Pruning-aware Model Fine-tuning
2) Quantization-aware Model Fine-tuning

8

1) Neural Architecture Search
2) Knowledge Distillation
3) Pruning-aware Model Fine-tuning

9

1) Neural Architecture Search
2) Knowledge Distillation
3) Quantization-aware Model Fine-tuning

10
1) Neural Architecture Search
2) Knowledge Distillation

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 101 of 112

3) Pruning-aware Model Fine-tuning
4) Quantization-aware Model Fine-tuning

11
1) Pruning-aware Model Fine-tuning
2) Optimal post-training Quantization

12

1) Neural Architecture Search
2) Knowledge Distillation
3) Optimal post-training Quantization

13

1) Neural Architecture Search
2) Knowledge Distillation
3) Pruning-aware Model Fine-tuning
4) Optimal post-training Quantization

7.6.1.2.5. Experimental Evaluation
In this section, we present the results of the experimental evaluation that was performed to optimize
the energy efficiency of the postmining detector implemented in the Centralized Attack Detector
component. First, we describe the experimental setup that we have defined to test the different
optimization strategies to be evaluated, including the main parameters of the optimization process to
be applied to our target model, as well as the hardware platform that we have used to perform the
experiments. Next, we analyse the experimental results obtained in the model inference state for each
of the optimization strategies that were applied. Finally, we provide a summary of the main
conclusions of our experimental evaluation.

7.6.1.2.6. Experimental Setup
We have performed an experimental evaluation in which we have applied all combinations of
optimization techniques defined in 7.6.1.2.4 to the cryptomining detector described in Section 7.3.1.
In addition, we repeated the experiments 5 times with a 1-second time interval for sample
measurements to collect energy efficiency metrics.

To carry out the optimization process, the three optimization profiles defined in 7.6.1.2.3 to select the
most appropriate optimization strategy are considered. We establish as a performance threshold a
minimum acceptable reduction in energy consumption concerning the non-optimized model of 25%
and a minimum balanced accuracy of 0.9. Furthermore, to apply the balanced profile, we set the ratio
of these two factors as 0.5 for both to obtain the optimization strategy that leads to the most balanced
results between the two objectives and analyse its comparison with those obtained with the other
two profiles. We will use balanced accuracy as the objective performance metric for our optimization
process because, as explained above, due to the class imbalance that exists in our data it is a more
restrictive and more reliable metric to evaluate the effectiveness of the different optimization
strategies that have been applied than the other metrics that are commonly used a classification
problem (e.g., accuracy, F1 score, etc.). Furthermore, we use a balanced accuracy of 0.9 as a threshold
because it provides an acceptable accuracy in our case while maintaining adequate energy efficiency.

Three different batch sizes (small: 32, medium: 256 and large: 1024) were tested to analyse the
influence of the batch size used to perform the prediction on the results obtained

The hardware platform used to validate the proposed methodology is a system with an Intel(R)
Core(TM) i7-2600 CPU (Sandy Bridge microarchitecture; base clock 3.40 GHz; turbo boost 3.80GHz; 8

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 102 of 112

MB cache) with Intel RAPL support. The system has 32 GB of RAM and Ubuntu 20.04.5 (with 5.15.0-
48-generic Linux kernel) was used as the operating system.

The experimental framework was implemented using Python (version 3.10.6) as the main
programming language and using the following dependencies: TensorFlow (version 2.9.2), TensorFlow
Model Optimization (version 0.7.3), psutil (version 5.9.4) and powerstat (version 0.02.27).

7.6.1.2.7. Analysis of the Results Obtained
The complete analysis of the results obtained in the inference stage of the optimized models and the
selection of the best optimization strategies that provide the best compromise between energy
efficiency and performance according to the different optimization profiles considered can be found
in D4.2. In Figure 74, we show the percentage of total average CPU power consumption obtained for
each optimization strategy during the inference phase. The values represented were obtained from
the aggregation of measured values collected during the duration of model inference at 1-second
intervals and over 5 iterations for each optimization strategy using a batch size of 256 (medium size)
to perform the prediction.

A summary of the most important conclusions and observations is provided below.

• Almost all optimization strategies lead to a significant reduction in energy consumption,
exceeding in most cases the threshold of reduction in energy consumption with respect to the
non-optimized model that was set at the beginning of the experimental evaluation;

Figure 74. Energy consumption reduction obtained with each optimization strategy in the inference phase with respect
to the non-optimized model using a batch size of 256.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 103 of 112

• The knowledge distillation technique provides the largest reduction in energy consumption in
most cases studied, reducing the total average energy consumption by up to 82.304% with a
minimal performance degradation of just 0.08% in the balanced accuracy, 0.016% in the
accuracy and 0.11 in the F1 score;

• The optimization strategy based on the application of the half-precision floating-point weight
quantization provides a reduction in energy consumption of up to 58.208%, with no
performance degradation compared to the baseline model;

• Some of the techniques studied are not mutually exclusive and can be applied in conjunction
with each other to further reduce the energy consumption of the model. In this regard,
applying a weight quantization as final post-processing can potentially reduce the energy
consumption of the model in the inference stage. In particular, we observed that the
optimization strategy based on the application of the knowledge distillation technique
followed by a half-precision floating-point weight quantization provides a reduction in energy
consumption of up to 80.741%, with a negligible performance degradation of 0.08% in the
balanced accuracy, 0.016% in the accuracy and 0.11 in the F1 score;

• Another technique that can be applied in conjunction with the knowledge distillation
technique to further reduce the energy consumption of the model is the pruning-aware model
fine-tuning. The optimization strategy based on the application of the knowledge distillation
technique followed by a pruning-aware model fine-tuning provides a reduction in energy
consumption of up to 81.046% but with a significantly higher performance degradation of
0.287% in the balanced accuracy. In addition, in some preliminary tests, we observed that
performance degradation was unpredictable, as the same optimization strategy was applied
on different occasions and provided different performance results. For this reason, we
recommend caution when applying this optimization strategy;

• The results show that, regardless of the batch size used for inference, an optimal balance
between energy and accuracy can be obtained with the application of the knowledge
distillation technique, as it provides a very high energy savings with minimal degradation of
performance. Finally, the results also demonstrate that, when performance degradation is not
allowed, the optimization strategy based on the application of the half-precision floating-point
weight quantization provides the best energy-consumption results;

• The difference in energy consumption reduction provided by optimization strategies using a
large batch size and a small batch size does not result in a variation in the relative ranking of
the optimization strategies. In most cases, optimization strategies that provide the greatest
reduction in energy consumption for small batch sizes also provide the greatest reduction for
large batch sizes, and when this is not the case, the difference in energy savings is small.
However, it is clear from the results that the reduction in energy consumption obtained with
the application of optimization strategies is greater for larger batch sizes, regardless of the
optimization strategy applied. From this observation, we can conclude that, in order to obtain
optimal energy savings, the use of large batch sizes should be preferred whenever possible,
as the application requirements permit;

• The results obtained in terms of accuracy and balanced accuracy are also very favourable in
general. With only two exceptions, the optimization strategies have managed to maintain a
balanced accuracy above the threshold we set at the beginning of the experimental
evaluation. In all cases, accuracy and the F1 score were almost unaffected. However, due to
the significant class imbalance in the data, this result is irrelevant, so we continue to focus on

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 104 of 112

balanced accuracy. The largest balanced accuracy loss is obtained with the application of 8-bit
integer weight quantization after training (0.5), followed by the balanced accuracy loss
produced with the application of knowledge distillation and half-precision floating-point
weight quantization (0.287) and knowledge distillation (0.008).

In summary, we observe that the optimization strategy based on the application of the knowledge
distillation technique is the one that provides the largest reduction in energy consumption in all cases
studied. However, in some cases, the optimization strategy based on the application of the knowledge
distillation followed by the pruning-aware fine-tuning technique and the quantization-aware model
fine-tuning provides a slight gain over the former but with a much greater performance penalty. In
addition, the optimization strategy that provides the best energy efficiency gain with no degradation
in performance is the half-precision floating-point weight quantization technique.

Based on the results obtained, we can conclude that the knowledge distillation technique provides
the largest reduction in energy consumption in most cases studied, reducing the total average energy
consumption by up to 82.304% with a minimal performance degradation of just 0.08% in the balanced
accuracy, 0.016% in the accuracy and 0.11 in the F1 score.

In addition, it is clear from the results that the reduction in energy consumption obtained with the
application of optimization strategies is greater for larger batch sizes, regardless of the optimization
strategy applied. From this observation, we can conclude that, in order to obtain optimal energy
savings, the use of a large batch size should be preferred whenever possible, as the application
requirements permit.

Therefore, in our case the use of the knowledge distillation technique to optimize the DNN model
implemented in the Centralized Attack Detector component is the most recommended strategy
among the ones evaluated, as it provides the highest energy savings and minimal performance
degradation. In addition, medium and large batch sizes should be used for inference, as they provide
significantly higher energy savings than the small batch size.

7.6.2. Optical

In this section, we present the preliminary performance evaluation of the Cybersecurity component
devoted to detecting physical layer attacks to optical networks. First, we present a quick summary of
the results of the ML model for physical layer attack detection and identification (detailed results are
present in D4.2). Then, we also show results related to the scalability properties of the Cybersecurity
optical performance analysis loop designed and implemented in TeraFlowSDN.

7.6.2.1. Accuracy of ML models
One of the critical KPIs of the cybersecurity scenario is the accuracy of the ML model used in the
presence of known and unknown attacks. Known attacks are attacks that have been included in the
training dataset, therefore known by the ML model prior to the inference. Unknown attacks are
attacks that have not been presented to the ML model during training, and are first presented to the
ML model during inference. Naturally, both these attacks are known a priori by the ML/cybersecurity
specialist who designed the experiments to collect the dataset, selected and trained the ML models,
and evaluated their performance.

Let us focus first on the detection and classification of known attacks. In this case, the fact that the
attacks are known by the ML model during training enable the ML model to classify them, i.e., the ML
model is able to perform attack detection and identification. One of the most regarded ML models for

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 105 of 112

the classification task are the Artificial Neural Networks (ANNs). In our scenario, we adopted ANNs
and performed a hyperparameter analysis (details are provided in D4.2). We split the dataset into 3
slices: training, validation, and testing.

Figure 75 shows the performance of the best ANN architecture over training for the training and
validation datasets. As we can see, the accuracy and categorical cross-entropy (used as the loss
function for training) start in a quite bad performance, but quickly progress to very good levels of
performance. The accuracy reaches nearly 100%. We can see that after 400-500 epochs, the
categorical cross-entropy of the validation set stabilizes, indicating that if we interrupt the training in
around 500 epochs the model would still maintain the characteristics of the model trained with 1000
epochs. At the end, the ANN achieves a 98.2% accuracy over the testing set.

Figure 76 shows the confusion metrices for the training, validation, and testing data sets. In this case,
true positives are all the attacks that are predicted as an attack, where false negatives are the attacks
predicted as not attacks. Focusing on the testing dataset, only 0.4% are false negatives, where the true
attack is a light in-band jamming attack, but the ANN is classifying them as normal operating
conditions.

True negatives are the samples from normal operating conditions being classified as such, while false
positives are the samples from normal operating conditions being classified as attacks. Only 0.2% of
false positives are found, 0.1% being classified from the light in-band jamming attack, and 0.1% from
the strong polarization attack.

Figure 75. Training performance of the ANN for attack detection and identification

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 106 of 112

When we move to the task of detecting unknown attacks, i.e., attacks that are not included in the
training dataset, traditional ANNs are no longer suitable. In this case, we adopted DBSCAN, a well-
known unsupervised learning algorithm used for anomaly detection. In our case, attacks should affect,
at least mildly, the OPM parameters, just enough so that DBSCAN is able to detect them.

Table 9 shows a summary with the best results of the hyperparameter tuning performed for DBSCAN.
The two parameters MinSamples and Epsilon were varied in the range of [3, 5, 8, 10, 12, 15, 20, 50,
80, 100] and [0.1, 0.5, 1, 2, 3, 4, 5, 10], respectively. We can see that the best configuration achieves
an F1 score of 0.803, leading to 26% false positives and 13.8% false negatives. These numbers are not
ideal but can be used in conjunction of root cause analysis strategies to provide indication that
something is wrong with the channel.

Table 9. Summary of the results of unsupervised learning detecting unknown optical physical layer attacks

MinSamples Epsilon TNR FPR TPR FNR F1 score
3 1 0.819 0.18 0.76 0.239 0.77
5* 1* 0.733 0.266 0.861 0.138 0.803
8 1 0.601 0.398 0.912 0.087 0.786
10 2 0.998 0.0012 0.374 0.625 0.42
20 2 0.998 0.0017 0.55 0.449 0.623
50 2 0.991 0.008 0.586 0.413 0.659
80 2 0.891 0.108 0.653 0.346 0.687
* Configuration with the best overall F1 score.

7.6.2.2. Scalability Performance Evaluation
In this section, we focus on the performance evaluation of two components: the Attack Detector and
the Attack Inference. The evaluation of the Attack Mitigator will be performed in the next deliverable
(i.e., D5.3).

For the scalability performance evaluation, we designed a script that is able to generate a high number
of optical service requests to TeraFlowSDN. Moreover, in order to be able to accommodate such a
high number of services, we disabled the resource availability checks when performing the
provisioning of new services. Finally, we configured the emulated optical data plane to replay data
captured as detailed in Section 7.3.2. For the results in this deliverable, we only replay data from
normal operating conditions, given that the scalability of the Attack Mitigator component is not
assessed.

Figure 76. Confusion matrices for the ANN

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 107 of 112

The results illustrated in this section are collected and plotted using Prometheus. We show the
Prometheus query for each plot to serve as reference for reproducibility purposes. We varied the
number of active optical services in the range [120, 240, 480, 960, 1440, 1920]. The OPM cycle is
configured for 30 seconds, as well as the Cybersecurity assessment cycle (i.e., our components run the
cycle at every 30 seconds). We use the Attack Inference component that leverages DBSCAN, and
unsupervised learning algorithm that is able to detect anomalies (e.g., attacks in the case of our
scenario). For each prediction, we use 330 samples. The cache is enabled and saves the 330 samples
between monitoring loops.

First, let us visualize the number of active optical services in the network. Figure 77 shows the number
of active optical services in the network, together with the Prometheus query used to generate it. For
each number of services, we leave the experiments running for 30 minutes in order to be able to
capture the stable scalability performance. Between each test, we remove all the active services and
leave TeraFlowSDN without any services for 10 minutes.

Next, we move our attention to evaluating how successful the Cybersecurity component is with
respect to scaling to meet the monitoring cycle (i.e., configured for 30 seconds in this case). Figure 78
shows the Prometheus query and the plot generated for the average loop time. By analyzing Figure
78 in combination with Figure 77 we can note that the increases in the number of services coincide
with increases in the loop time (i.e., x axis have the same time span). This represents the time that it
took to perform the optical physical layer attack detection over all the services in the network. Note
that the plot shows that at the beginning of a given experiment (e.g., right after adding 240 services)
there is a increase in the response time, that later stabilizes towards the final value. This behaviour is
explained by the fact that right after adding a high number of services, all at once, it takes a few
minutes for TeraFlowSDN to scale to the necessary number of replicas. However, this represents a
worst-case scenario, as in normal operating conditions the number of active services does not
fluctuate so drastically in a short period of time.

optical_security_active_services

Figure 77. Number of active optical services (y axis) over time (x axis) in the network as collected by Prometheus

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 108 of 112

We can see that between 120 and 960 services, the loop took between 10 and 15 seconds. Note that
this time can be considered quite stable, even though the number of services in the network increased
by a factor of 8. When the number of services is 1440, the loop takes longer than 20 seconds. When
considering 1920 active optical services, the loop time reaches 30 seconds at first, but quickly stabilizes
below that value.

In the following, we focus on the scalability properties of each individual component. Figure 79 shows
the response time of the Attack Detector for performing the cybersecurity monitoring to a single
service. The value is averaged over all the replicas. We can see that at the beginning of each
experiment (i.e., right after adding a high number of services), the response time is high, reaching up
to 230 milliseconds for the case with 1920 services. However, as the experiment progresses, more
replicas are created and the response time stabilizes around a value between 80 and 120 milliseconds,
which represents a very stable range given the great difference in the number of services.

rate(optical_security_loop_seconds_sum[5m]) /
rate(optical_security_loop_seconds_count[5m])

Figure 78. Time taken for the optical cybersecurity monitoring loop (y axis, in seconds) over time (x axis) as collected by
Prometheus

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 109 of 112

7.7. Pending Work and Summary

Table 10 summarizes the KPIs and KVIs achieved by the current implementation of Scenario 3. Some
of the KPIs and KVIs are left for D5.3.

Table 10. Target and achieved KPIs and KVIs for Scenario 3

KPI Target Validation results
Layer 3 Optical

Security > 99% accuracy
(known attacks)

• Accuracy Score: 0.99966
• False positive: 0
• False negative: 144
• True positive: 1494
• True negative: 421968
• F1 Score: 0.95402

• Accuracy Score:
0.982

• False positive:
0.002

• False negative:
0.004

• True positive:
0.996

• True negative:
0.997

• F1 Score: 0.996
 > 90% accuracy

(unseen attacks)

N/A

• Accuracy: 0.817
• False positive:

0.266
• False negative:

0.138
• True positive:

0.861

Figure 79. Average response time over all replicas (y axis, in seconds) of the optical attack detector over time (x axis) as
measured by Prometheus

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 110 of 112

• True negative:
0.773

• F1 Score: 0.803
 > 30% reduction of

attack response
latency

To be evaluated in D5.3 N/A

Reliability > 90% accuracy in
detecting and avoiding
known adversarial
attacks.

To be evaluated in D5.3 N/A

Energy > 25% resource
consumption • Percentage of Total

Average CPU Energy
Consumption Reduction
with respect to the
original model in the
inference stage
(Knowledge Distillation,
batch size: 256):
82.304%.

• Loss in the accuracy:
0.016%.

• Loss in the balanced
accuracy: 0.008%.

• Loss in the F1 Score:
0.011

To be evaluated in
D5.3

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 111 of 112

8. Conclusions and Next Steps
This deliverable reports the latest efforts on integration and performance evaluation of TeraFlowSDN.
In this regard, three scenarios are leveraged to drive the integration and evaluation efforts. The main
outcomes are a functional CI/CD environment and detailed documentation for new and experienced
users. Moreover, a new metrics collection framework enables the internal monitoring and
performance assessment of TeraFlowSDN components and workflows. Finally, each scenario has been
detailed, including its motivation and challenges, alignment with the overall TeraFlowSDN
architecture, the setup used to evaluate the performance in the context of the scenario, metrics
relevant to the scenario, workflows, deployment, and preliminary performance evaluation.

Regarding integration, the next steps include the functional tests created for the scenarios in the CI/CD
environment. This will enable the validation of modifications in terms of unitary tests (i.e., tests more
focused on the individual functionalities of each component) and end-to-end workflows. Activities for
dissemination will continue, and feedback will be considered for newer versions of the documentation
offered by TeraFlowSDN.

The scenarios will continue to be integrated and evaluated, with several points to be reported in D5.3.
For Scenario 1, all the KPIs and KVIs have been detailed in this deliverable. However, due to issues in
the integration of components, all measurements of the defined KPIs and KVIs will be reported in D5.3.
The same applies to Scenario 2, where the integration issues with the Context component prevented
us from obtaining the preliminary performance results as expected.

Finally, in the case of Scenario 3, several KPIs and KVIs have already been measured and reported in
this deliverable. However, additional performance assessments remain to be performed. In particular,
with respect to the energy efficiency optimization performed in Cybersecurity Layer 3, the best
optimized model that was obtained in the energy efficiency assessment that was performed will be
deployed in the Centralized Attack Detector component in the next iteration, and further energy
efficiency and performance metrics will be collected in this environment to validate that they are
consistent with the energy efficiency and performance metrics that were obtained offline.
Furthermore, resilience to adverse attacks will also be analysed in the next iteration. In this sense, we
will report the methodology and results of our study on the effectiveness of the defensive mechanisms
put in place to protect the ML model deployed in the Centralized Attack Detector against this type of
attack. In the case of Cybersecurity Layer 3 components, a comprehensive evaluation of the real-time
performance of the different components under various stress conditions will be carried out, and
different scalability mechanisms will be studied to ensure the correct operation of these components
under high load. In the future, we will also analyse the attack mitigation response time of
Cybersecurity L3 components in the next iteration and study different strategies to improve the
performance of these services by reducing latency in inter-component communications. For optical
cybersecurity, the next deliverable will include a measurement of the elapsed time from detection to
end-to-end mitigation, as well as an analysis of the performance of the attack mitigation strategy.
Finally, an assessment of the power consumption of the optical cybersecurity loop will be included,
and optimizations will be proposed.

D5.2 Implementation of pilots and first evaluation

© 2021 - 2023 TeraFlow Consortium Parties Page 112 of 112

References
[ECOC22] Ll. Gifre, et al, "Experimental Demonstration of Transport Network Slicing with SLA Using
the TeraFlowSDN Controller”, European Conference and Exhibition on Optical Communication, 2022.

[EDG22] ‘300G CELL SITE ROUTER’ [Online]. Accessed: 2022-12-15. Available: https://www.edge-
core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955

[JLT2019] C. Natalino, et al., "Experimental Study of Machine-Learning-Based Detection and
Identification of Physical-Layer Attacks in Optical Networks," in Journal of Lightwave Technology, vol.
37, no. 16, pp. 4173-4182, Aug. 2019. DOI: 10.1109/JLT.2019.2923558.

[NFV22] Ll. Gifre, et al., "DLT-based End-to-end Inter-domain Transport Network Slice with SLA
Management Using Cloud-based SDN Controllers", IEEE NFV-SDN, 2022.

[OECC22] R. Vilalta, et al., “End-to-end Interdomain Transport Network Slice Management Using
Cloud-based SDN Controllers “, OECC/PSC 2022.

[OFC22] Ll. Gifre, et al., “Demonstration of Zero-touch Device and L3-VPN Service Management using
the TeraFlow Cloud-native SDN Controller”, OFC, 2022.

[OFC23] Ll. Gifre, et al., "Slice Grouping for Transport Network Slices Using Hierarchical Multi-domain
SDN Controllers", accepted demo paper at OFC, 2023.

[PAS18] A. Pastor, A. Mozo, D. R. Lopez, J. Folgueira, and A. Kapodistria, ‘The Mouseworld, a security
traffic analysis lab based on NFV/SDN’, in Proceedings of the 13th international conference on
availability, reliability and security, 2018, pp. 1–6.

[PAS20] A. Pastor et al., ‘Detection of encrypted cryptomining malware connections with machine and
deep learning’, IEEE Access, vol. 8, pp. 158036–158055, 2020.

[SLK] ETSI TeraFlowSDN Slack channel. Subscription link:
https://join.slack.com/t/teraflowsdn/shared_invite/zt-1lut4qg47-9XbNW4S3egOw7UYf6D3sdQ

[SPI22] ‘Spirent SPT-N12U Mainframe Chassis’. [Online]. Accessed: 2022-12-15. Available: Spirent SPT-
N12U Mainframe Chassis datasheet - Spirent
[RFC8466] G. Fioccola, et al., A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service
Delivery, IETF RFC 8466, October, 2018.

https://www.edge-core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955
https://www.edge-core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955
https://join.slack.com/t/teraflowsdn/shared_invite/zt-1lut4qg47-9XbNW4S3egOw7UYf6D3sdQ
https://www.spirent.com/assets/u/spirent-n12u-chassis
https://www.spirent.com/assets/u/spirent-n12u-chassis

	Executive Summary
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	1.1. Purpose
	1.2. Relationship with other Deliverables
	1.3. Structure

	2. Architecture Overview
	3. Integration Report
	3.1. European Telecommunications Standards Institute (ETSI)
	3.2. GitLab
	3.2.1. Feature Request Procedure
	3.2.1.1. Procedures
	3.2.1.2. Designing a Feature
	3.2.1.3. New Feature / Enhancement Request Template
	3.2.1.4. Feature Design Template

	3.2.2. Feature Lifecycle
	3.2.3. Bug Report Procedure
	3.2.4. Wiki

	3.3. Slack
	3.4. CI/CD Environment
	3.5. Release Documentation
	3.5.1. Installation Instructions
	3.5.2. Wiki
	3.5.3. Tutorial and TeraFlowSDN Virtual Machine

	4. Metrics Collection Framework
	4.1. Micro-service gRPC Calls
	4.2. Prometheus
	4.3. Grafana
	4.4. Metric Definitions

	5. Scenario 1: Autonomous Network Beyond 5G
	5.1. Scenario Introduction
	5.2. Alignment with TeraFlow Architecture
	5.3. Scenario Setup
	5.4. Scenario Metrics
	5.5. Workflows and Current Deployment
	5.5.1. Zero-touch Device Automation
	5.5.2. L2/L3VPN Service Management and Integration with ETSI OpenSource MANO
	5.5.3. Slice Grouping and End to End Slice Provisioning with SLA
	5.5.4. Service Restoration with P4 Devices
	5.5.5. Energy-efficient Path Computation

	5.6. Preliminary Performance Evaluation
	5.6.1. Zero-touch Device Automation
	5.6.2. L3VPN Service Management and Integration with ETSI OpenSource MANO
	5.6.3. Slice Grouping and End to End Slice Provisioning with SLA
	5.6.4. Service Restoration with P4 devices
	5.6.5. Energy-Efficient Path Computation

	5.7. Pending Work and Summary

	6. Scenario 2: Inter-domain
	6.1. Scenario Introduction
	6.2. Alignment with TeraFlow Architecture
	6.3. Scenario Setup
	6.4. Scenario Metrics
	6.5. Workflows and Current Deployment
	6.5.1. Inter-domain Provisioning using Transport Network Slices with SLA
	6.5.2. Distributed Ledger Technologies
	6.5.3. Service/Slice Request Scalability
	6.5.4. Location-aware Service Updates

	6.6. Preliminary Performance Evaluation
	6.6.1. Inter-domain Provisioning using Transport Network Slices with SLA
	6.6.2. Distributed Ledger Technologies
	6.6.3. Service/Slice Request Scalability
	6.6.4. Location-aware Service Updates

	6.7. Pending Work and Summary

	7. Scenario 3: Cybersecurity
	7.1. Scenario Introduction
	7.2. Alignment with TeraFlow Architecture
	7.3. Scenario Setup
	7.3.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments
	7.3.2. Emulated Optical Setup for Optical Cybersecurity Experiments

	7.4. Scenario Metrics
	7.5. Workflows and Current Deployment
	7.5.1. Layer 3 Cybersecurity
	7.5.1.1. Traffic Capture and Feature Extraction at the Network Edge
	7.5.1.2. Detect Known Attacks using Supervised ML
	7.5.1.3. Mitigate Detected Attacks
	7.5.1.4. Monitor Relevant Cybersecurity-related Metrics

	7.5.2. Optical Cybersecurity

	7.6. Preliminary Performance Evaluation
	7.6.1. Layer 3
	7.6.1.1. Security
	7.6.1.1.1. Analysis of the Cryptomining Detector
	7.6.1.1.2. Training of the Cryptomining Detector
	7.6.1.1.3. Performance Evaluation of the Cryptomining Detector

	7.6.1.2. Energy Efficiency
	7.6.1.2.1. Experimental Framework for the Cryptomining Detector Energy Efficiency Optimization
	7.6.1.2.2. Measuring Energy Consumption
	7.6.1.2.3. Selection of the Best Optimization Strategy
	7.6.1.2.4. Selected Model Optimization Strategies
	7.6.1.2.5. Experimental Evaluation
	7.6.1.2.6. Experimental Setup
	7.6.1.2.7. Analysis of the Results Obtained

	7.6.2. Optical
	7.6.2.1. Accuracy of ML models
	7.6.2.2. Scalability Performance Evaluation

	7.7. Pending Work and Summary

	8. Conclusions and Next Steps
	References

