
Grant Agreement No.: 101015857 
Research and Innovation action 
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G 
 

 
Secured autonomic traffic management for a Tera of SDN flows 

 
D5.3: Final demonstrators and evaluation report 

 

Deliverable type R (Report) 

Dissemination level PU (Public) 

Due date 30.06.2023 

Submission date 07.07.2023 

Lead editor Carlos Natalino (CHAL) 

Authors Lluis Gifre, Ricardo Martínez, Ricard Vilalta, Javier Vilchez, Raul Muñoz, 
Michela Svaluto, Laia Nadal (CTTC), Alberto Mozo, Amit Karamchandani 
Batra, Luis de la Cal (UPM), Antonio Pastor, Pablo Armingol, Juan Pedro 
Fernández Diaz, Óscar González de Dios (TID), Georgios P. Katsikas (UBI), 
Jose Juan Pedreño, Achim Autenrieth (ADVA), Sergio González, Javier 
Moreno (ATOS), Carlos Natalino (CHAL), Sebastien Andreina (NEC), Min 
Xie, Jane Frances Pajo, Abdelhakim Cherifi, Håkon Lønsethagen 
(Telenor), Mika Silvola (Infinera), Michele Milano, Nicola Carapellese 
(SIAE), Sébastien Merle, Peer Stritzinger (Stritzinger), Thomas Zinner 
(NTNU) 

Reviewers Paolo Monti (CHAL), Ricard Vilalta (CTTC) 

Quality check team Daniel King (ODC) 

Work package WP5 

 
 
  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 2 of 155 

 

Abstract 

This deliverable presents the performance assessment work done with TeraFlowSDN release 2.1 in 
the three scenarios considered in the project, i.e., Autonomous Network Beyond 5G, Inter-domain, 
and Cybersecurity. Four key aspects are reported: the processes adopted for the integration of 
TeraFlowSDN; the integration and adoption of the metrics collection framework; refinements of the 
scenario descriptions and workflows; and finally, the performance assessment. The document 
provides an overview of the Release 2.1 Architecture, details the metrics collection framework, and 
discusses the relevant KPIs. We present a brief context and motivation for each scenario, followed by 
the alignment with the TeraFlowSDN architecture, performance assessment, and scenario 
conclusions. The deliverable concludes with a summary of the KVIs and KPIs achieved and final 
remarks. 

[End of abstract]  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 3 of 155 

 

Disclaimer 

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may 
not be reproduced or copied without permission. 

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is 
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1. 

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information 
contained in the Deliverable is capable of use, or that use of the information is free from risk, and 
accept no liability for loss or damage suffered by any person using the information. 

 

 CC BY-NC-ND 3.0 License – 2020 TeraFlow Consortium Parties 

 

 

Acknowledgment 

The research conducted by TeraFlow receives funding from the European Commission H2020 
programme under Grant Agreement No 101015857. The European Commission has no responsibility 
for the content of this document.  

 

Revision History 

 

  

 
1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US 

Revision  Date  Responsible  Comment  
0.1  24.01.2023 Editor  Initial structure of document 
0.2 25.04.2023 Ricard Vilalta Improvements to the structure of the 

document 
0.2.1 26.04.2023 Georgios P. Katsikas Contributions to the content 
0.2.2 02.05.2023 Thomas Zinner Contributions to the content 
0.2.3 03.05.2023 Editor Contributions to the content 
0.2.4 04.05.2023 Ricard Vilalta Contributions to the content 
0.2.5 09.05.2023 Amit K. Batra Contributions to the content 
0.2.6 09.05.2023 Lluis Gifre Contributions to the content 
0.3 09.06.2023 Alberto Mozo Contributions to the content 
0.4 14.06.2023 Ricard Vilalta Contributions to the content 
0.4.1 19.06.2023 Lluis Gifre Contributions to the content 
0.4.2 22.06.2023 Editor Contributions to the content 
0.4.3 23.06.2023 Sébastien Merle Contributions to the content 
0.5 26.06.2023 Editor Contributions to the content 
0.6 04.06.2023 Reviewers Reviewed version 
0.7 07.07.2023 Quality Check  
1.0 07.07.2023 Editor Submission 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 4 of 155 

 

EXECUTIVE SUMMARY 
This deliverable reports the achievements of WP5 during the last six months of the project, focusing 
on the performance assessment of TeraFlowSDN. The objective of this document is to summarize the 
results achieved in (i) processes adopted by TeraFlowSDN integration, (ii) integrating and adopting the 
metrics collection framework for performance assessment, (iii) refining the scenario descriptions and 
workflows, and (iv) collecting and summarizing the performance assessment results. The latter refers 
to the collection and analysis of KPIs and KVIs that quantify the benefits of TeraFlowSDN. 

The document starts with an introductory section that highlights the purpose of this deliverable, its 
relationship with other deliverables, and a detailed description of the document's structure. The 
second section presents an overview of the TeraFlowSDN architecture, adopted by all the scenarios 
later described in the document. The third section offers an overview of the metrics collection 
framework for TeraFlowSDN, consolidating the performance assessment of all the components in a 
single solution and enabling in-depth scalability and performance analysis. Section 3 also presents the 
definitions of the metrics adopted in the performance evaluation, and the relevant scenario(s) where 
they are evaluated. 

The second half of the document includes sections 4, 5 and 6. These sections are devoted to the three 
scenarios used to evaluate TeraFlowSDN. Each one contains a short introduction to the scenario's 
motivation and challenges. The alignment with TeraFlow architecture specifies how a scenario utilizes 
TeraFlowSDN and which components and use cases are relevant. For each scenario, a performance 
assessment section contains the description of the infrastructure adopted for the measurements, 
followed by the workflows that have been tested. Each workflow details its step-by-step performance 
assessment methodology, followed by the results obtained. We summarize each scenario introduction 
and its conclusions. Finally, this deliverable provides a summary of all the KVIs and KPIs achieved and 
final remarks. 

 

Autonomous Network Beyond 5G 

The TeraFlowSDN controller supports operator-driven use cases and workflows, addressing the 
objectives of this scenario by enabling the programmability of network elements and technology-
based SDN controllers with the necessary north-bound and south-bound interfaces. 

KPI Target Validation results 
Device on-boarding time < 50ms 100-400 ms. The target was too optimistic, but it does 

not have a real impact since on-boarding is performed 
only during the initialization phase. The current on-
boarding procedure implies multiple interactions with 
the underlying database. In the next releases, we plan 
to optimize those interactions further to reduce the 
onboarding time. 

Service setup delay < 50ms The measured overhead using emulated devices is 
100ms. This deviation is detailed at the end of this 
section. 

Service teardown delay < 50ms The measured overhead using emulated devices is 
90ms. Similarly, as with service setup delay, in future 
releases, we plan to review the overall Service teardown 
workflow to improve the internal finite state machine, 
identify unneeded database interactions, and add 
support for parallel device deconfiguration. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 5 of 155 

 

Data rate  100G Data rate is able to be shown in Grafana. Available data 
rates are dependent on the topology and network 
equipment, so we are limited to the transponders 
available in whiteboxes (e.g., 100G). 

End-to-end service latency 5ms 
(indicative) 

The actual value depends on the topology setup. For 
example, hardware switches are faster than software 
switches, while software switches perform better on 
high-end Commercial off-the-Shelf (COTS) hardware. 
Therefore, this value may vary. The plan for this scenario 
is to use a software-based P4 topology atop Mininet, 
measure end-to-end service latency, and trigger service 
restoration using an appropriate threshold. 

Reaction time to ensure 
SLA 

~4s The reaction time can be further analyzed on RPC calls 
(~1s) and path recalculation time (~3s). It should also be 
noted that the path recalculation time is dependent on 
the topology. Larger topologies may require more time 
than smaller topologies to find new paths. 

Resource efficiency 
reduction factor 

2 L2VPN is of 2,32 at offered load of 5k Erlang (peak 
resource efficiency). 
L3VPN is of 6,4 at offered load of 7k Erlang (peak 
resource efficiency).  

Energy < 30% The devised EAR relies on a heuristic which favours the 
routing through active network elements rather than 
powered up devices and/or ports as much as possible. 
The conducted study paves the way to continuing 
working in the TeraFlow SDN controller to become a 
controller which adopts energy-efficiency objectives. In 
this regard, the next steps are envisaged to tackle more 
advanced algorithms, such as re-allocation of the 
established services to enforce powering-down network 
elements and/or exploiting the benefits of using 
machine learning trained models to attain better trade-
offs between service provisioning and energy reduction.  

 

Inter-domain 

When different domains belong to separate network operators, mechanisms for inter-domain slicing 
while maintaining the privacy of internal network details become essential. The TeraFlowSDN 
controller incorporates a Distributed Ledger Technology (DLT) component based on blockchain 
technologies. This ensures that data exchanged between per-domain TeraFlowSDN instances can be 
kept confidential, if required, while enabling inter-operator collaboration. 

KPI Target Validation results 
Multi-tenancy > 100 tenants TeraFlowSDN can support more >100 tenants with 

reasonable service latencies. 
The response time might increase at high loads due to 
database latency and SQL query contention. Future 
releases might study how to enhancement the database 
schema. 

Trust/privacy 100% secured 
connections 

All connections related to the DLT component are 
secured and authenticated. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 6 of 155 

 

DLT transaction delay 10s The average latency is between 2.2 and 3.3 seconds, c.f. 
Figure 75. 

Positioning 100% vehicles We have validated location-awareness in end-to-end 
connectivity services and network topologies. 
TeraFlowSDN has been extended with an augmented 
data model for topology and connectivity services to 
include GPS coordinates and Regions into service 
endpoints and connectivity service constraints.  
The proposed architecture considers the requested end-
to-end connectivity service provisioning and update, 
considering that location-aware connectivity services 
might need service endpoint migration due to the 
dynamic nature of the joint edge-cloud continuum. 

Social < 20% cost Green path computation (gPC) policies are proposed 
with a reward system, allowing greener states to 
correspond to higher rewards for lower performance. 
Considering that some green states might be unavailable 
(due to the aforementioned trade-off) for a given SLA 
requirement and link utilization at certain time intervals, 
introducing DLAs enables the customer to unlock 
greener states by allowing a certain level of performance 
degradation. By unlocking greener states with allowable 
degradation levels, the savings increased by around 47% 
with respect to gPCSLA. 

 

Cybersecurity 

We developed a Cybersecurity module to address the broad range of cybersecurity threats present in 
this scenario. The Cybersecurity scenario has validated several components and use cases. The 
Cybersecurity module within TeraFlowSDN comprises three components: Centralized Attack Detector 
(CAD), Attack Inference, and Attack Mitigator. 

 

KPI  Target  Validation results  
Layer 3  Optical  

Security  
  

> 99% accuracy (known 
attacks)  

- Accuracy Score: 0.99966 
- False positive: 0  
- False negative: 144  
- True positive: 1494  
- True negative: 421968  
- F1 Score: 0.95402  

- Accuracy Score: 0.996 
- F1 Score: 0.996 

> 90% accuracy (unseen 
attacks)  

N/A  - Accuracy Score: 0.99 
- False Positive Rate: 
0.00063 

Reliability  > 90% accuracy in 
detecting and avoiding 
known adversarial 
attacks.  

- 99% accuracy in detecting and 
avoiding known adversarial 
attacks (i.e., 1% evasion rate). 

N/A  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 7 of 155 

 

Energy  > 25% resource 
consumption  

- Percentage of Total Average 
CPU Energy Consumption 
Reduction with respect to the 
original model in the inference 
stage (Knowledge Distillation, 
batch size: 256): 82.304%.  
- Loss in the accuracy: 0.016%.  
- Loss in the balanced 
accuracy: 0.008%.  
- Loss in the F1 Score: 0.011  

N/A 

Scalability < 20% increase in the 
mean loop time 
between low and high 
traffic load 

The mean loop time varies 
15.7% (between 0.0247 and 
0.0293) between low and high 
traffic load conditions. 

N/A 

 < 5 minutes violation of 
the targeted monitoring 
cycle time 

N/A The module is able to 
stabilize from a drastic 
increase in the number 
of services (in the order 
of 10x) in less than 5 
minutes. 

 

 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 8 of 155 

 

Table of contents 
Executive Summary ................................................................................................................................. 4 

List of Figures ........................................................................................................................................ 10 

List of Tables ......................................................................................................................................... 14 

Abbreviations ........................................................................................................................................ 15 

1. Introduction .................................................................................................................................. 18 

1.1. Purpose ................................................................................................................................. 18 

1.2. Relationship with other Deliverables .................................................................................... 18 

1.3. Structure ............................................................................................................................... 18 

2. Architecture Overview .................................................................................................................. 19 

3. Metrics Definition and Collection ................................................................................................. 21 

3.1. Micro-service gRPC Calls ....................................................................................................... 22 

3.2. Prometheus ........................................................................................................................... 23 

3.3. Grafana.................................................................................................................................. 24 

3.4. Load Generator ..................................................................................................................... 25 

4. Scenario 1: Autonomous Network Beyond 5G ............................................................................. 27 

4.1. Scenario Introduction ........................................................................................................... 27 

4.2. Alignment with TeraFlowSDN architecture .......................................................................... 28 

4.3. Performance Evaluation ........................................................................................................ 29 

4.3.1. Testbed Setup ............................................................................................................... 29 

4.3.2. Zero-touch Device Automation ..................................................................................... 32 

4.3.3. L2/L3 VPN Service Management and Integration with ETSI OpenSource MANO ........ 35 

4.3.4. Slice Grouping ............................................................................................................... 47 

4.3.5. Policy-driven Service Restoration with P4 devices ....................................................... 54 

4.3.6. Energy-Efficient Path Computation .............................................................................. 61 

4.4. Scenario conclusions ............................................................................................................. 68 

5. Scenario 2: Inter-domain .............................................................................................................. 71 

5.1. Scenario Introduction ........................................................................................................... 71 

5.2. Alignment with TeraFlowSDN architecture .......................................................................... 72 

5.3. Performance Evaluation ........................................................................................................ 73 

5.3.1. Testbed Setup ............................................................................................................... 73 

5.3.2. Inter-domain Provisioning using Transport Network Slices with SLA ........................... 75 

5.3.3. Distributed Ledger Technologies .................................................................................. 80 

5.3.4. Service/Slice Request Scalability ................................................................................... 86 

5.3.5. Location-aware Service Updates................................................................................... 95 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 9 of 155 

 

5.3.6. Latency budgets as function of the application requirements ..................................... 99 

5.3.7. Path Computation within the Green Economy ........................................................... 106 

5.3.8. Toolbox for scalability of Erlang microservices ........................................................... 111 

5.4. Scenario conclusions ........................................................................................................... 122 

6. Scenario 3: Cybersecurity............................................................................................................ 124 

6.1. Scenario Introduction ......................................................................................................... 124 

6.2. Alignment with TeraFlowSDN architecture ........................................................................ 125 

6.3. Performance Evaluation ...................................................................................................... 126 

6.3.1. Layer 3 Cybersecurity .................................................................................................. 126 

6.3.2. Optical Cybersecurity .................................................................................................. 143 

6.4. Scenario conclusions ........................................................................................................... 150 

7. Conclusions ................................................................................................................................. 151 

References .......................................................................................................................................... 153 

 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 10 of 155 

 

List of Figures 
Figure 1. TeraFlowSDN architecture for release 2.1 ............................................................................. 20 
Figure 2. TeraFlowSDN extended architecture encompassing the metrics collection framework ...... 22 
Figure 3. Architecture of the service mesh with sidecar proxy and service container ......................... 23 
Figure 4. Screenshot of Prometheus metrics when new replicas are created ..................................... 24 
Figure 5. Screenshot of the load generator configuration through the WebUI ................................... 25 
Figure 6. Scenario 1: Autonomous Network Beyond 5G ...................................................................... 27 
Figure 7 Scenario 1 E2E TeraFlowSDN  instantiation ............................................................................ 28 
Figure 8. Edgecore DRX-30 chassis layout ............................................................................................ 30 
Figure 9. AS7315-30X chassis layout ..................................................................................................... 30 
Figure 10. Dell R730 .............................................................................................................................. 31 
Figure 11. Dell R720xd .......................................................................................................................... 31 
Figure 12. Dell PowereEdge R420 server .............................................................................................. 32 
Figure 13. Edgecore DSC240/AS9726-32DB ......................................................................................... 32 
Figure 14. Emulated network topology ................................................................................................ 33 
Figure 15. Device component – AddDevice RPC ................................................................................... 34 
Figure 16. Device component –AddDevice RPC internal operations .................................................... 34 
Figure 17. Emulated Device Driver – GetConfig/SetConfig Methods ................................................... 34 
Figure 18. Context component – Device-related RPC methods ........................................................... 34 
Figure 19. Service component RPC methods for L2VPN w/Emulated .................................................. 35 
Figure 20. Path Computation component computation time .............................................................. 36 
Figure 21. Topology-related methods of the Context component ....................................................... 36 
Figure 22. L2NM Emulated Service Handler – Set/DeleteEndpoint methods ...................................... 37 
Figure 23. Device component – RPC methods ...................................................................................... 37 
Figure 24. Device component – ConfigureDevice internal operations ................................................. 38 
Figure 25. Context component – Device-related RPC methods ........................................................... 38 
Figure 26. Service component RPC methods for L3VPN with emulated devices ................................. 39 
Figure 27. Path Computation component computation time .............................................................. 40 
Figure 28. Topology-related methods for the Context component ..................................................... 40 
Figure 29. L3NM Emulated Service Handler – Set/DeleteEndpoint and DeleteEndpoint methods ..... 41 
Figure 30. Device component – RPC methods ...................................................................................... 41 
Figure 31. Device component – ConfigureDevice internal operations ................................................. 42 
Figure 32. Context component – Device-related RPC methods ........................................................... 42 
Figure 33. Multi-domain and multi-technology network topology seen at the parent TeraFlowSDN 
controller instance ................................................................................................................................ 42 
Figure 34. End-to-end service and sub-services ................................................................................... 43 
Figure 35. IETF L2VPN SBI messages ..................................................................................................... 43 
Figure 36. Detail of GET reply – No VPN Services created .................................................................... 43 
Figure 37. Detail of IETF L2VPN Create VPN service ............................................................................. 44 
Figure 38. Detail of IETF L2VPN Add site 1 to VPN service ................................................................... 44 
Figure 39. Detail of IETF L2VPN Add site 2 to VPN service ................................................................... 44 
Figure 40. Integration of NFV-O and Transport SDN Controller ........................................................... 45 
Figure 41. Example of IETF-L2VPN-svc:site-network-access ................................................................. 46 
Figure 42. Grafana dashboard illustrating the traffic monitoring ........................................................ 46 
Figure 43. Example of slice templates .................................................................................................. 48 
Figure 44. Applying slice grouping on new slice request depending on previously deployed slices .... 48 

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862827
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862828
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862829
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862830
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862833
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862834
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862835
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862836
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862837
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862838
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862844
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862851
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862865
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862866
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862867
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862869


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 11 of 155 

 

Figure 45. Elbow method applied to slice grouping ............................................................................. 49 
Figure 46. Allocated network slices and their slice groups ................................................................... 49 
Figure 47. Telefonica Spain Network (14-node, 44-link) ...................................................................... 51 
Figure 48. Blocking Probability.............................................................................................................. 52 
Figure 49. Total Rules Configured ......................................................................................................... 52 
Figure 50. Instant Rules per Device - L2VPN ......................................................................................... 53 
Figure 51. Instant Rules per Device - L3VPN ......................................................................................... 54 
Figure 52. Policy-driven service restoration architecture within TeraFlowSDN. .................................. 55 
Figure 53. Policy-driven service restoration testbed. ........................................................................... 57 
Figure 54. Device and link provisioning as a pre-requisite for policy-driven service restoration. ....... 58 
Figure 55. Service creation as a pre-requisite workflow for policy-driven service restoration. ........... 58 
Figure 56. Policy-driven service restoration demonstration scenario. ................................................. 59 
Figure 57. Policy-driven service restoration workflow. ........................................................................ 60 
Figure 58. Dashboard of the Policy-driven service restoration workflow. ........................................... 61 
Figure 59: Path Computation serving Network Connectivity Services workflow. ................................ 63 
Figure 60: Emulated Transport Packet-Switched Network Scenario. ................................................... 65 
Figure 61: EAR and K-SP performance evaluation: a) BBR; b) av. Consumed Network Energy (in kW); c) 
av. throughput (in Gb/s) ....................................................................................................................... 67 
Figure 62 Scenario 2: Inter-domain ...................................................................................................... 71 
Figure 63. Scenario 2 TeraFlow instantiation in a single domain ......................................................... 72 
Figure 64 Interconnected CSWGs at CTTC Testbed .............................................................................. 74 
Figure 65. Telenor's testbed ................................................................................................................. 74 
Figure 66. Domain 1 – Network Topology ............................................................................................ 75 
Figure 67. Domain 2 – Network Topology ............................................................................................ 75 
Figure 68. Slices in tfs-dom1 ................................................................................................................. 76 
Figure 69. Detail of Inter-domain slice created in tfs-dom1 ................................................................. 76 
Figure 70. Detail of the service created in tfs-dom1 ............................................................................ 77 
Figure 71. Slices in tfs-dom2 ................................................................................................................. 77 
Figure 72. Detail of the slice created in tfs-dom2 ................................................................................. 78 
Figure 73. Detail of the service created in tfs-dom2 ............................................................................ 78 
Figure 74. Wireshark Capture inter-doman slice .................................................................................. 79 
Figure 75. DLT Execution Time vs Record Size ...................................................................................... 82 
Figure 76. DLT Event Reception Delay vs Record Size .......................................................................... 83 
Figure 77 Scenario 2 workflow: Sequence diagram for DLT use........................................................... 83 
Figure 78. Transport Network topology for DLT evaluation ................................................................. 84 
Figure 79. CDF for the DLT Delay .......................................................................................................... 85 
Figure 80. Inter-domain Transport Network Slice that includes sub-slices .......................................... 85 
Figure 81. Sub-slice information details ............................................................................................... 86 
Figure 82 Telefonica Spain Network (14 nodes, 44 unidirectional links).............................................. 87 
Figure 83. Scalability - Number of Pods per Component ...................................................................... 88 
Figure 84. Scalability – Setup L2 Service – Response Time ................................................................... 90 
Figure 85. Scalability – Setup L2 Slice – Response Time ....................................................................... 90 
Figure 86. Scalability – Setup L3 Service – Response Time ................................................................... 90 
Figure 87. Scalability – Setup L3 Slice – Response Time ....................................................................... 90 
Figure 88. Scalability – Teardown L2 Service – Response Time ............................................................ 91 
Figure 89. Scalability – Teardown L2 Slice – Response Time ................................................................ 91 
Figure 90. Scalability – Teardown L3 Service – Response Time ............................................................ 91 
Figure 91. Scalability – Teardown L3 Slice – Response Time ................................................................ 91 

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862871


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 12 of 155 

 

Figure 92. Scalability – CockroachDB – Latency between the nodes forming the cluster. ................... 93 
Figure 93. Scalability – CockroachDB – (a) SQL Statements, (b) 99th Percentile SQL Statement Latency, 
and (c) SQL Statement Contention. ...................................................................................................... 94 
Figure 94 Architecture for E2E location-aware services, including SDN controller necessary 
components .......................................................................................................................................... 96 
Figure 95 Sequence diagram of provisioning and update of a location-aware service ........................ 97 
Figure 96 Internal SDN controller modified data models to support location-aware services. ........... 98 
Figure 97 Wireshark capture of a location-aware service provision and update ................................. 98 
Figure 98. Histogram of the time spent on the location selection algorithm ...................................... 99 
Figure 99. QoS-to-QoE relationship for exemplary applications. While the ITU-T P.1203 model is used 
for adaptive video streaming, the ITU-T G.107 e-model is employed in case of VoIP and extrapolated 
towards delay sensitive apps. ............................................................................................................. 100 
Figure 100. Multi-domain scenario: managed quality path infrastructure with exemplary specialized 
connectivity service ............................................................................................................................ 102 
Figure 101 Overview of solution elements ......................................................................................... 102 
Figure 102 Simulation scenario for evaluating the proposed MLBE approach and coverage of 
corresponding key solution elements ................................................................................................. 104 
Figure 103 Time series of aggregated per-application throughput .................................................... 105 
Figure 104 Time series of aggregated per-application delays ............................................................ 106 
Figure 105. Differing green states on inter-domain links ................................................................... 107 
Figure 106. Green inter-domain path computation versus BAU ........................................................ 108 
Figure 107. Impact of LPI and AR on: (a) power consumption, and (b) delay. ................................... 109 
Figure 108. Graph representation of the GEANT-based topology. ..................................................... 109 
Figure 109.  gPC policies comparson in terms of: (a) power saving, (b) delay increase, and (c) rewards.
 ............................................................................................................................................................ 111 
Figure 110. Example of deployment of multiple sets of services with braid toolkit. ......................... 112 
Figure 111. The delegation of security and discovery functions to braidnet. .................................... 114 
Figure 112. Braidnet supervision tree. ................................................................................................ 117 
Figure 113. Sequence diagram of the microservices life cycle. .......................................................... 118 
Figure 114. Sequence diagram of service discovery. .......................................................................... 119 
Figure 115. Sequence diagram of certificate management and secure connection. ......................... 119 
Figure 116. Container startup time in function of the number of concurrent sets of services. ......... 121 
Figure 117. Message roundtrip time in function of the cumber of concurrent sets of services. ....... 121 
Figure 118. Container crash recovery time in function of the number of concurrent sets of services.
 ............................................................................................................................................................ 122 
Figure 119. Scenario 3: Cybersecurity................................................................................................. 124 
Figure 120. TeraFlow components used in the cybersecurity scenario ............................................. 126 
Figure 121. Deployment of the cybersecurity scenario focusing on L3 .............................................. 128 
Figure 122. Scenario 3 workflow: General communication when creating a new service ................. 129 
Figure 123. Scenario 3 workflow: Traffic Capture and Feature Extraction Workflow ........................ 129 
Figure 124. Scenario 3 workflow: Attack Detection Workflow (Layer 3)............................................ 130 
Figure 125. Scenario 3 workflow: Attack Mitigation Workflow (Layer 3) ........................................... 130 
Figure 126. Scenario 3 workflow: Cybersecurity KPIs Monitoring Workflow (Layer 3) ...................... 132 
Figure 127. Overview of the enhanced GAN solution based on MalGAN .......................................... 134 
Figure 128. (Left column) Distances between samples of real and synthetic data distributions: BM 
(benign and malign data), MG (malign and generated malign data), MGF (malign and generated malign 
data that fool the black-box model), BG (benign and generated malign data), GG (two samples of 
generated malign data) and MM (two samples of malign data). (Right column) Evasion ratios: (blue) 

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862946
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862947
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862948
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862949
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862950
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862951


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 13 of 155 

 

generated malign examples (AEs) and (orange) real malign examples that are classified as benign by 
the black-box model. In all figures, the x-axis represents the GAN training epochs. ......................... 135 
Figure 129. Experimental setup of scalability experiments. ............................................................... 138 
Figure 130. Sum of the number of requests processed by all DADs over time. ................................. 140 
Figure 131. Evolution of CAD replicas and CPU usage over time ....................................................... 140 
Figure 132. Box plots describing the DAD loop times in 50 second intervals ..................................... 141 
Figure 133. Mean loop time of DAD machines over time in 20 second intervals .............................. 142 
Figure 134. Simplified view of the emulated deployment .................................................................. 144 
Figure 135. Initializing the Optical Attack Detector component ........................................................ 145 
Figure 136. Scenario 3 workflow: General communication when creating a new service ................. 146 
Figure 137. Cybersecurity monitoring of optical services ................................................................... 146 
Figure 138. Number of optical services over time and measured loop time ..................................... 148 
Figure 139. Response time and number of replicas ........................................................................... 149 
Figure 141. CPU and RAM usage of the Cybersecurity module .......................................................... 149 
 

 

  

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862954
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862955
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862956
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862957
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862958
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862959
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862960
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862961
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862962
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862963
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862964
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v0.6.docx#_Toc139862965


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 14 of 155 

 

List of Tables 
Table 1. Scenario 1 - Device Onboarding KPIs ...................................................................................... 35 
Table 2. L2/L3 Service Setup/Teardown KPIs ........................................................................................ 47 
Table 3. Slice Grouping Simulator – Configuration rules per slice type ................................................ 50 
Table 4. Slice Grouping Simulator – Slice Groups Configured .............................................................. 51 
Table 5 Slice Grouping KPI measurements ........................................................................................... 54 
Table 6. Example end-to-end service definition for P4-based connectivity between two endpoints. 56 
Table 7. Example network policy for bounding the end-to-end latency of a service below 4ms. The 
action simply triggers path re-computation, without additional configuration needed. ..................... 57 
Table 8. Policy-based service restoration KPIs. ..................................................................................... 61 
Table 9 Scenario 1 summary of measured KPI...................................................................................... 68 
Table 10. Inter-domain slice descriptor ................................................................................................ 75 
Table 11. CTTC-TFS to TNOR-TFS RTT through the VPN connection .................................................... 79 
Table 12. Inter-domain slice provisioning - Execution times with and without accounting VPN round-
trip-time ................................................................................................................................................ 79 
Table 13. DLT Event Delay - Setup Round Trip Time ............................................................................. 82 
Table 14. Scalability Experiment Configurations .................................................................................. 88 
Table 15. Summary of the accuracy performance for the optical physical layer attack detection .... 147 
Table 16. Target and achieved KPIs and KVIs for Scenario 3. ............................................................. 150 
 

  

https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v1.0.docx#_Toc139863228
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v1.0.docx#_Toc139863229
https://cttcbarcelona.sharepoint.com/sites/TeraFlow959/Shared%20Documents/General/Deliverables/D5.3/D5_3_v1.0.docx#_Toc139863229


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 15 of 155 

 

Abbreviations 
AE Adversarial Example 

AI Artificial Intelligence 

API Application Programming Interface 

B5G Beyond 5G 

BBR Blocked Bandwidth Ratio 

BSS Business Support System 

CCAM Cooperative, Connected, and Automated Mobility 

CDF Cumulative Distribution Function 

CE Customer Edge 

CLI Command-Line Interface 

COTS Commercial off-the-Shelf 

CSGW Cell-Site Gateways 

DC DataCenter 

DLT Distributed Ledger Technology 

DNN Deep Neural Network 

DPI Deep Packet Inspection 

E2E End-to-End 

GAN Generative Adversarial Network 

gNMI gRPC Network Management Interface 

gRPC gRPC Remote Procedure Call 

HPA Horizontal Pod Autoscaler 

HT Holding Time 

IETF Internet Engineering Task Force 

IoT Internet of Things 

IP Internet Protocol 

IPM Integrated Performance Monitoring 

L2NM Layer 2 Network Model 

L2VPN Layer 2 Virtual Private Network 

L3 Layer 3 (Packet) 

L3NM Layer 3 Network Model 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 16 of 155 

 

L3VPN Layer 3 Virtual Private Network 

ML Machine Learning 

MOS Mean Opinion Score 

MPLS Multiprotocol Label Switching 

MTU Maximum Transfer Unit 

MW MicroWave 

NBI North-Bound Interfaces 

NFV Network Function Virtualization 

NS Network Service 

OLS Optical Line System 

ONF Open Networking Foundation 

OPM Optical Performance Monitoring 

OSS Operational Support System 

OTA Over-the-Air 

PE Provider Edge 

PCEP Path Computation Element Protocol 

PINS Public interconnected networks and services 

PoP Point of Presence 

RPC Remote Procedure Call 

RTT Round Trip Time 

SASE Secure Access Service Edge 

SBI South-Bound Interfaces 

SDN Software-Defined Networking 

SLA Service Level Agreements 

SLE Service Level Expectation 

SLO Service Level Objective 

SNI Server Name Indication 

SSL Secure Socket Layer 

TAPI Transport API 

TCAM Ternary Content Addressable Memory 

TLS Transport Layer Security 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 17 of 155 

 

TR Technical Reference 

TSTAT TCP STatistic and Analysis Tool 

VIM Virtual Infrastructure Manager 

VPN Virtual Private Network 

WAN Wide Area Network 

WIM WAN Infrastructure Manager 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 18 of 155 

 

1. Introduction 
TeraFlowSDN delivers a state-of-the-art, open-source, cloud-native Software Defined Networking 
(SDN) controller. TeraFlowSDN provides scalable, efficient, reliable, and flexible control for B5G 
(Beyond 5G) networks. In version 2.1, these characteristics are extended by providing a performance-
validated SDN solution with integration and deployment procedure improvements. In this context, it 
is crucial to ensure that TeraFlowSDN correctly and efficiently integrates with networking devices and 
can handle the different protocols necessary to do so. WP5 is the work package that performs the 
TeraFlowSDN integration, followed by experimentation, validation, and evaluation using a range of 
Key Value Items (KVIs) and Key Performance Indicators (KPIs). 

Given the distributed nature of the TeraFlowSDN development process, WP5 enumerated, evaluated 
and selected suitable techniques, processes, and tools used to assist partners during the development 
of TeraFlowSDN components and scenarios. This setup supported the collaboration among all 
partners, while ensuring consistency and reliability of the resulting software. The supporting software 
infrastructure developed during the H2020 TeraFlow project will continue to be leveraged within the 
ETSI OSG TeraFlowSDN. 

To build the testbed setups, the project leveraged and extended existing infrastructure at partners’ 
premises, realizing the three scenarios described in this deliverable. The scenarios are shortly 
described, highlighting their context and motivation. Then, details of the scenario related to the setup, 
metrics, workflows, deployments, and performance assessment are presented. 

1.1. Purpose 

The purpose of D5.3 is threefold. First, we aim to describe version 2.1 of the TeraFlowSDN controller, 
summarizing the overall architecture while highlighting specific developments made since version 2.0. 
The second objective is to report the performance assessment carried out in the three scenarios 
considered so far in the project. Each scenario is shortly described, followed by the testbed setup, 
workflows, and collection/analysis of the results. Finally, this deliverable summarises all the 
measurements across all the scenarios, consolidating the KVIs and KPIs achieved in the project. 

1.2. Relationship with other Deliverables 

This deliverable builds upon D5.2, where KVIs, KPIs and testbeds were initially described. To avoid 
repetition of content, when convenient, while maintaining consistency, we refer to D5.2 in some parts 
of this deliverable. Moreover, some of the performance assessment works reported in this deliverable 
are extensions of the initial results reported in D3.2 and D4.2.  

1.3. Structure 

This deliverable is structured as follows. Section 2 presents an architectural overview of TeraFlowSDN, 
comprising the latest components and interfaces added in version 2.1. Section 3 provides an overview 
of the metrics collection framework and defines the metrics reported in this deliverable. Sections 4, 
5, and 6, report the performance assessment of each of the scenarios, respectively. In each section, a 
summary of the context, motivation, and challenges is presented, followed by the performance 
assessment of each workflow, concluded with some final remarks. Section 7 presents a summary of 
all the KVIs and KPIs measurements reported in the deliverable, followed by a few final remarks 
related to the activities of WP5. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 19 of 155 

 

2. Architecture Overview 
A detailed description of the TeraFlowSDN release 2.0 architecture was provided in D2.2. Even though 
no major architectural changes were introduced in version 2.1, we briefly describe the overall 
TeraFlowSDN architecture to make the deliverable self-contained. 

The SDN controller cloud-native architecture consists of (mostly) stateless micro-services interacting 
with each other to fulfil network management tasks and a few stateful micro-services responsible for 
keeping the network state. TeraFlowSDN relies on Kubernetes to handle the container orchestration 
supporting the micro-services. Kubernetes is a state-of-the-art container orchestrator that provides 
broad management capabilities and can operate geographically distributed infrastructures.  

Figure 1 shows the proposed micro-service-based architecture. Following the design principles of 
cloud-native applications, each component is implemented as a micro-service that exports a set of 
Remote Procedure Call (RPC) services to other components. Each micro-service can be instantiated 
once or with multiple replicas, allowing the application of load-balancing techniques. By adopting 
stateless micro-services, requests can be handled by any replica of the micro-service. Load balancing 
works by establishing an endpoint to receive all the service requests. The endpoint acts as a load 
balancer by delegating each request to one of the replicas of the service. The load balancer is also 
responsible for keeping track of the replicas, i.e., tracking addition/deletion and updating its internal 
list of replicas. Depending on the RPC implementation, we may use the built-in Kubernetes load-
balancer or adopt an external one (e.g., the one reported in Section 3.1). Each replica comprises a Pod, 
i.e., a collection of containers that the Kubernetes platform manages as a single entity. More 
information is provided in Sec. 3.1. 

Context is a stateful component. It stores the network configuration (e.g., topologies, devices, links, 
services) and the status of all elements managed by TeraFlowSDN. Context leverages a database 
management system optimized for cloud-native scenarios, providing replication and high-availability 
deployments. Internally, it implements a Database API allowing for seamless switching between 
different backends (i.e., database management systems). The Service component is responsible for 
selecting, configuring, and deploying the requested connectivity service through the South-Bound 
Interface (SBI) component. To this end, SBI interacts with the network equipment through pluggable 
drivers. In addition, the Driver Application Programming Interface (API) – part of the SBI – defined in 
version 2.0 has been extended in version 2.1 to add new network protocols and data models (e.g., 
gNMI) to the SBI component, and enhance scalability. The Automation component implements several 
Event-Condition-Action (ECA) loops defining the automation procedures in the network. The 
Monitoring component manages the collection of different metrics configured for the network 
equipment and services, stores monitoring data related to selected KPIs. It provides means for other 
components to access the collected data. Internally, the Monitoring component relies on a database 
to store the monitoring data as time series, exploiting its powerful querying and aggregation 
mechanisms for retrieving the collected data. 

The TeraFlowSDN controller uses the North-Bound Interface (NBI) component (previously known as 
Compute) to receive Layer 2 Virtual Private Network (L2VPN) requests and convert them to necessary 
connectivity services or Transport Network Slices via the Slice and Service components. The NBI 
component is the interface from internal gRPC (gRPC Remote Procedure Call) and protocol buffers 
towards external Representational State Transfer (REST)-like requests. It provides a REST-API–based 
NBI to external systems, such as Network Function Virtualization (NFV) and Multi-access Edge 
Computing (MEC) frameworks. We also include a Web-based User Interface (WebUI) that uses the 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 20 of 155 

 

gRPC-based interfaces made available by the TeraFlowSDN components to inspect the network state 
and issue operational requests to the TeraFlowSDN components. The WebUI also provides a load 
generator that can be used to quickly set up services for performance assessment purposes. 

 

Figure 1. TeraFlowSDN architecture for release 2.1 

Compared to release 2 (described in D5.2), TeraFlowSDN release 2.1 provides extended and validated 
support for OpenConfig-based routers and interaction with optical SDN controllers through the Open 
Networking Foundation (ONF) Transport API (TAPI). Moreover, TeraFlowSDN release 2.1 includes 
complete integration for microwave network elements (through the Internet Engineering Task Force 
- IETF - network topology YANG model), and Point-to-Multipoint integration of XR optical transceivers 
and P4 routers. New features for P4 routers include loading a P4 pipeline on a given P4 switch; getting 
runtime information (i.e., flow tables) from the P4 switch; and pushing runtime entries into the P4 
switch pipeline, thus allowing total usage of P4 switches. 

Service Level Agreement (SLA) validation has been re-engineered through all the workflows, from 
device monitoring to service and slice life cycle management. Thus, the Slice, Service, Policy, Device 
and Monitoring components have been updated to support the necessary network automation 
workflows. Moreover, slice grouping and the Path Computation component have also been 
introduced. This component allows new use cases, such as energy-aware service placement. 

The Cybersecurity mechanisms were also updated, including novel components for attack detection 
(either distributed or centralized), attack inference, and attack mitigation. The scalability of the 
components has been improved. In addition, several novel use cases are supported, such as the optical 
layer attack detection using supervised or unsupervised learning. The Distributed Ledger Technology 
(DLT) component has also been extended to interact with the Inter-domain component and use the 
deployed Hyperledger Fabric. 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 21 of 155 

 

3. Metrics Definition and Collection 
TeraFlowSDN offers a built-in metrics collection framework that can benchmark and monitor the 
performance of the internal components. A preliminary version of this framework was introduced in 
D5.2. In this deliverable, for the sake of completeness, we revisit the metrics collection framework, 
and then we introduce the improvements made since D5.2. Moreover, we include a list of metrics 
used throughout this deliverable. 

Unlike the Monitoring component, which collects KPI data from the infrastructure, the metrics 
collection framework is concerned with KPI data coming from the TeraFlowSDN components. For 
instance, we may want to monitor how long a specific method takes to perform a given task (e.g., how 
long does the Context component take to reply with a list of current services?). 

This section introduces the Metrics Collection Framework and presents several metrics definitions that 
are relevant for the scenarios addressed in the experiments. These metrics are detailed in the next 
sections, on a per-scenario basis. 

The metrics collection framework is developed by integrating state-of-the-art open-source software 
into the TeraFlowSDN architecture. As illustrated in Figure 2, two main platforms are used: 

1. Prometheus: a solution for exposing and collecting metrics about software performance at run 
time. Its adoption has two main steps: (i) instrumenting a component to capture the relevant 
metrics and (ii) configuring the main Prometheus server to extract the exposed metrics 
periodically. Step (i) is the responsibility of the component developer. Prometheus offers 
libraries for integration with all the programming languages adopted by TeraFlowSDN so far. 
For step (ii), one challenge when using cloud-native solutions is to maintain a configuration 
consistent with the replicas that exist in the system. These replicas may change dynamically 
depending on the load offered to each TeraFlowSDN component. To address this task, we 
leverage Prometheus Operator, an open-source software responsible for monitoring the 
Kubernetes replication process and configuring Prometheus accordingly. The use of the 
Prometheus Operator guarantees that metrics are collected from all the replicas. 

2. Grafana: a solution for creating graphical dashboards combining multiple data sources. This 
last characteristic is essential for TeraFlowSDN because we need dashboards depicting data 
collected from the devices (therefore coming from the database used by the Monitoring 
component) and data related to the performance of TeraFlowSDN itself (i.e., using the 
information coming from Prometheus). This allows, for instance, to create dashboards that 
summarize network load and its impact on the TeraFlowSDN components. An example of this 
will be shown in Section 6.3.1.3, in the scalability performance evaluation of scenario 3 
monitoring the cybersecurity of L3VPNs. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 22 of 155 

 

 

In addition to these two main pieces of software, we rely on a Service Mesh software capable of load-
balancing gRPC requests. Adopting Prometheus, Grafana, and a service mesh grants TeraFlowSDN a 
wide range of functionalities that can be used to understand the system's performance and identify 
potential bottlenecks or targets for optimization. 

3.1. Micro-service gRPC Calls 

TeraFlowSDN adopts gRPC as the standard protocol for internal communication among components. 
The adoption of gRPC is motivated by several factors: (i) the explicit definition of services and 
messages provided by protobuffers, (ii) a binary format that lowers communication overhead, and (iii) 
easy use and interoperability across programming languages. However, the gRPC protocol is built on 
top of HTTP/2, which unlike HTTP/1.1, allows for connection multiplexing, i.e., the same transport 
connection can be used for sending several application requests concurrently. While this feature is 
beneficial in reducing signaling overhead (e.g., connection handshaking time), it makes it harder to 
provide load balancing when gRPC is used with multiple replicas of the same service, i.e., the case of 
TeraFlowSDN. This happens because once a gRPC client establishes a connection with a gRPC server, 
the tendency is that the same connection will continue to be used as long as the client object exists, 
or it times out due to inactivity. This prevents the client from taking advantage of any load balancing 
among existing replicas. 

To solve this issue, TeraFlowSDN adopts a service mesh, a specific piece of software responsible for 
facilitating the load balancing among different gRPC server replicas. In addition to providing the basic 
functionality of gRPC load balancing, most service mesh implementations have built-in monitoring 
capabilities, keeping track of the health and detailed parameters of the connections among all 
components within a deployment. For instance, service mesh monitoring can measure how many 
requests a component/service or replica receives per second and the response time distribution for 
such requests. 

 

Figure 2. TeraFlowSDN extended architecture encompassing the metrics collection framework 

 

Monitoring

Context

Automation

Inter-
domain

OSS/BSS

Self-healingLoad 
Balancing Auto ScalingCentralized 

attack detector

Service DLT

NBI

TE

SBIPolicy PathComp

Forecaster

Attack 
Mitigator

Slice
Attack 

inference

Web
UI

Service Mesh

Distributed 
Attack 

Detector



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 23 of 155 

 

 

Figure 3 illustrates the architecture of a service mesh deployment. Each component is configured to 
let the service mesh control plane act over it. The service mesh control plane's main actions are to 
include a new container in the Pod called sidecar proxy. The sidecar proxy intercepts outgoing 
communication to other components and routes it through their respective sidecar proxies. The 
control plane is responsible for disseminating information about replicas to all the sidecar proxies. 
This way, the load balancing is not done in the transport layer (the default in Kubernetes) but in the 
application layer. When new replicas are added, sidecar proxies are included in the new Pod and start 
being part of the pool of replicas soon after. Potential candidates for service mesh deployment are 
the Istio service mesh, and the Linkerd service mesh. Both tools are free to use and open source. Their 
core functionalities are very similar. Ultimately, Linkerd was selected due to its seamless integration 
with MicroK8s and lightweight sidecar Pods. 

3.2. Prometheus 

Prometheus is an open-source software widely used to implement monitoring of internal software 
performance. Prometheus is composed of two parts, the metrics exporter and the server. The metrics 
exporter is embedded into the code being monitored. This encompasses launching a web server that, 
upon request, exposes the current state of the metrics to a specific URL. 

The type of metrics that can be stored in Prometheus are: 

• Counter: numerical metrics that can only be incremented and are reset when a process 
restarts; 

• Gauge: numerical metrics that can have their value set, incremented, or decremented; 
• Summary: a vector storing observations that can be further processed to obtain averages and 

other statistics; 
• Histogram: a characterization of the observed events based on predefined ranges (referred 

to as buckets). This enables the calculation of probability distributions and more advanced 
statistics over the observed values. 

The second part of Prometheus is the server. The server has three primary responsibilities: 

• Metrics collector: responsible for collecting all the metrics based on a list of 
places/components to be monitored; 

 

Figure 3. Architecture of the service mesh with sidecar proxy and service container 

 

Cluster

Service mesh control plane

Component 1

Service Cont.

Sidecar proxy

Component 2

Service Cont.

Sidecar proxy

Component 3

Service Cont.

Sidecar proxy



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 24 of 155 

 

• Database: a time-series database responsible for persisting/storing the collected metrics; 
• Web-based UI and API: a user interface where users can query and visualize data stored in the 

database. The API allows access to the same information without the GUI, which becomes 
ideal for extracting only the data. 

In the TeraFlowSDN controller, we also adopted the Prometheus Operator, which complements the 
functionalities of Prometheus with automatic detection and configuration of replicas. Figure 4 
illustrates one case when the Kubernetes Pod Autoscaler adds new replicas, and Prometheus Operator 
automatically detects the replicas, and configures Prometheus to collect metrics from them. 

Figure 4 shows the total computation time a component spends during a load increase. The important 
aspect in the figure is that we have initially a single replica, represented by a single (yellow) line. 
Around minute 10:36, new replicas are added, represented by the new (red, blue, and green) lines 
being added to the time series. With the ability to monitor several replicas, the metrics collection 
framework represents a flexible solution for monitoring and observing TeraFlowSDN’s internal 
performance. Moreover, the automatic inclusion/deletion of data collection endpoints as the number 
of replicas change characterize a robust internal monitoring solution. Enabling Prometheus in a 
component after it has been instrumented is relatively easy. Adding one new element in the 
component YAML configuration file is enough. 

 

3.3. Grafana 

Grafana is the final open-source software used in the metrics collection framework. Grafana is focused 
on visualizing different KPIs for their concurrent analysis. This is done through dashboards. An 
important feature of Grafana is the ability to create of dashboards combining data from different 
sources. For instance, in the case of TeraFlowSDN, the Monitoring component is responsible for 
monitoring services and devices currently active in the network. In addition, we have Prometheus, 
where the internal monitoring data is stored. Therefore, Grafana makes it easy to generate 

 
Figure 4. Screenshot of Prometheus metrics when new replicas are created 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 25 of 155 

 

dashboards combining data from the monitoring database and Prometheus. We refer to D5.2 for a 
more complete description, including screenshots. 

3.4. Load Generator 

One of the key tasks when benchmarking TeraFlowSDN is the ability to generate load for the 
components in a well-controlled and reproducible manner. For this purpose, we developed the Load 
Generator component. The Load Generator can be accessed through a Command Line Interface (CLI), 
or, more conveniently, a WebUI.  

 

Figure 5 shows a screenshot of the web form provided by the WebUI for invoking the Load Generator. 
The Load Generator provides several settings that allow for flexible traffic generation. They are: 

• Number of service requests to be generated; 
• Service type(s) (allows to define which service types will be generated in the service requests); 
• Device selector (allows to define which devices should be considered in the service requests); 
• Endpoint selector (allows to define which device/service endpoints should be considered 

when provisioning the generated service requests); 
• Offered load (defines the load incurred by the generated service requests, in Erlang); 
• Availability (defines the range of availability required by the generated service requests); 
• Capacity (defines the range of capacity required by the generated service requests, in Gbps); 
• End-to-end latency (defines the range of latency required by the generated service requests, 

in ms); 
• Maximum number of workers (defines how many concurrent processes will be employed to 

generate the desired load); 

 

Figure 5. Screenshot of the load generator configuration through the WebUI 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 26 of 155 

 

• Teardown (sets whether services are torn down after the holding time expires); 
• Record to DLT (enables or disables the recording of the services to the DLT). 

The Load Generator also takes advantage of the Metrics Collection Framework, exporting internal KPIs 
to Prometheus. These KPIs can be visualized in a custom Grafana dashboard provided with 
TeraFlowSDN. 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 27 of 155 

 

4. Scenario 1: Autonomous Network Beyond 5G 
In this section, we discuss a scenario which specifically explores the advancement of autonomous 
networks beyond the capabilities of 5G. It primarily emphasizes the progression of transport networks 
by integrating SDN and NFV (Network Function Virtualization) technologies hierarchically. It is an 
operator-led scenario, as it centers around the evolution of transport networks with the involvement 
and guidance of network operators. Firstly, we introduce the scenario. Secondly, we present its 
alignment with TeraFlowSDN architecture. Thirdly, we present the performance evaluation. Finally, 
we provide a summary of scenario conclusions and future steps.  

4.1. Scenario Introduction 

In 5G, network operators rely on pre-defined templates for services and network slides embedded 
within the systems. However, it became evident that this approach is not scalable beyond 5G (B5G) 
scenarios, where networks need to dynamically adapt to the changing demands of end-users. In B5G, 
the network, operated by the network slice controller, must compute a deployment plan that 
considers relevant network service functions and align it with a service provisioning and configuration 
plan. This dynamic and intelligent process ensures that the requested service is matched 
appropriately, provides adaptation capabilities during service operation, and relates the services to 
the available underlying network resources. In cases where services require resources from multiple 
technology domains, orchestrating these resources is necessary to provide multi-layer and multi-
domain services. Network automation is the key to addressing such adaptive environments. 

While SDN promised network programmability, the challenge lies in integrating different tools with 
their own APIs and varying data models, which can be costly and time-consuming. The TeraFlowSDN 
controller supports operator-driven use cases and workflows, addressing the objectives of this 
scenario by enabling the programmability of network elements and technology-based SDN controllers 
with the necessary north-bound and south-bound interfaces. 

 
Figure 6. Scenario 1: Autonomous Network Beyond 5G 

The high-level architecture depicted in Figure 6 illustrates the envisioned scenario. It includes 
integrated network elements within different technological domains, enabling the autonomous 
provisioning, configuration, and management of transport network slices. These slices consist of 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 28 of 155 

 

various Virtual Private Network (VPN) services like Layer 2 (L2VPN) and Layer 3 (L3VPN) services with 
dedicated Service Level Agreements (SLAs). The interaction between the NFV Orchestrator (e.g., ETSI 
OpenSource MANO) and TeraFlowSDN North-Bound Interface (NBI) allows L2/L3VPN connectivity 
provisioning. 

The optical network domain is managed using the Open Networking Foundation (ONF) Transport API 
(TAPI), which serves as a South-Bound Interface (SBI) towards an Optical Line System (OLS) or an 
optical SDN controller responsible for optical network elements. The microwave transport network 
follows the ONF Technical Reference (TR) 352 and Internet Engineering Task Force (IETF) Network 
Topology data models. A dedicated microwave SDN controller interacts with TeraFlowSDN via the 
appropriate SBI based on ETSI mWT 024 specifications. 

Layer 3 (L3) routers are controlled using OpenConfig data models. The TeraFlowSDN Controller is 
instantiated as an IP SDN controller, interacting with a parent TeraFlowSDN controller that functions 
as an End-to-End (E2E) Orchestrator. Alternatively, the L3 routers can be controlled using the Path 
Computation Element Protocol (PCEP). In this case, the TeraFlowSDN Controller is instantiated as a 
dedicated PCEP SDN controller, interacting with the parent TeraFlowSDN controller as the End-to-End 
Orchestrator. Additionally, P4 switches can be controlled by a dedicated instance of the TeraFlowSDN 
controller. This controller, along with the parent TeraFlowSDN controller acting as the End-to-End 
Orchestrator, enables effective management of P4 switches. 

4.2. Alignment with TeraFlowSDN architecture 

 
Figure 7 Scenario 1 E2E TeraFlowSDN  instantiation 

Figure 7 shows the instantiation (configuration and TeraFlowSDN templates) for the End-to-End (E2E) 
TeraFlowSDN controller running as an SDN orchestrator. It may be observed that the ETSI 
OpenSourceMANO (OSM) NFV orchestrator is used to provision the network services and delegates 
to the TeraFlowSDN controller, which is used as a Wide Area Network (WAN) Infrastructure Manager 
(WIM), the establishment of the inter-Data Centre (DC) connectivity through the WAN infrastructure. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 29 of 155 

 

The OSM orchestrator uses the IETF L2VPN WIM connector to interact with the TeraFlowSDN 
controller.  

Scenario 1 involves the following components: 

• NBI 
• Forecaster 
• Slice 
• Service 
• Context 
• TE 
• Path Computation 
• Monitoring 
• Automation 
• SBI 

The following use cases are of interest for testing the validity of these components and the overall 
scenario: 

• Zero-touch Device Automation 
• L2/L3VPN Service Management and Integration with ETSI OpenSource MANO 
• Slice Grouping 
• Policy-driven Service Restoration with P4 devices 
• Energy-Efficient Path Computation 

4.3. Performance Evaluation 

This section presents the performance evaluation performed for the different workflows composing 
scenario 1. The workflows have been introduced and detailed in D5.2, Section 5.5. In this deliverable, 
we focus on the performance evaluation of the workflows. First, we introduce the testbed setup used 
by the partners to evaluate the performance of the workflows. Then, we present the performance 
evaluation of each workflow. 

4.3.1. Testbed Setup 

The performance evaluation for Scenario 1 has been carried out in a geographically distributed testbed 
interconnecting CTTC premises with Telefonica I+D premises through a legacy VPN tunnel. Moreover, 
a testbed located at UBITECH has been used to evaluate the P4 workflow. 

At CTTC premises, the testbed consists of a hybrid cluster composed of 3 machines interconnected by 
means of a GbE switch. The technical specifications of the machines are detailed below: 

• 1 machine featuring an Intel Core i9-10900K CPU @ 3.70GHz (10 cores / 20 threads) with 64 
GB of RAM, a 2 TB Intel NVME disk, and 1x 10GbE NIC + 1x 1GbE NIC. 

• 2 machines featuring an AMD Ryzen Threadripper 3960X 24-Core Processor (24 cores / 48 
threads) with 128 GB of RAM, a 2 TB SSD SATA disk + a 4 TB HDD SATA disk, and 2 NIC cards 
(2x 1GbE ports + 1x 1GbE port). 

Each machine runs an Ubuntu 22.04.2 LTS Server Edition Operating System. The machines are 
clusterized by means of MicroK8s v1.24.13 installed through the official Canonical Snap packages and 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 30 of 155 

 

configured according to the instructions available in the ETSI TeraFlowSDN Deployment Guide [DepG]. 
To improve the cluster's performance, the software has been installed directly on the physical server 
without any Virtual Machine, and the CockroachDB database has been deployed in cluster mode to 
incorporate data replication, distribution, and consistency enforcement in the performance 
assessment. Thus, all the performance assessments in this scenario, especially those related to the 
Context component, account for such data management features. However, the Horizontal Pod Auto-
Scalers (HPA) of Kubernetes for all the TeraFlowSDN controller components have been deactivated to 
assess the components in a non-scalable environment. In section 5.3.4, where we evaluate the 
performance of attending Service and Slice requests in a scalable manner, the HPAs for the 
TeraFlowSDN controller components have been enabled. 

At Telefonica I+D premises, the testbed consists of some HL-5 Edgecores, Ubuntu virtual machines, 
SIAE MW devices, and a SpirentTest center with the following compute specifications: 

• 2x Infinera DRX-30 router running the ADVA NOS-OPX-B-21.5.1. These devices are an open 
cell site gateway platform that provides a combination of 1GE, 10 GE, 25 GE and 100GE 
interfaces using commercial silicon to provide a cost-effective, software-centric, and flexible 
solution for network routing. These devices support Netconf/Openconfig, gNMI, BGP-LS, PCEP 
and OSPF.  

 

• 1x Edgecore AS7315-30X router running the ADVA NOS-OPX-B-21.5.1. This device is an open 
cell site gateway platform that provides a combination of 1GE, 10 GE, 25 GE, and 100GE 
interfaces utilizing merchant silicon and an x86 processor to optimize performance of mobile 
networks. This device supports Netconf/Openconfig, gNMI, BGP-LS, PCEP and OSPF. 

 

• 1x Spirent N12U [SPI22]. This device provides test solutions for 800/400/200/100/50G, FlexE 
(Flex Ethernet) testing to address 5G transport, unified Layer 2 to Layer 7 traffic generation, 
investment protection with QSFP-DD, CFP8, and OSFP interfaces and wide-scale adoption by 
world’s largest NEMs, Service Providers, and Enterprises. 
 

 
Figure 8. Edgecore DRX-30 chassis layout 

 

 
Figure 9. AS7315-30X chassis layout 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 31 of 155 

 

• 1x Dell PowerEdge R730. This device has 56 CPU intel Xeon E5-2690 v4 @ 2.60GHz cores 
capable to boos up to 3.50GHz, 125GB of DDR4 RAM and 2.7TB of hybrid storage (SSD and 
HDD). It runs Ubuntu 20.04.4 LTS and 10Gbps network interfaces. 

 

• 1x Dell PowerEdge R720. This device has 32 CPU intel Xeon E5-2680 @ 2.70GHz cores capable 
to boos up to 3.50GHz, 125GB of DDR4 RAM and 100GB of SSD storage. It runs Ubuntu 20.04.5 
LTS and 10Gbps network interfaces. 

 

• For the virtualization environment we use Openstack version Xena and Stein, KVM and 
VMware versions 6, 6.7, and 7, respectively. We have two Openstack clusters running Stein 
and Xena respectively. The KVM and VMware hosts run independently of one another and are 
managed individually. This offers us a great balance between flexibility and scalability. We can 
effortlessly deploy a large number of virtual machines using the Openstack clusters, running 
a total of 808 vCPUS, 1512GB of RAM and 23TB of hybrid storage. But we can also use KVM 
and VMware to deploy machines that may need specific configurations tailored to their 
unique requirements, such as specialized software installations, customized network settings, 
or intricate network connectivity with external systems. 

• The SIAE equipment at Telefonica premises includes a virtualized server with 4 vCPUs, 32GB 
of RAM, and a 350GB hard drive, running SUSE Linux 12 SP4 as Operating System. On top of 
it, SIAE intermediate MW controller version SM-DC 8.3.2 is in charge of managing a radio link 
terminated by two SIAE AGS20 terminals. 

• The Infinera local TeraFlowSDN emulation environment uses 3 Dell PowerEdge R420 servers, 
one for running TeraFlowSDN, second running for IPM installation and third running emulated 
XR modules. Servers have Intel Xeon ES-2470 CPU@2.4GHz (20cores/40threads), 64GB RAM, 
1T-2T SSD, 6x1G and 2x10G ethernet ports and running Ubuntu 22.04 and using Edgecode 
AS5812-54X router between IPM server and emulated XR modules servers to mimic as realistic 
network configuration and behavior as possible on emulated setups. For TeraFlowSDN XR 
constellation pluggable development we have simpler pure emulated setups where 
Integrated Performance Monitoring (IPM) and emulated XR modules can be run on the same 
server (used for example Telefonica lab installation). In addition of this, physical XR modules 
were hosted on 2 x Edgecore DCS240/AS7926-32DB with modified Edgecore Enterprise SONiC, 
where SONiC was extended to support XR modules, supporting different 400G port modes, 
including 1x400G and 4x100G breakout modes. From the TeraFlowSDN viewpoint the 
emulated or physical devices gets abstracted behind IPM allowing setups to use different level 
emulated or physical XR devices supporting targeted test use case. 

 
Figure 10. Dell R730 

 

 
Figure 11. Dell R720xd 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 32 of 155 

 

 

 

UBITECH provides a testbed where the P4-based Zero-touch provisioning (Section 4.3.2) and Policy-
driven service restoration (Section 4.3.5) scenarios are tested. The testbed consists of an Intel NUC 
device with the following compute specifications: 

• CPU: 4 physical Intel(R) Core(TM) i7-5557U CPU @ 3.10GHz 
• DRAM: 16GB of Kingston DDR3 DRAM at 1600 MT/s 
• Storage: 1TB Samsung SSD 850 
• Network interfaces: 2x 1GbE through an onboard NIC 

For this testbed, UBITECH deploys the ETSI TeraFlowSDN controllers as a Kubernetes managed service 
and a software-based P4 topology with 8 bmv2 P4 switches through Mininet. A set of Mininet hosts 
(client and server) is used to inject traffic into Mininet. 

4.3.2. Zero-touch Device Automation 

For the Zero-touch Device Automation workflow, we consider the evaluation case of the overhead 
consumed by the TeraFlowSDN controller to onboard new devices, without considering the time 
consumed by the device to self-configure. A similar strategy was adopted in [OFC22]. Therefore, the 
results reported in the following are obtained using emulated device driver. 

First, we evaluate the overhead introduced by the TeraFlowSDN controller in onboarding devices 
emulated through the Emulated device driver in the SBI. This emulated driver is mainly devoted to 
debugging and assessing the TeraFlowSDN controller's logic. It stores and retrieves the configuration 
rules from internal memory and does not interact with external devices. Using this driver, we can 
measure the overhead introduced by the TeraFlowSDN controller while onboarding new devices 
regarding how much time is consumed by data base accesses, (de)configuration rule processing, etc. 

This experimental assessment has been carried out using the network topology depicted in  
Figure 14. The topology consists of 7 emulated packet routers interconnected by means of 18 
unidirectional links. Each router has 9 ports (also named as endpoints in TeraFlowSDN terminology). 
A subset of these endpoints (i.e., 36, two for each unidirectional link) is used to interconnect the 
routers, while the rest are used as client ports for the performance assessment. 

 
Figure 12. Dell PowereEdge R420 server 

 

 
Figure 13. Edgecore DSC240/AS9726-32DB 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 33 of 155 

 

  
Figure 14. Emulated network topology 

The performance assessment results are depicted in the following figures, each plotting the 
cumulative distribution function of the execution times of each operation and/or method. The results 
are obtained by measuring the time taken by each stage of the onboarding process when onboarding 
the topology depicted in Figure 14. Detailed descriptions of each method evaluated in this section is 
provided in D3.2, Section 4.1.4. 

Figure 15 illustrates the execution time for a single AddDevice RPC method execution in the SBI 
component. In this case, Device and Device Driver refer to the specific parts within the SBI component 
responsible for interacting with devices. Detailed information about the SBI component design can be 
found in D3.2, Section 4.1.2. The minimum execution time of this RPC method is around 100ms; almost 
60% of executions are completed in less than 300ms, and it never exceeds 400ms. 

To illustrate how this time is distributed, Figure 16 showcases how the total time (olive-colored) is 
distributed among the different internal operations done by the AddDevice RPC method. This total 
time is the composition of two main operations: wait_queue (cyan-colored), which accounts for how 
much time the operation is waiting on the internal queue (note that two requests on the same device 
needs to be executed sequentially), and execution (orange-colored) that accounts for the sum of times 
required by the different operations. As it can be expected, the most time-consuming operations are 
those related to quering the Context component to check the existence of the device in the database 
(get_device, green-colored) and the storage of the updated device information in the database 
(set_device, gray-colored). 

The time consumed by the GetConfig and SetConfig operations in the Emulated Driver are shown in 
Figure 17. These operations always consume less than 1ms given they perform in-memory storage 
and retrieval of configuration rules. 

Finally, Figure 18 shows the distribution of time for the Context RPC methods that are involved in the 
onboarding of new devices, in particular, the ListDevices, SelectDevice, and SetDevice RPC methods. 
SelectDevice (orange-colored) is the method that consumes less time; around 50% of executions take 
less than 10ms and always it takes less than 100ms. In contract, SetDevice (green-colored) takes 20-
60ms given the database updates need to check the database schema constraints are fulfilled. 
ListDevices takes longer given it needs to retrieve all the devices in the database, but it never exceeds 
100ms. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 34 of 155 

 

 
Figure 15. Device component – AddDevice RPC 

 
Figure 16. Device component –AddDevice RPC internal 

operations 

 
Figure 17. Emulated Device Driver – GetConfig/SetConfig 

Methods 
 

 
Figure 18. Context component – Device-related RPC 

methods 
 

 

Table 1 provides the summary of obtained results. 

 

 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 35 of 155 

 

Table 1. Scenario 1 - Device Onboarding KPIs 

Name Metric Value Comment 
Device on-
boarding time 

On-boarding time contribution by 
internal TeraFlowSDN components 

100-400 ms Measured using 
Emulated Driver 

4.3.3. L2/L3 VPN Service Management and Integration with ETSI OpenSource 
MANO 

The evaluation of L2/L3VPN Service Management and Integration with ETSI OpenSource MANO is split 
into three parts. The first part assesses the time required to setup and teardown L2 VPN services. The 
second part is devoted to evaluating the L3 VPN services. Finally, the third part validates the creation 
of connectivity services from ETSI OpenSource MANO. 

4.3.3.1. L2 VPN Service Management 
This section reports the performance results to setup and teardown 1,000 L2VPN service requests. For 
the assessment, we used the topology illustrated in Figure 14 and described in Sec. 4.3.2 and the load 
generation tool described in Sec. 3.4. The load generator has been configured with an offered load of 
50 Erlang and 10 seconds of holding time per L2VPN service. The requests are sent directly to the 
Service component through the TeraFlowSDN gRPC internal API, where the setup and teardown time 
are measured directly. 

The performance evaluation results are depicted in the following figures as the cumulative distribution 
function of the execution times of each operation and/or method. Detailed descriptions of each 
method evaluated in this section are provided in D3.2, Section 4.2.3.1. 

 

 
Figure 19 illustrates the execution times of the CreateService, UpdateService, and DeleteService RPC 
methods of the Service component for L2VPN services. The services are created internally to obtain a 
unique identifier, and then populated with the required endpoints, constraints, and configuration 
rules. Therefore, the CreateService time accounts only for the time required to create the service in 

 
Figure 19. Service component RPC methods for L2VPN w/Emulated 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 36 of 155 

 

the database. This operation takes less than 30ms in 80% of the requests, with the exception of a few 
cases where it can take up to 100ms. The UpdateService method requests the path computation and 
the setup of the required configuration rules for the services. The DeleteService method retrieves the 
service from the database and deconfigures the rules related to the service. The execution time of the 
UpdateService method is slightly larger than the DeleteService method. This is because the former 
needs to wait for the Path Computation result. The UpdateService method always takes at least 
100ms, and for 80% of the executions it does not exceed 150ms. The DeleteService method, takes at 
least 90ms, and for 80% of the executions it does not exceed 140ms. In very rare cases the 
UpdateService and the DeleteService methods might take a second or more to complete due to 
congestion in the database. Further investigation on database resources might be needed to clarify 
this congestion. 

 
Figure 20. Path Computation component computation 

time 

 
Figure 21. Topology-related methods of the Context 

component 

Figure 20 depicts the time consumed by the Path Computation component to compute the paths for 
the new service requests. A detailed description of the Path Component interfaces can be found in 
D3.2, Section 3.4.3. It is worth noting that this time accounts for parsing the request received from 
the Service component, collecting the topology from the Context component, offloading the 
computation to the Backend Path Computation component, and composing and sending back the 
reply to the Service component. As it can be seen, the minimum consumed time is 60ms and almost 
95% of times it does not exceed 100ms. In a few exceptional cases it might take up to 1 second. As 
previously commented, further research on distributed database resources might be needed to 
remove these outliers. 

The Path Computation component uses the Context GetTopologyDetails method to retrieve the 
topology with the devices and links it needs to perform the path computation. The GetTopologyDetails 
method, takes, at least, 30ms to complete (Figure 21), in around 80% of times it takes no more than 
70ms, and 90% of cases it takes less than 100ms. However, in some edge cases it can take hundreds 
of milliseconds depending on the congestion in the database, with the worst case measured in 1 
second. This explains the performance of the Path Computation component in those edge cases. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 37 of 155 

 

The Service Handler triggers the actual rule configuration and deconfiguration in the devices 
specialized in the specific types of services. A detailed description of the Service Handlers can be found 
in D3.2, Section 4.2.2. Two important methods in the Service Handlers are SetEndpoint (responsible 
for configuring rules in the devices) and DeleteEndpoint (that performs the deconfiguration 
operations). The performance of both methods when considering L2VPN services with emulated 
devices is very similar (Figure 22). This behavior is expected given the Emulated driver stores and 
retrieves the rules directly from in-memory storage. It must be noted that the in-memory storage is 
to emulate the behavior of the device Network Operating system, thus, it does not replace the need 
for storing the configuration rules also in the Context database as the purpose of both databases is 
different. This experiment validates the stability of the rest of the involved components and the 
overhead introduced by the TeraFlowSDN controller. Figure 22 shows that the minimum consumed 
time is around 70-80ms and in 85% of the cases it does not exceed 100ms. Besides, in edge cases these 
methods can consume up to 1 second. 

Figure 23 plots the performance of the AddDevice and ConfigureDevice methods of the Emulated 
Device Driver in the Device component. The ConfigureDevice is responsible for configuring and 
deconfiguring the rules on the devices through the device drivers, thus its performance directly affects 
the performance of SetEndpoint and DeleteEndpoint methods of the Service component. In the 
topology used for this validation, in general, the paths traverse, on average two devices. This explains 
why the time consumed by SetEndpoint and DeleteEndpoint methods is roughly twice the time 
consumed by the ConfigureDevice method (in average two devices need to be configured for each 
service). In this case, the AddDevice method is not relevant, since it is used only during the on-boarding 
of the devices, but is included in the plot for the sake of completeness. 

 
Figure 22. L2NM Emulated Service Handler – 

Set/DeleteEndpoint methods 
 

 
Figure 23. Device component – RPC methods 

 

Next, we analyze the performance of the ConfigureDevice method of the SBI component. Figure 24 
showcases the details of the internal operations of the ConfigureDevice method. The total time is the 
sum of the wait_queue and the execution time. The rest of the measurements are contributors to the 
execution time. As can be seen, the wait_queue time is negligible (in the order of microseconds). The 
time for configure_rule and deconfigure_rule, i.e., the actual configuration of rules in the in-memory 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 38 of 155 

 

storage of the Emulated driver, are also negligible. The execution time is dominated by the accesses 
done to the Context database to retrieve (get_device) and/or update the state (set_device) of the 
device in terms of known configured rules. These times are aligned with those reported in Figure 25 
for the Device-related RPC methods in the Context component. Note that other components and 
operations in the TeraFlowSDN controller use the methods to SelectDevice and SetDevice; which 
explains the slight variations between the two plots. 

 
Figure 24. Device component – ConfigureDevice internal 

operations 

 
Figure 25. Context component – Device-related RPC 

methods 
 

 

4.3.3.2. L3 VPN Service Management 
This section reports the performance results to setup and teardown 1,000 L3VPN service requests. For 
the assessment, we used the topology illustrated in Figure 14 and described in Sec. 4.3.2 (page 33 of 
this document), and a load generation tool to automate the evaluation described in Section 3.4. The 
load generator has been configured with an offered load of 50 Erlang and 10 seconds of holding time 
per L3VPN service. The requests are sent directly to the Service component through the TeraFlowSDN 
gRPC internal API, and the setup and teardown time is measured directly in the Service component. 

The performance evaluation results are presented in the following figures as the cumulative 
distribution function of the execution times of each operation and/or method. Detailed descriptions 
of each method evaluated in this section are provided in D3.2, Section 4.2.3.2 (page 112). 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 39 of 155 

 

 
Figure 26 illustrates the execution times of the CreateService, UpdateService, and DeleteService RPC 
methods of the Service component for L3VPN services. As it was the case for L2VPN services, 
internally, the services are first created to obtain a unique identifier per service. Then they are 
populated with the required endpoints, constraints, and configuration rules. For this reason, the 
CreateService time only accounts for the time required to add the service in the database. This 
operation takes less than 100ms in 80% of the cases, while in some exceptional cases, it can increase 
up to 400ms. The UpdateService method triggers the path computation and the setup of the 
configuration rules required for the services. The DeleteService method retrieves the service from the 
database and performs the deconfiguration of the rules related to the service. Since it needs to wait 
for the results of the Path Computation method, the execution time of UpdateService is slightly larger 
than the one of the DeleteService method. The UpdateService method always takes at least 100ms, 
and for 80% of the cases it does not exceed 1 second. The DeleteService method needs at least 100ms, 
and for 80% of the cases it does not exceed 1 second. In rare cases, the UpdateService and the 
DeleteService methods might take a few seconds to complete due to congestion in the database. Note 
that L3 Services require managing a larger number of configuration rules than L2VPN Services, thus 
increasing the number of rules to be updated and persisted by the Context component. 

 
Figure 26. Service component RPC methods for L3VPN with emulated devices 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 40 of 155 

 

 
Figure 27. Path Computation component computation 

time 

 
Figure 28. Topology-related methods for the Context 

component 

Figure 27 depicts the time consumed by the Path Computation component to compute a path for new 
service requests. It is worth noting that this time accounts for parsing the request received from the 
Service component, collecting the topology from the Context component, offloading the computation 
to the Backend Path Computation component, and composing and sending back the reply to the 
Service component. As it can be seen from the figure, the minimum consumed time is 60ms, and 
almost 80% of the executions do not exceed 100ms. 

The Path Computation component uses the Context GetTopologyDetails method to retrieve the 
topology with the devices and links it needs to perform the path computation. The GetTopologyDetails 
method, takes, in about 80% of the cases, between 30ms and 100ms to complete (Figure 28). 
However, in some special cases it can take hundreds of milliseconds depending on the congestion in 
the database, with the worst case being close to 1 second. This explains the performance of the Path 
Computation component in those edge cases. 

The actual rule configuration and deconfiguration in the devices are triggered by the Service Handler 
specialized in the specific types of services. More details about the Service Handlers can be found in 
D3.2, Section 4.2.2. The two important methods in the Service Handlers are SetEndpoint (responsible 
for configuring rules in the devices) and DeleteEndpoint (that performs the rule deconfiguration). The 
performance of both methods for the Service Handler specialized in L3VPNs using Emulated devices 
is very similar (Figure 29). This behavior can be expected given the Emulated driver stores and retrieves 
the rules directly from an in-memory storage. This experiment validates the rest of the components' 
stability and the overhead introduced by the TeraFlowSDN controller. Figure 29 showcases that the 
minimum consumed time is 100ms, and 95% of the times it does not exceed 1 second.  

Figure 30 plots the performance of the AddDevice and ConfigureDevice methods of the Emulated 
Device Driver in the Device component. The ConfigureDevice is responsible for configuring and 
deconfiguring the rules on the devices through the device drivers, thus its performance directly affects 
the performance of SetEndpoint and DeleteEndpoint methods of the Service component. In the 
topology used for this validation, the paths generally traverse, on average two devices. This explains 
why the time consumed by the SetEndpoint and DeleteEndpoint methods is roughly twice the time 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 41 of 155 

 

consumed by the ConfigureDevice method (in average two devices need to be configured for each 
service). In this case, the AddDevice method is irrelevant because it is used only during the on-boarding 
of the devices, but included here for the sake of completeness. 

 
Figure 29. L3NM Emulated Service Handler – 

Set/DeleteEndpoint and DeleteEndpoint methods 
 

 
Figure 30. Device component – RPC methods 

 

Next, we analyze the performance of the ConfigureDevice method of the Device component. Figure 
31 showcases the details on internal operations performed by the ConfigureDevice method. The total 
time is the sum of the wait_queue time and the execution time. The other measurements are 
contributors of the execution time. As can be seen from the figure, the wait_queue time is in the order 
of microseconds in 90% of cases, and below 100ms in 95% of executions. In some edge cases it can 
reach a second when the device is blocked serving other (de)configuration requests. The time for 
configure_rule and deconfigure_rule, i.e., the actual configuration of rules in the in-memory storage 
of the Emulated driver, are also negligible. The time consumed is then dominated by the accesses 
done to the Context database to retrieve the known state of the device (get_device) and updating that 
state (set_device) in terms of known configured rules. These times are aligned with those reported in 
Figure 32 for the Device-related RPC methods in the Context component. Note that other components 
and operations in the TeraFlowSDN controller use the methods of SelectDevice and SetDevice; that 
explains the slight variations between both plots. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 42 of 155 

 

 
Figure 31. Device component – ConfigureDevice internal 

operations 

 
Figure 32. Context component – Device-related RPC 

methods 

 

4.3.3.3. End-to-end Service Setup and IETF L2VPN SBI 
This sub-section describes the setup of an end-to-end service in a multi-technology network scenario, 
as illustrated earlier in this section, in Figure 6. The control and management plane consists of a 
hierarchy of SDN controllers, each responsible for a sub-domain/sub-technology. Figure 33 illustrates 
the multi-domain and multi-technology topology seen at the parent TeraFlowSDN controller instance. 

 

Figure 33. Multi-domain and multi-technology network topology seen at the parent TeraFlowSDN controller instance 

The parent TeraFlowSDN instance manages: (i) a child IP TeraFlowSDN controller (“IP TFS Ctrl” in the 
figure) in charge of controlling the packet routers R149, R155, and R199; (ii) the SIAE MW controller 
in charge of controlling a microwave link; (iii) the Infinera IPM controller in charge of managing the XR 
transceivers; and (iv) the CTTC Open Line System (OLS) controller that manages the underlying optical 
mesh. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 43 of 155 

 

When a new DC-to-DC L2VPN service is requested, the parent TeraFlowSDN controller computes the 
overall end-to-end path and decomposes the end-to-end service into sub-services. Figure 34 depicts 
the DC-to-DC end-to-end service (the first one in the list) and the sub-services (the following four 
services). The parent TeraFlowSDN controller delegates the setup of the sub-services to the underlying 
child controllers. 

 

Figure 34. End-to-end service and sub-services 

Specifically, the parent TeraFlowSDN controller makes use of the IETF L2VPN SBI driver to interact with 
the child TeraFlowSDN controller. The second acts as IP controller and is responsible for configuring 
the L2VPN between the packet routers, in this scenario, R149 and R199. The traffic of this L2VPN 
traverses the rest of the underlying multi-technology domains. The configuration messages used to 
delegate the L2VPN creation from the parent to the child TeraFlowSDN controller are listed in Figure 
35. 

 
Figure 35. IETF L2VPN SBI messages 

This message sequence starts with a GET request (messages 1305 and 1369) to identify existing VPN 
services. Figure 36 depicts the content of the reply. In this case, no VPN services exist. 

 
Figure 36. Detail of GET reply – No VPN Services created 

When the SBI driver identifies there is no usable VPN service, it creates a new one in two steps. First, 
an empty VPN service is created to define a unique identifier for the new service (messages 1483 and 
1559 in Figure 35). Figure 37 lists the content of the request to create the empty VPN service. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 44 of 155 

 

 
Figure 37. Detail of IETF L2VPN Create VPN service 

When the unique identifier for the new VPN service is fixed, the required sites (i.e., the endpoints to 
be interconnected by the VPN) are added to the VPN service (messages 1563 to 1800 for site 1, and 
1803 to 3528 for site 2 in Figure 35). Figure 38 and Figure 39 detail, respectively, the addition of VPN 
sites 1 and 2. Note that in this scenario, site 1 corresponds to router R149 and DC1, while site 2 
corresponds to R199 and DC2. 

 
Figure 38. Detail of IETF L2VPN Add site 1 to VPN service 

The execution time of this procedure depends on three main factors: (i) the execution times for L2VPN 
services, (ii) the time to configure real devices through the SBI drivers and the intermediate controllers 
(when needed), and (iii) the round-trip-time between the premises where the parent and child 
TeraFlowSDN controllers, intermediate controllers, and physical devices are deployed. For this reason, 
for the sake of avoiding repetitions and given the execution time components (i) and (ii) are deeply 
studied and reported in Sections 4.3.3.1 and 4.3.2, respectively. We point the reader to the respective 
sections to extract the performance evaluation components. 

 
Figure 39. Detail of IETF L2VPN Add site 2 to VPN service 

4.3.3.4. Integration with ETSI OpenSource MANO 
The results of this workflow have already been reported in D5.2, Section 5.5.2. For completeness, we 
summarize the main results of this integration in this deliverable. The architecture used for this 
workflow is depicted in Figure 40. It shows two geographically-distant data centers (acting as Virtual 
Infrastructure Managers - VIMs) to be interconnected through a transport network slice using a WAN 
Infrastructure Manager (WIM). Each DC has network connectivity access through Customer Edge (CE) 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 45 of 155 

 

equipment connected to Provider Edge (PE) equipment, each located at a network operator's Point of 
Presence (PoP). For instance, DC1 has its CE connected to the data net and DC2. A transport network 
slice is deployed over a network connectivity service to satisfy the communication requirements 
between the two data centres.  

 

 

We implemented the complete provisioning of a Network Service (NS) through multiple VIMs. To this 
end, multiple VIMs are requested to deploy the allocated Virtual Network Functions (VNFs). Later, the 
point-to-point Service management workflow is triggered when OSM requests creating a new VPN 
service. Such a request has two phases. First, a new empty service is created to obtain a service 
identifier. Second, the endpoints are added to the service. When NBI receives the service creation 
request, it forwards it to the Service component, which completes the missing required fields with 
default values, creates the service in the Context database, and returns the service identifier to OSM. 

When NBI receives the request to add the endpoints to the service, it issues a service update request 
towards the Service component that identifies the devices owning the endpoints to be connected, 
identifies the device drivers they support, and chooses the appropriate service handler for the service. 

This workflow first chooses and instantiates the Layer 3 Network Model (L3NM) service handler to 
configure an L3 VPN using Netconf/OpenConfig. Then it forwards the service request to that service 
handler. Next, the service handler creates the configuration rules for each involved device and 
configures them through SBI. Finally, it returns a confirmation to OSM.  

The IETF L2VPN YANG data model for Service Delivery [RFC8466] enables to describe the transport 
network slices required by an OSS/BSS or an NFV orchestrator. An SDN controller can then consume 
the requests to provision the transport network connectivity services, as shown in Figure 41. 

 

Figure 40. Integration of NFV-O and Transport SDN Controller 

mgmt
net

VNF 1

internal
net

VDU 1 - mgmt VM

VDU 2 - data VM

VNF 2

internal
net

VDU 1 - mgmt VM

VDU 2 - data VM
data
net

NFV Orchestrator

Virtual Infrastructure
Manager

Virtual Infrastructure
Manager

WAN Infrastructure
Manager



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 46 of 155 

 

 

4.3.3.5. Packet layer traffic monitoring using Grafana 
For the performance evaluation of L2/L3 VPN services, we adopted a simple emulated network 
topology composed of four routers forming a ring topology, and two clients connected to two different 
routers. The emulated devices are on-boarded in TeraFlowSDN, and a new service is created, allowing 
the two clients to exchange traffic. The two routers connecting the clients are denoted as R1-EMU and 
R2-EMU. The traffic generation follows a random cyclic pattern. 

 

Figure 42 shows a screen capture of the Grafana dashboard developed for this workflow. At the top 
left, three selection inputs allow the user to select any set of devices, endpoints, or KPIs to be shown 

 

Figure 41. Example of IETF-L2VPN-svc:site-network-access 

 
Figure 42. Grafana dashboard illustrating the traffic monitoring 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 47 of 155 

 

in the plot. In the main area, the traffic traversing the devices/endpoints over time is shown, followed 
by a summary of statistics in the table below. This dashboard allows TeraFlowSDN adopters to analyze 
the current traffic flexibly and promptly. 

4.3.3.6. Final KPI Measurements 
Table 2 summarizes the relevant KPI measurements related to this section. 

Table 2. L2/L3 Service Setup/Teardown KPIs 

Name Metric Value (min/p80/max) Comment 
Service setup delay Overhead L2VPN 100 ms / 150 ms / 1+ sec Overhead contributed by the 

controller. Measured using an 
Emulated Topology. 

Overhead L3VPN 100 ms / 1 sec / 4+ sec 
Service teardown delay Overhead L2VPN 90 ms / 140 ms / 1+ sec 

Overhead L3VPN 100 ms / 1 sec / 4+ sec 
Data rate  100G Data rate can be shown in Grafana. 

Available data rates depend on the 
topology and network equipment, 
so we are limited to the 
transponders available in 
whiteboxes (e.g., 100G). 

 

4.3.4. Slice Grouping 

This section's evaluation is split into two main sections; first, an experimental evaluation is carried out; 
second, the performance of the slice grouping technique is assessed by means of an ad-hoc simulator. 

4.3.4.1. Experimental Assessment 
The results of this proposed use case on slice grouping have been submitted and will be demonstrated 
at [OFC23a], including hierarchical control of the underlying network technologies. 

Figure 43 shows two network slice templates considered to allocate the requested transport network 
slices. The first one, referred to as gold, offers a service availability of 90% and a guaranteed bandwidth 
of 10 Gb/s. The second one, named platinum, provides a service availability of 99% with an allocated 
bandwidth of 100Gb/s. 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 48 of 155 

 

 

Figure 43. Example of slice templates 

Figure 44 provides an example of a slice request. The requested slice includes a service-id and a 
requested Service Level Objective (SLO) and Service Level Expectation (SLE) policy. By doing so, several 
metrics can be included, for example, SLO “one-way minimum guaranteed bandwidth” and SLO 
“guaranteed availability”. These two metrics are considered in this work, but the network slice 
definition is flexible enough to support multiple SLO/SLE requirements. 

 

 

We use the K-Means clustering algorithm to support the slice grouping based on the requested 
SLO/SLE. This unsupervised machine learning algorithm groups data into a pre-determined (i.e., K) 
number of clusters. The user defines this number, and the K-Means algorithm groups the data into 

{ 
         “id": “slice-template-gold", 
         "service-slo-sle-policy":  
         { 
           "metric-bounds":  
           { 
               "metric-bound":  
                [ 
                { 
                   "metric-type": "service-slo-one-way-bandwidth", 
                   "metric-unit": "mbps" 
                   "bound": "100" 
                }, 
                { 
                   "metric-type": "service-slo-availability", 
                   "bound": "99.9%" 
                } 
               ] 
          } 
       } 
} 

{ 
         “id": “slice-template-platinum", 
         "service-slo-sle-policy":  
         { 
           "metric-bounds":  
           { 
               "metric-bound":  
                [ 
                { 
                   "metric-type": "service-slo-one-way-
bandwidth", 
                   "metric-unit": "mbps" 
                   "bound": "1000" 
                }, 
                { 
                   "metric-type": "service-slo-availability", 
                   "bound": "99.999%" 
                } 
               ] 
          } 
       } 
} 

 

Figure 44. Applying slice grouping on new slice request depending on previously deployed slices 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 49 of 155 

 

that specific number of clusters. This is why a technique is needed to determine the optimal number 
of clusters for every specific case.  

Figure 43 shows the application of the Elbow method to select the number of clusters on the received 
requests, on the x axis we have the selected number of cluster and on y axis we have the distance cost 
of the requests to the allocated clusters. We have run K-means algorithm for clustering the requests 
based on requested availability and bandwidth for several clusters (K value) ranging from 1 to 10. We 
have computed the sum of the squared distances from each point to its assigned center for each 
result. These plotted values allow us to determine the best value of K (i.e., 2 clusters in the proposed 
demonstration). The elbow method shows us that 2 is a possible good candidate for the number of 
clusters.  

 

Figure 45. Elbow method applied to slice grouping 

Finally, Figure 44 plots the received transport slice requests (each blue dot refers to a single request 
in terms of availability and bandwidth) and the clusters to which they are related (in red). 

 

 

Figure 46. Allocated network slices and their slice groups 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 50 of 155 

 

4.3.4.2. Slice Grouping Performance Evaluation 
To assess the performance of the Slice Grouping technique, we developed an ad-hoc discrete event 
simulator implementing the same slice grouping technique used in the TeraFlowSDN controller. The 
simulator tracks each device's switching capacity and each port's capacity. Whenever a new request 
violates any of these capacity constraints, that request is blocked. 

When activating the slice grouping technique in the simulator, the path computation is done exactly 
as for the classical approach without slice grouping. The procedure differs in 3 aspects. First, the 
procedure computes the associated slice group for the new requested slice, based on the k-means 
algorithm. Second, no configuration is performed during the provisioning phase if a traversed device 
is already configured for the computed slice group. Third, if a traversed endpoint is already configured 
for the computed slice group during the provisioning phase, no configuration is performed for that 
endpoint. 

For the sake of simplifying the simulation and without loss of generality, we assumed all the requests 
issued to the simulator have no strict isolation constraints, meaning they can be safely grouped with 
other existing slice groups, provided they do not violate any capacity constraint. 

The simulator reports statistics on: (i) the number of blocked connections and the overall blocking 
probability, (ii) the total number of rule installations carried out during the simulation, and (iii) the 
aggregation (avg and max) of the number of configuration rules installed instantaneously per device. 

The simulator supports two transport network slices: L2 and L3 VPNs. That way, it enables us to 
compare the slice grouping technique for different slice types. Configuring L2 services and slices 
requires fewer configuration rules than configuring L3 ones. The reason for that is that in L2, we only 
need to create the network instance for the service and perform a configuration on the virtual circuits. 
However, for L3 VPNs, it is needed to configure a virtual routing function for each service with 
independent configurations for its routing tables, e.g., static and BGP routing policies. Besides, even 
in a device/endpoint is already configured, while it needs to support a new request, at least 1 
configuration rule needs to be executed to increase the capacity of the associated endpoint/network 
instance; for this reason, we consider both the case of unconfigured and already configured devices 
and endpoints. 

Table 3 summarizes the number of configuration rules to be installed in the devices according to the 
transport network slice kind and whether the device/endpoint is already configured or needs full 
configuration. We extracted this information from the TeraFlowSDN controller’s Service component; 
in particular, the L2NM-OpenConfig and L3NM-OpenConfig Service Handlers that define the set of 
rules to configure in each network device involved in a specific connectivity service. For instance, 
configuring a L3VPN network instance in a device, and adding 3 endpoints to this network instance 
implies installing, in total, 12 + 2*3 = 18 configuration rules. 

Table 3. Slice Grouping Simulator – Configuration rules per slice type 

 L2 VPN L3 VPN 
Rules per Unconfigured Device Network Instance 2 12 
Rules per Unconfigured Endpoint added to the Network Instance 2 2 
Rules per Configured Device Network Instance 1 1 
Rules per Configured Endpoint added to the Network Instance 1 1 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 51 of 155 

 

We also configured the simulator with 4 slice groups (Bronze, Silver, Gold, and Platinum) with the 
parameters reported in Table 4. The simulator maps the received request to the closer group for each 
group based on availability and capacity parameters. 

Table 4. Slice Grouping Simulator – Slice Groups Configured 

Slice Group Name Availability Capacity 
Bronze 10 % 10 Gbps 
Silver 30 % 40 Gbps 
Gold 70 % 50 Gbps 
Platinum 99 % 100 Gbps 

 

We configured the Telefonica Spain network (14-node, 44 links) depicted in Figure 47. Each location 
had a packet router supporting 200 Tb/s of switching capacity. Besides, each trunk endpoint 
connected to an adjacent packet router is composed of 5x 800 Gbps links aggregating their capacity, 
resulting in 4 Tb/s.  

 

Figure 47. Telefonica Spain Network (14-node, 44-link) 

We configured the simulator to run 56 scenarios with variable offered load (from 10 to 10k Erlang) 
and the slice request kinds varying between L2VPN and L3VPN. We fixed the holding time of the 
requests to 60 seconds and configured the generator to issue 5k requests for each scenario. For each 
request, the endpoints have been uniformly chosen. The availability constraint is chosen uniformly in 
the 0.01 – 99.99 % range, while the capacity for each request is chosen uniformly in the 1 – 100 Gbps 
range. Each individual scenario has been repeated 5 times with different seeds. 

Figure 48 plots the blocking probability (in percentage) of the requests as a function of the offered 
load, while Figure 49 showcases the total number of rules configured during the overall simulation. In 
both figures, the solid lines depict the blocking probability when activating the slice grouping 
technique, while the dashed lines are used as reference values with the slice grouping technique 
deactivated. The green and orange plots correspond to the L2VPN and L3VPN experiments. No 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 52 of 155 

 

significant blocking probability is appreciated until the offered load reaches 600 Erlang. When using 
the slice grouping technique, the blocking probability asymptotically reaches 0.7% while evaluating 
the maximum considered offered load of 10k Erlang. It is interesting to note that the slice grouping 
technique increases a bit the blocking probability but nothing significant with respect to the classical 
approach, e.g., the increase is in the range of 0.02-0.03%. 

 

Figure 48. Blocking Probability 

Regarding the total number of rules configured during the simulation, the number of rules configured 
using the classical approach is fixed around 80k rules for the L2VPN slice, and 240k for the L3VPN slice. 
The peak happening at 600 Erlang is associated with increased blocking probability. At that point, the 
simulator cannot set up new requests due to the lack of capacity resources, thus blocking them and 
reducing the number of rules installed in the devices. 

 

Figure 49. Total Rules Configured 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 2000 4000 6000 8000 10000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y 

[%
]

Offered Load [Erlang]

Blocking Probability

L2VPN - Classical

L2VPN - Slice Grouping

L3VPN - Classical

L3VPN - Slice Grouping

0

50

100

150

200

250

10 100 1000 10000

To
ta

l R
ul

es
 C

on
fig

ur
ed

 [x
10

00
]

Offered Load [Erlang]

Total Rules Configured

L2VPN - Classical

L2VPN - Slice Grouping

L3VPN - Classical

L3VPN - Slice Grouping



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 53 of 155 

 

When compared to the results obtained using the slice grouping technique, it is interesting to 
appreciate that, by reusing already installed configuration rules, the slice grouping technique saves an 
increasing number of rules while the load increases, asymptotically reaching the value of 40k rules at 
600 Erlang, where the blocking probability starts to increase, and the number of rules installed starts 
to decrease, as it happened with the classical approach. 

We illustrate the instant number of rules configured per device for L2VPN slices in Figure 50 and for 
L3VPN slices in Figure 51. In both cases, the classical approach, depicted in grey, is used as a reference, 
while the approach using the slice grouping technique is depicted in black. In both cases, we plot the 
instantaneous average number of configuration rules with a solid line, while the dashed line 
corresponds to the maximum value observed over all the repetitions for a specific scenario 
configuration. The blue plot depicts the reduction factor between the classical approach and the slice 
grouping approach; this plot is associated with the axis on the right side. 

 

Figure 50. Instant Rules per Device - L2VPN 

It is worth noting that thanks to the slice grouping technique, the number of rules configured per 
device is reduced. Studying the results in Figure 50, using the classical approach for L2VPNs, the 
average number of rules installed per device along the simulation reaches 990 rules, with a maximum 
value of 2.8k rules. In contrast, using the slice grouping technique, the average value reaches 440 
rules, with a maximum value of 1.1k. Comparing the average number of rules installed one-by-one per 
offered load, we found that slice grouping enables reductions of up to 2.3x for the L2VPN slices. It is 
worth noting that the number of rules installed per device stabilizes after reaching the value of 600 
Erlang of offered load, i.e., when the blocking probability starts to increase. 

Even better results can be found by studying the results for L3VPNs in Figure 51. The average number 
of rules installed per device along the simulation using the classical approach reaches 2.9k rules, with 
a maximum value of 8.2k. In contrast, using the slice grouping technique, the average value reaches 
480 rules, with a maximum value of 1.1k. Comparing the average number of rules installed one-by-
one per offered load, we found that reductions of up to 6.4x can be achieved. As in the L2VPN case, 
the number of rules installed per device stabilizes when the increase of blocking probability becomes 
significant. 

0

0,5

1

1,5

2

2,5

10

100

1000

10000

10 100 1000 10000
Re

du
c�

on
 F

ac
to

r

In
st

an
t R

ul
es

Offered Load [Erlang]

Instant Rules Per Device [L2VPN]

Classical [Avg]

Classical [Max]

SliceGroup [Avg]

SliceGroup [Max]

Reduc�on



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 54 of 155 

 

 

Figure 51. Instant Rules per Device - L3VPN 

4.3.4.3. Final KPI Measurements 
Table 5 summarizes the obtained results. 

 

Name Value Comment 
Resource 
efficiency 
reduction factor 

L2VPN 1,9 At offered load of 600 Erlang (when blocking probability 
arises) 
  

L2VPN 2,32  At offered load of 5k Erlang (peak resource efficiency) 
L3VPN 5,22  
 

At offered load of 600 Erlang (when blocking probability 
arises) 

L3VPN 6,4  At offered load of 7k Erlang (peak resource efficiency) 
Table 5 Slice Grouping KPI measurements 

4.3.5. Policy-driven Service Restoration with P4 devices 

This section demonstrates a policy-driven service restoration scenario that involves P4 devices, an 
overlay service, and TeraFlowSDN’s policy layer for maintaining the SLA of a deployed service. 

4.3.5.1. Concept 
This scenario spans three TeraFlowSDN controller layers, as shown in Figure 52. The device layer 
leverages the SBI component to interact with the underlying network devices through the P4Runtime 
API and the Monitoring component for collecting network telemetry. Managing a network at the level 
of individual devices requires network administrators to master highly complex and technology-
specific device configurations. For this reason, this scenario introduces additional components atop 
the device layer, as shown in Figure 52. 

This tiered segregation offers two powerful abstractions: 

0

1

2

3

4

5

6

7

10

100

1000

10000

10 100 1000 10000

Re
du

c�
on

 F
ac

to
r

In
st

an
t R

ul
es

Offered Load [Erlang]

Instant Rules Per Device [L3VPN]

Classical [Avg]

Classical [Max]

SliceGroup [Avg]

SliceGroup [Max]

Reduc�on



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 55 of 155 

 

• A service layer that allows network administrators to describe end-to-end connectivity 
between any two endpoints through high-level intents. 

• A management layer that allows network administrators to associate end-to-end connectivity 
services with run-time network policies. 

 

Figure 52. Policy-driven service restoration architecture within TeraFlowSDN. 

Abstraction #1: Abstract end-to-end services translated into P4 configuration. Upon a service 
request by a network administrator (see Figure 52), the Service component receives a request to 
provision connectivity between two remote endpoints from the Web UI. First, the Service component 
requests a path between these endpoints - highlighted in yellow in Figure 52 - from the Path 
Computation component. Then, the Service component configures the underlying network devices 
along the path between the endpoints through the SBI. To keep the Service layer agnostic from 
technology-specific details, the Service leverages a minimal service definition (see Table 6) that allows 
users to express what they want to connect, while letting the underlying system decide how to realize 
the connection. The Service component translates this minimal service definition into an abstract 
device configuration model that, in turn, is automatically translated into P4 rules from the P4 device 
driver of the SBI component. 

 
 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 56 of 155 

 

 

Abstraction #2: Real-time policies atop end-to-end services. Managing the run-time of an end-to-end 
service is of paramount importance for network administrators as modern systems become more and 
more complex. This scenario offers another powerful abstraction, which allows network 
administrators to associate monitoring metrics stored in the Monitoring database with conditions 
according to the event-condition-action policy model [Bou2019]. When these conditions are met, the 
Monitoring component raises an alarm that the Policy component consumes to trigger specific service 
or device-level actions. The example policy in Table 7 invokes path re-computation for a given service 
as an action to bind the end-to-end latency of a service below 4ms. Additional actions can be 
requested for other use cases, such as adding specific service constraints or configurations, in which 
case the network administrator shall specify an action configuration. This is how the Policy component 
offers event-driven SLAs for end-to-end connectivity services through P4 pipelines. 

  

Table 6. Example end-to-end service definition for P4-based connectivity between two endpoints. 
{ 
    "service_type":"P4", 
    "service_endpoint_ids": [ 
        { // endpoint A 
            "device_uuid": "SWA", // device ID 
            "endpoint_uuid": "X"   // port number 
        }, 
        { // endpoint B 
            "device_uuid": "SWB", // device ID 
            "endpoint_uuid": "Y"   // port number 
        } 
    ] 
} 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 57 of 155 

 

 

4.3.5.2. Testbed 
We use a Mininet-based topology of P4 switches based on the bmv2 [BMV2023] software switch to 
verify this scenario, as shown in Figure 53. On top of this topology, we deploy the TeraFlowSDN 
controller using the seven components depicted in Figure 52. The network administrator inputs a list 
of devices and links in JSON format, which the controller parses and establishes connections with all 
eight P4 switches through the SBI component. Once device handshaking is completed, the topology is 
stored in the Context component, thus, the network administrator can proceed with service 
instantiation as per Table 6. In this demonstration example, the service endpoints are “SW1-port4” 
and “SW8-port4”, thus, we formulate the JSON accordingly. 

 
Figure 53. Policy-driven service restoration testbed. 

4.3.5.3. Workflow 
For this scenario to start, we assume two workflows as prerequisites. First, a topology provisioning 
workflow (see Figure 54) that ensures that all P4 devices are deployed, and the links between these 

Table 7. Example network policy for bounding the end-to-end latency of a service below 4ms. The action simply triggers path 
re-computation, without additional configuration needed. 

{ 
    "service_uuid": "d5261206-1047-00345", 
    "policy_rule": { 
        "priority": 0, 
        "condition_list": [ 
            { 
                "kpi_id": "E2E_LATENCY", 
                "operator": "GREATER_THAN", 
                "kpi_value": 4000 // in us 
            } 
        ], 
        "action_list": [ 
            { 
                "action": "RECOMPUTE_SVC_PATH", 
                "action_config":[] 
            } 
        ] 
    } 
} 
 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 58 of 155 

 

devices are established. Second, a service provisioning workflow (see Figure 55) ensures an end-to-
end connectivity service is established between client and server through the various P4 switches. 

 
Figure 54. Device and link provisioning as a pre-requisite for policy-driven service restoration. 

 
Figure 55. Service creation as a pre-requisite workflow for policy-driven service restoration. 

Given that the workflows depicted in Figure 54 and Figure 55 are pre-established, we demonstrate a 
policy-based service restoration workflow comprising various steps, highlighted in blue in Figure 56. 
An input policy - similar to the example shown in Table 7 - bounds the end-to-end latency of the 
deployed service between client and server within a certain threshold. A probe is deployed to monitor 
the end-to-end latency and report it to the Monitoring component. Initially, we assume the service is 
established according to the red path shown in Figure 56. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 59 of 155 

 

 
Figure 56. Policy-driven service restoration demonstration scenario. 

To validate the policy, we explicitly introduce excessive link latency (using Linux traffic control) along 
the service path as shown by step 1 in Figure 56. The Monitoring component captures this state change 
in step 2 and raises the alarm for potential policy violation, which is caught by the Policy component 
in step 3. This event causes the execution of a policy action, which jointly involves a service update 
(step 4) through path re-computation (step 5). When the Path Computation component returns a new 
service path (e.g., the green path in Figure 56), Service compiles a list of device configuration 
commands for establishing the new path followed by another list of commands for decommissioning 
the old path. These commands are translated into actual P4 flow rules by the SBI, before being 
enforced to the data plane via the P4Runtime API (step 6). In the scenario in Figure 56, TeraFlowSDN 
can pick any path between client and server; thus, the red and green paths in Figure 56 are illustrative. 
The workflow diagram shown in Figure 57 captures the exchange of messages among the key 
TeraFlowSDN components participating in this scenario. 

 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 60 of 155 

 

 
Figure 57. Policy-driven service restoration workflow. 

4.3.5.4. KPI Measurements 
An indicative view of the TeraFlowSDN dashboard for this scenario is visualized in Figure 58. This 
dashboard was used for the proof-of-concept demonstration of this TeraFlowSDN functionality 
[HPSR23]. This dashboard visualizes runtime end-to-end service latency data over time. A latency 
threshold of 10ms is drawn as a horizontal line, highlighted in orange. When latency exceeds this 
threshold, the policy is triggered, and the state (i.e., state ENFORCED in Figure 58) of this policy is 
visualized atop the graph in red. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 61 of 155 

 

 
Figure 58. Dashboard of the Policy-driven service restoration workflow. 

Table 8 summarizes the KPIs that TeraFlowSDN preserves during the service restoration workflow 
presented in this section. This workflow focuses on the end-to-end latency of the connectivity service 
that is deployed atop the P4 devices. A policy is crafted to monitor the end-to-end latency at runtime; 
in the case that the latency exceeds a certain threshold, TeraFlowSDN ensures that the service is 
updated to keep the end-to-end latency within the desired window. 

Table 8. Policy-based service restoration KPIs. 

Name Value or 
Value Range 

Comment 

End-to-end service 
latency 

5ms (indicative) The actual value depends on the topology and hardware 
adopted. For example, hardware switches are faster than 
software switches, while software switches perform better 
on high-end Commercial off-the-Shelf (COTS) hardware. 
Therefore, this value may vary.  

Reaction time to 
ensure SLA 

~4s The reaction time can be further broken down into RPC calls 
(approx. 1s) and path recalculation time (approx. 3s). It 
should be noted that the path recalculation time is 
dependent on the topology. Larger topologies may require 
more time than smaller topologies to find new paths. 

4.3.6. Energy-Efficient Path Computation 

This section aims to validate and evaluate the performance of the Path Computation component when 
dynamically handling network connectivity services relying on a devised energy-aware routing (EAR) 
algorithm. The proposed algorithm is based on the traditional K-shortest-paths mechanism (K-SP), 
based on the Yen algorithm. Upon receiving a network connectivity service request (between a pair 
of network nodes with specific requirements in terms of bandwidth and maximum tolerated end-to-
end latency) the implemented algorithm seeks for the spatial path (i.e., nodes and links) that fulfils 
the request needs while minimizing the overall network power consumption. The conducted 
evaluation benchmark the EAR algorithm with the K-SP algorithm, where the latter routes connectivity 
services to meet their requirements whilst minimizing the overall network resource utilization (i.e., 
link bandwidth). The performance comparison is carried out upon dynamic creation and deletion of 
network services with heterogeneous bandwidth (data rates) and latency demands. The performance 
indicators used for comparison are: the blocked bandwidth ratio, the average amount of consumed 
network energy, the average network throughput, and the energy efficiency (defined as the consumed 
network energy over the average network throughput). 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 62 of 155 

 

4.3.6.1. Transport Network Energy Model 
Before tackling the implemented EAR algorithm, the transport network topology, and the 
experimental scenario/assumptions to generate the network connectivity requests, it is worth briefly 
reviewing the adopted energy network model, which was thoroughly discussed in D4.2. This energy 
model has been traditionally used and applied within packet-switched transport networks. The 
consumed network energy is linked to two main contributors: i) devices (i.e., switches or routers) and 
ii) their ports when transmitting and receiving data packets. This is why, at any given time, the 
consumed network energy is tied to the amount of “running” network connectivity services and the 
amount of data traffic being transported. In this context, network devices are based on the well-used 
store-and-forward switch architecture (see D4.2). This architecture defines a network node as formed 
by a pool of line-cards containing a determined number of input and output ports. Each port has a 
Ternary Content Addressable Memory (TCAM) circuitry which allows storing and forwarding of data 
packets. Thereby, the contribution of the consumed energy of an active port is proportional to the 
volume of the data traffic being processed/stored/routed. The mathematical expressions modelling 
the relationship between energy consumed and transmitted data rate are reported in D4.2. On the 
other hand, a powered-up device (switch) also increases the consumed network energy by the so-
called environment contribution, e.g., the fans used for cooling the device. Regardless of the data 
traffic being processed by the device/switch, there is an idle consumed energy because the node is 
powered up, ready to route/switch connectivity services.  

As described in D4.2 Section 5, an additive expression can calculate the total network energy 
consumption. This expression sums up the contribution of all the active devices and the energy 
consumption contribution bound to all the device ports that transport data traffic. Therefore, the most 
straightforward approach to reduce network energy consumption is to serve arriving connectivity 
service requests through the lowest number of active devices and ports.  

4.3.6.2. Workflow 
Figure 59 depicts the workflow to process an incoming network connectivity service request, select 
the network resources to accommodate the request and eventually configure the involved network 
devices within the TeraFlowSDN controller’s Components. Specifically, once the Service component 
receives a network connectivity service from a North-Bound Interface (NBI), it delegates to the Path 
Computation Component to find a feasible path (i.e., devices and links) which meets the service 
requirements (i.e., bandwidth and latency). The Path Computation component hosts a pool of 
algorithms to be executed targeting diverse objectives, e.g., EAR, simple shortest path computation, 
K-SP, etc. The algorithm to be executed can be notified in the request sent by the Service to the Path 
Computation component. Prior to triggering the algorithm execution, the Path Computation 
component retrieves the Context information, i.e., network topology (devices and links) and status of 
the resources (e.g., available link bandwidth). The result of the Path Computation component is then 
sent back to the Service component to handle the allocation of the selected resources via the SBI 
component, which properly programs the devices (and their ports/links) forming part of the computed 
path.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 63 of 155 

 

 

Figure 59: Path Computation serving Network Connectivity Services workflow. 

Observe that the workflow is indistinctly applied for the experimental results discussed below 
regardless of the executed Path Computation algorithms (i.e., either EAR or K-SP). 

4.3.6.3. Considered Path Computation Algorithms 
The devised EAR algorithm is a heuristic based on a modified K-SP algorithm which pursues two 
prioritized objectives: O1) to fulfil the service requirements and O2) to reduce the overall network 
energy consumption. To this end, it explores K shortest paths to fulfil O1 and selects the one which 
leads to the lowest network energy consumption. To that end, every k shortest path is found using an 
additive link metric, which is attempted to be minimized. In this energy-efficiency context, this metric 
is referred to as power_path, and it includes 1) the static device idle power and 2) the energy 
consumed on each used port/link. For the latter, recall that for every candidate device port (link) the 
computed energy consumption is proportional to the aggregated data traffic volume from the existing 
network connection services routed through that port. Additionally, every port is featured by an 
energy_consumption_parameter. This is a vendor-defined characteristic which is expressed in 
nJoules/bit. Bearing this in mind, given a port transmitting/receiving a data rate (in Mb/s) of dataRate, 
its energy consumption can be analytically approached as: energy_consumption_parameter x 
dataRate.  

As outlined above, the EAR algorithm aims to reduce network energy consumption. To achieve this 
goal, it is recommended to accommodate new incoming network connectivity services on top of the 
existing transport infrastructure made up of active devices and links rather than just powering up 
network elements which are in sleep mode (i.e., powered off since no active connections are routed 
through them).  We are assuming that the TeraFlowSDN controller is enabled with a mechanism 
through which it sets network nodes to sleep mode. Once the TeraFlowSDN controller realizes that no 
network connectivity service is traversing a node, it could handle the programmability 
operations/commands to enforce sleeping down a selected node. We do insist that this mechanism is 
an assumption made for the EAR algorithm operation. In other words, this capability is not 
implemented in the TeraFlow SDN controller when writing this contribution but is planned to be done 
in upcoming releases. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 64 of 155 

 

 With the above considerations and assumptions, the EAR algorithm follows a two-step computation: 

1. Firstly, it attempts to route a connection request over the active subset of the network 
infrastructure, i.e., only using active devices and ports. To do that, it triggers the K-SP to 
minimize the power_path and select the k path attaining the lowest end-to-end power 
consumption. If two or more k paths have the same end-to-end power_path, the tie is broken, 
choosing the path offering the lowest end-to-delay. If the tie remains, the path having the 
largest available bandwidth on the most congested link is selected. Otherwise, a path is 
randomly decided. 

2. Secondly, if the routing over the active network subset fails, all the network devices and ports 
(i.e., both powered up and off) are considered. Then, the same criteria as above are followed, 
i.e., out of the k computed feasible paths, the one with the lowest end-to-end path energy is 
chosen; If there is tie between two or more paths, as above, the delay and the available 
bandwidth policies are adopted. 

For the sake of comparison, a regular K-SP algorithm is used where the computed k paths are sorted 
by i) the number of hops, ii) end-to-end delay, and iii) the available bandwidth. Note that with this 
algorithm, no end-to-end energy path minimization is targeted. Once the path is chosen, the resulting 
power_path it is computed for comparison purposes with the EAR approach. 

4.3.6.4. Experimental Scenario: Topology, Connectivity Service Request, 
and Performance Metrics 

Transport Network Topology 

The transport network topology to conduct the performance evaluation is shown in Figure 60. This is 
an emulated transport network formed by 14 devices (packet switches), and 42 bidirectional links. 
Devices’ ports are interconnected via bidirectional point-to-point links with a total transport capacity 
of 10 Gb/s. Different network connectivity services can be transported through the same link 
exploiting the statistical multiplexing capability of packet-switched networks if the maximum link 
transport capacity (i.e., 10 Gb/s) is not exceeded.  

The link delay is labelled at each edge depicted in the network topology and expressed in ms. For the 
energy-related parameters, it is assumed that each “powered-up” device does consume an idle power 
of 90 W. On the other hand, all the ports are characterized by a homogeneous 
energy_consumption_parameter set to 0.6 x 10^-9 Joules/bit.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 65 of 155 

 

 

Figure 60: Emulated Transport Packet-Switched Network Scenario. 

Dynamic Generation/Termination of Network Connectivity Service Requests 

Network connectivity services are assumed to dynamically arrive and depart from the network being 
handled by the TeraFlowSDN controller component and workflows to conduct an exhaustive 
comparison of both EAR and K-SP. Creation and termination requests arrive to the TeraFlowSDN 
controller via the NBI Component (e.g., triggered by an external OSS/BSS). The arrival of the service 
requests follows a Poisson model whose mean inter-arrival time is set to 10 s. To achieve different 
traffic intensities, the duration of the service requests follows an exponential function whose mean 
Holding Time (HT) is varied. For each traffic intensity, 20k connection requests are generated. 

All the requested network connectivity services are point-to-point unidirectional connections whose 
endpoints are uniformly chosen among the following nodes: S1, S2, S3, and S12. In other words, all 
requested connectivity services interconnect any pair of those nodes. The rest of the network nodes 
(i.e., S4, S4, S6, …) operate as transit nodes to enable the physical connectivity for any service. Note 
that S1, S2, S3 and S12 can act as a transit node if the connectivity service does not initiate and 
terminate on such a node. The requested bandwidth is uniformly selected from a discrete set [600, 
1000, 2000] Mb/s. Finally, each request's latency requirement is randomly chosen from the set [8, 10, 
12] ms. 

Performance Metrics 

The comparison of the two algorithms is done by relying on the following performance metrics: 

• The blocked bandwidth ratio (BBR): this metric indicates the amount of bandwidth (b/s) that 
cannot be accommodated over the total requested bandwidth for all the network connectivity 
services. The lowest the BBR, the better an algorithm performs in successfully serving network 
connectivity service requests. 

• Average Consumed Network Energy (in kW): this metric accounts for the average amount of 
energy consumed by the network in operation (considering all the network devices and links’ 
energy consumption). Since network connectivity services dynamically arrive and departure 

S1

S2

S3

S4

S13

S14

S5

S6

S7S8

S9

S10

S11
S12

1.45
1.8

1.8
0.8 0.8 2.95

1.5

1.751.55
1. 2

1. 1

1.7

1.7

2

1.6

1.75

1

0.7

1

0.8 2

1. 1

PathComp

NBI

ContextService

SBI

OSS/BSS



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 66 of 155 

 

from the network, the metric is iteratively computed whenever a network event happens. A 
network event refers to either a new connectivity service is set up (i.e., link bandwidth is 
allocated) or when an existing service terminates (i.e., resources are released). Thus, let's 
assume that a new connection service is established at time t1. Then, the whole network's 
energy consumption is computed considering all the active services. The result is referred to 
as NetwPower_t1. Next, another event takes place at time t2, where t1 < t2. Note that the 
network's energy consumption between t1 and t2 period is NetwPower_t1. However, at t2, 
NetwPower_t2 needs to be calculated to account the resource variation. Consequently, to 
obtain the average network energy consumption, all the individual network resource 
variations are taken into consideration being weighted by their respective durations through 
a specified observation time.   

• Average Throughput (in Gb/s): this metric determines the average amount of data traffic 
volume being transported in the network for all the connectivity services. Likewise, the 
average consumed network energy, the throughput metric is re-computed iteratively upon 
services are established and removed.  

4.3.6.5. Numerical Results 
The numerical results comparing the performance attained by both EAR and K-SP algorithms, executed 
at the TeraFlowSDN controller Path Computation Component, are depicted in Figure 61. It is worth 
mentioning that the obtained results exclusively focused on low-medium traffic intensity. In these 
traffic conditions, adopting a strategy to save energy consumption has larger flexibility (i.e., the 
number of feasible routing path candidates) to enhance the overall network energy-efficiency. 
However, as traffic intensity grows (i.e., HT is increased), the routing algorithms start operating with 
resources being more occupied. This reduces the candidate set of feasible paths for any incoming 
service request. Consequently, the differences between EAR and K-SP are less noticeable, since the 
primary objective of whatever algorithm is first to accommodate services fulfilling their requirements. 

For both the EAR and K-SP strategies, K is set to 5. Figure 61.a shows the BBR for average HT ranging 
from 1000 to 2000. Indeed, K-SP routes/distributes traffic services more uniformly over the network. 
This, in turn, leads to favour the establishment of the upcoming service requests. On the other hand, 
EAT attempts to accommodate traffic services over the active network elements, which may congest 
some specific links and nodes. Consequently, adopting the K-SP algorithm makes it more likely to find 
paths with enough bandwidth to accommodate the service needs than using the EAR algorithm. The 
behavior of both approaches has a significant impact on the resulting BBR. As shown, K-SP achieves a 
lower BBR (enhanced service provisioning) when compared to the EAR algorithm.   

As mentioned above, the EAR algorithm focuses on reducing the overall network energy consumption. 
Thereby, it is possible that for the received service requests the EAR algorithm may choose paths 
which traverse more devices and links than the K-SP algorithm. The selected EAR path devices and 
links tend to be already active (i.e., powered up) which do reduce the overall network energy. 
Conversely, the K-SP does not consider whether a device or link is already being used by existing 
services since its purpose is to reduce the overall resource consumption. Consequently, the EAR 
algorithm does reduce the energy consumption at the expenses of accommodating the services 
through larger number of hops, i.e., occupying more link bandwidth. This creates the well-known 
trade-off between resource utilization and energy-efficiency objectives. Observe that the 
enhancement of the K-SP in the BBR concerning the EAR strategy remains practically constant for all 
the HTs.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 67 of 155 

 

In Figure 61.b, for the same HT values, it is shown the average network energy consumed by both EAR 
and K-SP algorithms. As already discussed, EAR does reduce the network energy compared to K-SP 
solution. This performance difference is more relevant at lower HT values. The reason for this is that 
resources are less occupied; thus, it is more likely that active network elements (devices and links) can 
be re-used rather than powering up new ones. However, as HT grows, resources become more 
occupied, and fulfilling the service needs is more complex. Then, more devices and links need to be 
powered up to deploy the network services, increasing the overall network energy consumption. In 
other words, we observe that the improvement attained by the EAR concerning K-SP on the network 
energy consumption tends to disappear as HT grows.  

Finally, note that the average throughput (in Gb/s) is practically the same for both EAR and K-SP 
strategies. Macroscopically, both solutions tend to transport the same amount of data traffic (in Gb/s) 
since the BBR difference is not very high. To conclude, for the considered HT values and evaluation 
scenario, EAR algorithm allows reducing the overall network energy consumption achieving similar 
aggregated throughput when compared to traditional K-SP approach. Only the BBR accomplished by 
EAR is slightly worsened to the one attained by the K-SP algorithm.   

 

Figure 61: EAR and K-SP performance evaluation: a) BBR; b) av. Consumed Network Energy (in kW); c) av. throughput (in 
Gb/s) 

0

0.005

0.01

0.015

0.02

0.025

BB
R

HT

EAR

K-SP

1.25

1.27

1.29

1.31

1.33

1.35

Av
. N

et
w

or
k 

 P
ow

er
 (k

W
)

HT

EAR

K-SP

23

28

33

38

43

48

Av
. T

hr
ou

gh
pu

t (
G

b/
s)

HT

EAR
K-SP

a. b.c.



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 68 of 155 

 

Name Value Comment 
Energy 

< 30% 

In a dynamic traffic environment where connection 
services arrive and departure, adopting routing algorithms 
to achieve reducing energy consumption depends notably 
on diverse factors:  

1. the transport network (e.g., nodal degree, 
physical connectivity, link characteristics, etc.)  

2. the service requirements in terms of bandwidth, 
bandwidth + latency, etc. 

3. the network energy model (i.e., device and/or 
port energy consumption).  

For a very specific scenario, we have evaluated in the 
TeraFlow SDN controller Path Computation, the EAR 
algorithm to contribute to reducing the overall end-to-end 
energy consumption without notably degrading other 
performance metrics such as the average BBR or 
throughput. The devised EAR relies on a heuristic which 
favours the routing through active network elements 
rather than powered up devices and/or ports as much as 
possible. The conducted study paves the way to continuing 
working in the TeraFlow SDN controller to become a 
controller which adopts energy-efficiency objectives. In 
this regard, next steps are envisaged to tackle more 
advanced algorithms such as re-allocating the established 
services to enforce powering-down network elements 
and/or exploiting the benefits of suing machine learning 
trained models to attain better trade-offs between service 
provisioning and energy reduction.  
  

4.4. Scenario conclusions 

As a conclusion, we provide a summary of measured KPIs in Table 9, we analyze them, and provide 
further steps. 

Table 9 Scenario 1 summary of measured KPI 

KPI Target Validation results 
Device on-boarding time < 50ms 100-400 ms. The target was too optimistic, but it does 

not have a real impact since on-boarding is performed 
only during the initialization phase. The current on-
boarding procedure implies multiple interactions with 
the underlying database. In the next releases, we plan 
to optimize those interactions further to reduce the on-
boarding time. 

Service setup delay < 50ms The measured overhead using emulated devices is 
100ms. This deviation is detailed at the end of this 
section. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 69 of 155 

 

Service teardown delay < 50ms The measured overhead using emulated devices is 
90ms. Similarly, as with service setup delay, in future 
releases, we plan to review the overall Service teardown 
workflow to improve the internal finite state machine, 
identify unneeded database interactions, and add 
support for parallel device deconfiguration. 

Data rate  100G Data rate is able to be shown in Grafana. Available data 
rates are dependent on the topology and network 
equipment, so we are limited to the transponders 
available in whiteboxes (e.g., 100G). 

End-to-end service latency 5ms 
(indicative) 

The actual value depends on the topology setup. For 
example, hardware switches are faster than software 
switches, while software switches perform better on 
high-end Commercial off-the-Shelf (COTS) hardware. 
Therefore, this value may vary. The plan for this scenario 
is to use a software-based P4 topology atop Mininet, 
measure end-to-end service latency, and trigger service 
restoration using an appropriate threshold. 

Reaction time to ensure 
SLA 

~4s The reaction time can be further analyzed on RPC calls 
(~1s) and path recalculation time (~3s). It should also be 
noted that the path recalculation time depends on the 
topology. Larger topologies may require more time than 
smaller topologies to find new paths. 

Resource efficiency 
reduction factor 

2 L2VPN is of 2,32 at offered load of 5k Erlang (peak 
resource efficiency). 
L3VPN is of 6,4 at offered load of 7k Erlang (peak 
resource efficiency).  

Energy < 30% The devised EAR relies on a heuristic favouring the 
routing through active network elements rather than 
powered-up devices and/or ports as much as possible. 
The conducted study paves the way to continuing 
working in the TeraFlow SDN controller to become a 
controller which adopts energy-efficiency objectives. In 
this regard, next steps are envisaged to tackle more 
advanced algorithms such as re-allocating the 
established services to enforce powering-down network 
elements and/or exploiting the benefits of suing 
machine learning trained models to attain better trade-
offs between service provisioning and energy reduction.  

 

The deviation in Service setup delay from the target comes from multiple sources, notably, the path 
computation time and the overall service setup workflow. 

Path Computation component: 

The Path Computation backend was contributed “as it was” to the TeraFlowSDN controller. No effort 
was planned for (re)designing a Path Computation component, so we had to take the easy step of 
implementing a front-end component connecting the TeraFlowSDN components with the backend. As 
a result, the front-end needs to convert the requests received from the TeraFlowSDN components 
into valid requests for the backend, and vice-versa with the replies. Besides, the backend implemented 
a completely custom path computation engine. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 70 of 155 

 

In future releases, we plan to implement the following improvements related to the Path Computation 
component: 

• Combine the front-end and back-end modules of the Path Computation component to reduce 
network latencies and remove the current data conversion needs. 

• Migrate the current path computation engine to a performant and deeply tested Graph library 
(e.g., Boost Graph Library) to accelerate the computations and improve its extensibility. 

Service component: 

The Service component implemented a generic workflow for setting up connectivity services and 
enabled specialized behaviors per service type through Service Handlers. The current scheme requires 
several interactions with the underlying databases and sequential device configurations. 

In future releases, we plan to implement the following improvements related to the Service 
component: 

• Review the overall Service setup workflow to identify unnecessary database interactions and 
improve the internal finite state machine used to manage the connectivity services. 

• Implement support for a new parallel device configuration engine. 

 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 71 of 155 

 

5. Scenario 2: Inter-domain 
This section introduces the second scenario explored within the TeraFlow project. The scenario 
addresses the inter-domain deployment of transport network slices. This scenario is operator-led, 
emphasising the advancement of transport networks through the collaborative orchestration of 
multiple domains. Key aspects considered in this scenario include scalability and traceability, aiming 
to ensure efficient and manageable operations across diverse domains. 

First, we introduce the scenario. Second, we present its alignment with TeraFlowSDN architecture. 
Third, we present the performance evaluation. Finally, we provide a summary of scenario conclusions 
and future steps. 

5.1. Scenario Introduction 

 

Figure 62 Scenario 2: Inter-domain 

Several challenges must be addressed when deploying Cooperative, Connected, and Automated 
Mobility (CCAM) services over a distributed edge and cloud infrastructure. These challenges involve 
unified management of computing, storage, and networking resources, multi-domain networking, and 
inter-domain slicing between network operators while maintaining data confidentiality. The 
TeraFlowSDN Controller plays a crucial role in overcoming these challenges. 

First, achieving unified resource management requires the TeraFlowSDN Controller, in collaboration 
with an NFV orchestrator like OSM, to deploy integrated services. This involves provisioning cloud and 
edge computing resources and establishing connectivity between them. Simultaneously, the 
optimization of cloud and network resources at the packet and optical layer, is carried out. 

Second, the issue of multi-domain networking arises, where resources in each domain must be 
allocated and combined to create an end-to-end service. To address this, the TeraFlowSDN Controller 
deploys multiple per-domain slice instances and orchestrates their composition to form complete 
transport network slices spanning multiple domains. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 72 of 155 

 

Finally, when different domains belong to separate network operators, mechanisms for inter-domain 
slicing while maintaining the privacy of internal network details become essential. The TeraFlowSDN 
controller incorporates a Distributed Ledger Technology (DLT) component based on blockchain 
technologies. This ensures that data exchanged between per-domain TeraFlowSDN instances can be 
kept confidential, if required, while enabling inter-operator collaboration. 

An illustrative representation of the inter-domain scenario is depicted in Figure 62. The scenario 
encompasses diverse packet and optical transport networks catering to metropolitan and core 
segments. These networks facilitate the connectivity among distributed cloud and edge computing 
infrastructures. In the context of the CCAM services, deployment options are available at various 
locations, including edge nodes (such as cell sites, street cabinets, and lampposts) where micro-DCs 
can be established. Small-DCs in central offices also offer low to moderate computational capacity and 
low response times. At the same time, core-DCs within the core network provide high-computational 
capacity and moderate response times. 

To ensure effective management and control, the transport and cloud infrastructures are partitioned 
into distinct domains, each governed by an instance of the TeraFlowSDN Controller. While addressing 
scenarios involving uplink-heavy and latency-sensitive requirements, emphasis is placed on Over-the-
Air (OTA) software updates. These updates involve the wireless transmission of software 
enhancements from car companies to vehicles. Given the dynamic nature of these updates, an inter-
domain scenario is introduced to enable the provisioning of moving connectivity services based on the 
positioning of network elements. The interaction between the Transport Network Slice and its 
endpoints with neighboring access and service edge SDN control domains becomes a focal point for 
testing, experimentation, and exploration within this inter-domain setting. 

5.2. Alignment with TeraFlowSDN architecture 

 

Figure 63. Scenario 2 TeraFlow instantiation in a single domain 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 73 of 155 

 

Figure 63 shows the single domain instantiation (configuration and TeraFlowSDN templates) of the 
TeraFlowSDN controller. Interdomain connectivity will be provided either with DLT or the inter-
domain components between multiple instances of the TeraFlowSDN controller. 

This scenario involves the following components: 

• NBI 
• Load Balancing 
• AutoScaling 
• Self-healing 
• Inter-domain 
• Web UI 
• Slice 
• DLT 
• Policy 
• Monitoring 
• Service 
• Context 
• Path Computation 
• SBI 

Use cases described in D2.2 Annex I of interest for testing the validity of these components and apps 
are: 

• Operate TeraFlow at Scale 
• Host tracking 
• Flow Descriptors for IoT Services  
• Using DLT for Inter-Domain Service Provisioning and SLA Violation Detection 
• E2E Routing and SLA Violation Detection 

5.3. Performance Evaluation 

This section presents the performance evaluation performed for the different workflows composing 
scenario 2. The workflows have been introduced and detailed in D5.2, Section 6.5. In this deliverable, 
we focus on the performance evaluation of the workflows. First, we introduce the testbed setup used 
by the partners to evaluate the performance of the workflows. Then, we present the performance 
evaluation of each workflow. 

5.3.1. Testbed Setup 

The setting envisioned to test the use cases belonging to this scenario involves the following partners 
and facilities: 

• CTTC contributes with the ADRENALINE testbed® providing an SDN/NFV packet/optical 
transport network and edge/core cloud infrastructure for 5G and IoT services.  

We will use the TAPI-enabled OLS controller and the underlying optical transport network 
infrastructure to validate this scenario. Moreover, CTTC has two whiteboxes cell-site gateways (CSGW) 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 74 of 155 

 

[EDG22] with IP Infusion OcNOS available and controlled using TeraFlowSDN (Figure 64 
Interconnected CSWGs at CTTC Testbed). 

 

Figure 64 Interconnected CSWGs at CTTC Testbed 

• NEC contributes to the blockchain infrastructure providing the means to interconnect 
different instances of the TeraFlowSDN for the different domains. More details are provided 
in D4.2 Section 4.1. 

• Telenor Telenor’s testbed includes 1x HPE Proliant DL360 Gen10 server and 2x Edge-Core 
CSR320 (AS7316-26XB) whitebox switches, which are interconnected by the FS S5860-20SQ 
switch through 10G links, as shown in Figure 65. Telenor's testbed. The server features 2x 
Intel(R) Xeon(R) Gold 6238R CPUs with 256 GB of RAM. The server runs Ubuntu 20.04.6 LTS 
Server OS and MicroK8s v1.24.13. The TeraFlowSDN controller runs on top of MicroK8s. The 
two Edge-Core whiteboxes are directly connected back-to-back through a 40G link. 

 

Figure 65. Telenor's testbed 

• ADVA contributes the Ensemble Activator for whitebox devices in the Telefonica Future Lab 
and for Telenor, offering IP routing capabilities with OpenConfig APIs. 

The different partner premises will be connected utilizing secure VPN tunnels forming a distributed 
testbed where the inter-domain scenario will be assessed. The setup will comprise two domains 
controlled by two different instances of the TeraFlowSDN Controller. 

 

 

xe4:10Gbps 
xe12:10Gbp

 

ce0:100Gbp
 

ce0:100Gbp
 

eth0: MGMT 

eth0: MGMT 

HPE Proliant DL360 Gen10

FS S5860-20SQ

Edge-Core AS7316-26XB

…

Edge-Core AS7316-26XB



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 75 of 155 

 

5.3.2. Inter-domain Provisioning using Transport Network Slices with SLA 

This section details the provisioning of inter-domain transport network slices with SLA. To accurately 
measure the time it takes to set up the inter-domain transport network slice using TeraFlowSDN, we 
used emulated devices to exclude the time taken to configure network equipment. This approach 
ensures precise accounting of TeraFlowSDN's contribution. 

The experiment is based on the components and workflows reported in [OECC22] that have been 
upgraded to TeraFlowSDN Release 2.1 and improved with inter-domain SLA propagation between 
domains. The overall experiment has been carried out on the distributed testbed interconnecting CTTC 
and Telenor Norway premises. 

We configured a TeraFlowSDN instance as domain D1 (tfs-dom1) on the CTTC side, representing a 
telecom infrastructure managed by one network operator. We then configured a second TeraFlowSDN 
instance as domain D2 (tfs-dom2) on Telenor side in charge of managing a transport network. 

Figure 66 and Figure 67 depict, respectively, the topologies of domains D1 and D2. On one side, the 
telecom infrastructure in domain D1 is composed of 2 DCs (DC1 and DC2), and a Core network 
composed of 5 emulated packet routers that are managed locally by the network operator in charge 
of domain D1. On the other hand, domain D2 comprises 3 emulated packet routers forming a transport 
network managed by a remote network operator. Note that border endpoints in Domain D2 are in 
routers R2 and R3 that are connected, respectively, to R4 in D1 and DC2. DC1 is directly connected to 
the Core network through router R4; however, to reach the core network, DC2 needed to connect 
through domain D2. 

 
Figure 66. Domain 1 – Network Topology 

 

 
Figure 67. Domain 2 – Network Topology 

 

The descriptor used to request the inter-domain DC-to-DC transport network slice is listed in Table 10. 
It provides the details for creating a transport network slice between DC1 and DC2, constraining the 
end-to-end latency and the desired capacity, and defining the Maximum Transfer Unit (MTU) and 
VLAN tags requested by the customer. Note that no slice type is specified; the TeraFlowSDN controller 
infers that a L2VPN needs to be created, given no IP addresses are specified in the request. 

Table 10. Inter-domain slice descriptor 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

{"slices": [{ 
   "slice_id": { 
      "context_id": {"context_uuid": {"uuid": "admin"}}, 
      "slice_uuid": {"uuid": "idc-l2-slice"} 
   }, 
   "slice_endpoint_ids": [ 
      {"device_id": {"device_uuid": {"uuid": "DC1"}}, "endpoint_uuid": {"uuid": "int"}}, 
      {"device_id": {"device_uuid": {"uuid": "DC2"}}, "endpoint_uuid": {"uuid": "int"}} 
   ], 
   "slice_constraints": [ 
      {"sla_capacity": {"capacity_gbps": 10.0}}, 
      {"sla_latency": {"e2e_latency_ms": 15.2}} 
   ], 
   "slice_config": {"config_rules": [ 
      {"action": 1, "custom": { 
         "resource_key": "/settings", "resource_value": {"mtu": 1512, "vlan_id": 300} 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 76 of 155 

 

17 
18 
19 

      }} 
   ]} 
}]} 

 

We triggered the inter-domain slice setup by submitting the inter-domain slice descriptor through the 
WebUI of tfs-dom1 controller. Figure 68 illustrates the 3 slices (1 main slice + 2 sub-slices) created in 
tfs-dom1. The WebUI forwards the request to the Slice component of tfs-dom1 controller. The Slice 
component computes a simple shortest path and realizes it needs to traverse a remote network 
domain. Thus an inter-domain slice needs to be created. As a result, the Slice component delegates to 
the Inter-domain component the creation of the slice. The inter-domain component first creates an 
end-to-end inter-domain slice (slice idc-l2-slice in Figure 68). It performs an end-to-end path 
computation to identify the sequence of network devices in domain D1 and the remote domain that 
needs to be traversed. The details of slice idc-l2-slice are reported in Figure 69. 

 

Figure 68. Slices in tfs-dom1 

For the local network devices, it creates a local slice for domain D1 (idc-l2-slice:local:D1 in Figure 68). 
The local slice inherits the SLA constraints and the configuration rules defined in the end-to-end slice. 
The endpoints for the local slice are inferred from the border endpoints in domain D1 that result from 
the end-to-end path computation. The setup of this local slice is then delegated to the Slice 
component that triggers the creation of the appropriate connectivity services and the configuration 
of the underlying local network devices using the appropriate and available control protocols. 

 

Figure 69. Detail of Inter-domain slice created in tfs-dom1 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 77 of 155 

 

A screenshot of local slice idc-l2-slice:local:D1 is not provided because it is almost equal to idc-l2-slice. 
The only difference is that the local slice has no sub-slices, but it has a sub-service. The sub-service 
created in tfs-dom1 is illustrated in Figure 70, detailing the path through the network equipment in 
D1. 

 

Figure 70. Detail of the service created in tfs-dom1 

For each remote network domain to be traversed, the Inter-domain component creates a remote slice 
(idc-l2-slice:remote:D2 in Figure 68). Again, the remote slices inherit the SLA constraints and the 
configuration rules defined in the end-to-end slice. Besides, the endpoints for each remote slice are 
inferred from the border endpoints in the corresponding domain that result from the end-to-end path 
computation. Inter-domain component in tfs-dom1 interacts with the Inter-domain components in 
the remote TeraFlowSDN controllers (e.g., only tfs-dom2 in this experiment) and delegates to them 
the creation of the remote slice(s). 

When the Inter-domain component in tfs-dom2 receives the request, it identifies it is a local slice 
requested by a remote domain, and delegates to the Slice component the creation of the slice (idc-l2-
slice:remote:D2 in Figure 71, details in Figure 72), the appropriate connectivity services, and the 
configuration of the underlying network devices using the appropriate and available control protocols. 

 

Figure 71. Slices in tfs-dom2 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 78 of 155 

 

 

Figure 72. Detail of the slice created in tfs-dom2 

Note that the Service component needs to perform a path computation local to domain D2 given that 
the tfs-dom1 controller only knows the border endpoints of domain D2, but not the internal details 
on the topology of domain D2. The resulting sub-service created in tfs-dom2 and the selected path 
through D2 are illustrated in Figure 73. 

 

Figure 73. Detail of the service created in tfs-dom2 

When the Inter-domain component in tfs-dom2 completes the creation of the slice, it replies with the 
status of the slice to the Inter-domain component in tfs-dom1, (i.e., status=ACTIVE). The Inter-domain 
component in tfs-dom1 assigns the created local and remote slices as sub-slices of the main end-to-
end inter-domain slice requested by the user, as depicted in the bottom part of Figure 69. After all the 
local and remote sub-slices are created and activated, the Inter-domain component activates the main 
end-to-end inter-domain slice. It reports the result to the requesting user through the WebUI, or the 
requesting OSS/BSS through the NBI component. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 79 of 155 

 

In this experiment, we accounted for the setup time of an inter-domain slice in our distributed testbed. 
To be fair, we accounted the Round Trip Time (RTT) through the VPN between tfs-dom1 at the CTTC 
premises (Spain) and tfs-dom2 at the Telenor premises (Norway). The results are detailed in Table 11.  

Table 11. CTTC-TFS to TNOR-TFS RTT through the VPN connection 

Min Avg Max StDev 
63.20 ms 63.49 ms 63.90 ms 0.18 ms 

 

To complement the experimental validation, in Figure 74 we provide the Wireshark capture detailing 
the tfs-dom1 inter-domain – to – tfs-dom2 inter-domain component interactions and the execution 
times (in seconds) for the operations. Note that 3 operations are illustrated: i) initial mutual 
authentication phase between domains (done during the onboarding of the network topologies in 
each TFS controller), ii) the Lookup Slice request used to check if the slice already exists in the remote 
domain, and iii) the slice creation in the remote domain. 

 

Figure 74. Wireshark Capture inter-doman slice 

This Wireshark capture includes the execution time per operation perceived in the tfs-dom1 
controller. It is worth noting that these execution times include the VPN RTT as reported in Table 11, 
thus, in Table 12 we provide the values including and extracting the VPN RTT contribution. For this 
calculation, we assumed an average RTT of 63.5 ms, given the standard deviation measured is very 
small (180 us). 

As might be expected, the mutual authentication is almost immediate as it only requires validating 
credentials on the tfs-dom2 controller. The slice lookup to validate existence of the slice requires a 
simple consultation in the Context database, thus taking around 35 ms at the tfs-dom2 controller. 
Finally, the slice creation consumes a few seconds given that the following steps must be taken: path 
needs computation (including consultation of network topology in the Context database), the creation 
of the Slice and the associated Service, and the configuration of the emulated network devices. 

Table 12. Inter-domain slice provisioning - Execution times with and without accounting VPN round-trip-time 

Operation 
Execution Time 

Accounting 
VPN RTT 

TFS contribution 
(wo/VPN RTT) 

Mutual authentication 67 ms 3.5 ms 
Check if slice exists in remote domain 98 ms 34.5 ms 
Create slice in remote domain 1.42 sec 1.36 sec 

 

Classical procedures for creating inter-domain slices require the two network operators to contact 
each other, agree on the parameters, configure and test the slices manually, and confirm the slice 
activation. This entire procedure can easily consume many hours or even days. In contrast, this 
solution enables the creation of an inter-domain slice in roughly 2 seconds, thus entailing a significant 
reduction in OPEX for the network operators. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 80 of 155 

 

Name Value Comment 
Service setup delay 1.36 sec Without counting VPN RTT between TFS instances. 
OPEX Reduction (time) 1800x Assuming extremely optimistic classical approach of 

1 hour for setting up the inter-domain slice in both 
domains. Reduction factor = 3600 sec / 2 sec. 

 

5.3.3. Distributed Ledger Technologies 

This section has been organized into three sub-sections. The first one addresses the assessment of the 
trust and privacy of the data stored in the Blockchain. The second sub-section addresses the 
performance of creating, retrieving, updating, and deleting records on the HyperLedger Fabric 
BlockChain through the TeraFlowSDN DLT Gateway. The third sub-section compares the inter-domain 
slice provisioning time using DLT against the case without DLT. 

 

5.3.3.1. DLT Trust and Privacy 
In order to maximize privacy and ensure proper access control, all DLT component communications 
are encrypted using TLS and authenticated through certificates and gRPC. This includes both the intra-
DLT component communication between the nodes as well as communication from/to the DLT clients.  

To improve privacy, we further investigated Hyperledger Fabric’s Idemix, an anonymous credential 
system for authentication. Idemix allows users to authenticate in a privacy-preserving manner, making 
the verifier only know that the user possesses a valid certificate. Subsequent authentications are 
unlinkable.  

Name Value Comment 
Trust/privacy 100% secured 

connection 
All connection related to the DLT component are secured 
and authenticated. 

DLT transaction delay 10s Average latency is between 2.2 and 3.3 seconds, Figure 
75. 

 

5.3.3.2. DLT Gateway and Blockchain Performance 
To assess the performance of the DLT Gateway and the Blockchain network regarding latency, we 
prepared a small performance assessment tool leveraging the DLT Gateway interface used by the DLT 
Connector component to interact with the HyperLedger Fabric Blockchain. This ad-hoc tool uses 
randomly generated entities (devices, links, services, and slices) to create, retrieve, update, and delete 
operations over them in the Blockchain. Note that, for the sake of validating the performance, the 
data model structure and the data size of records is relevant. 

The performance assessment starts by initializing random entities to have data records available on 
the Blockchain. Otherwise, operations such as get, update, or delete are ignored due to the lack of 
records to manipulate. The tool keeps track of the entity data records in a local cache. Whenever an 
entity is requested and/or modified locally, the corresponding operation against the Blockchain is 
executed, and its response time is monitored. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 81 of 155 

 

Each modification in the Blockchain records triggers the distribution of a modification event to the 
peers connected to the Blockchain, providing the type of record modified, the unique identifier of the 
record, and the operation carried out, among others. The assessment tool subscribes to these events, 
it correlates each action performed on the Blockchain with the collected events. It computes the delay 
between the instant of time when the modification request was made, and the record modification 
event was received. This shows the synchronization time between peers connected to the Blockchain. 

We configured the tool to initialize 20 devices, 20 links, 20 services, and 20 slices. Then, the tool 
sequentially executes 1000 operations, uniformly distributed between creation, retrieval, update, and 
delete, over randomly chosen devices, links, services, and slices. For each operation and record type, 
the size of the target entity in bytes, the number of endpoints, the number of constraints (for services 
and slices), the number of configuration rules (for devices, services, and slices), the number of sub-
services (for slices), and the number of sub-slices (for slices) is recorded. Besides, it is also recorded 
the execution time of the store/retrieve operations in the blockchain, as well as the delay between a 
change being made in a record and a remote peer receiving the corresponding asynchronous 
notification event. 

Given that all the data records are treated the same way in the Blockchain, no differentiation is made 
between record types. Instead, we report results based on the operation performed on the records 
and the actual size of the record payload in bytes. To produce different record sizes, we randomly 
filled in the device, service, and slice records with randomly generated numbers of endpoints, 
configuration rules, and constraints. For the links, TeraFlowSDN only supports unidirectional point-to-
point links, so the size is constant (2 endpoints). 

Figure 75 illustrates, for each type of operation, the execution time as a function of the record size. As 
expected, the Get operation takes significantly less time, given there is no need to reach a consensus 
between the Blockchain nodes, and any node can inspect its replica of the overall data and return it. 
The execution time increases linearly with the record size but not significantly. The Create and Update 
operations take almost the same amount of time. This is because creating or updating a record, in the 
backend, means just checking if the record exists or not, which has a negligible cost. The delete 
operation takes less time than the Create/Update operations. The reason is that deleting does not 
require reaching a consensus between the peers to allocate a new record; instead, it only requires 
notifying all the other peers that an existing record needs to be marked as removed. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 82 of 155 

 

 

Figure 75. DLT Execution Time vs Record Size 

Figure 76, depicts the delay between the instant when a create, update, or delete operation is 
triggered at one TeraFlowSDN instance, and a remote instance receives the modification event. Get 
events are not metered since no notification is circulated when a record is retrieved. Note that, for 
the sake of having realistic measurements, the performance assessment tool contains both the DLT 
gateway client and the collection of the events. Otherwise, deviations in machine clocks could result 
in erroneous results. Also, we measured the Round-Trip Time between the machine running the 
performance tool (at CTTC premises) and the one running the HyperLedger Fabric Blockchain (at NEC 
premises). The RTT measurement is reported in Table 13. 

Table 13. DLT Event Delay - Setup Round Trip Time 

Min [ms] Avg [ms] Max [ms] 
58.109 62.829 67.093 

 

Also, in this case, the delays for the create and update operations overlap and are slightly higher than 
the ones relative to the delete operation. The delay increases with the record size. This is because the 
event is distributed when the record is modified, and we observed in execution times in Figure 75 that 
they increase proportionally with the record size. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 83 of 155 

 

 

Figure 76. DLT Event Reception Delay vs Record Size 

We can conclude that using the DLT for inter-domain operations, even when it provides enhanced 
trust and privacy, implies significant extra delays due to the internal consensus algorithms supporting 
the Blockchain operation. Thus, the information stored in the Blockchain needs to be as limited as 
possible to minimize the impact on the performance, both in execution times and in event distribution 
delays. 

5.3.3.3. Inter-domain Provisioning through DLT 
This workflow has been demonstrated in [NFV22] and validated and evaluated in D5.2 Section 6.  

 

Figure 77 Scenario 2 workflow: Sequence diagram for DLT use 

Figure 77 details the workflow for establishing an inter-domain transport network slice. Figure 78 
details a Wireshark capture with the externally-visible messages involved in the validation experiment 
taken from D4.2. It is worth noting that the DLT Connector and DLT Gateway run within the same pod 

Domain #A
TeraFlowSDN

Domain #N
TeraFlowSDN

Context or
Inter-domain DLT Peer Peer DLT

Context or
Inter-domain

Initialization

SubscribeToDlt

SubscribeToDlt

Sharing Process for Entity X (x in [Context, Topology, Device, Link, Service, Slice])

Record{X}

RecordToDlt

DltRecordStatus

sync changes

Event(<record_id>)

Get(<record_id>)

Record{X}

SetRecord{X}



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 84 of 155 

 

and Kubernetes is not exposing these packets, so Wireshark cannot capture them. In Figure 78, an 
arbitrary TeraFlowSDN component requests to add a device into the Context component (messages 
2009 and 2015). Then, that component triggers the recording of that device into the Blockchain 
(message 2030). To do that, the arbitrary component issues a “RecordDevice” request to the DLT 
component, that is received by the DLT Connector. The DLT connector then retrieves the device details 
from the Context component (not shown since it is an internal Kubernetes communication). It 
forwards the request to the DLT Gateway that triggers the upload into the Blockchain hosted by NEC 
in Germany (messages 2056-2885). Once done, the DLT Gateway replies to the DLT Connector, which, 
in turn, replies to the requesting component (message 2888). 

 

Figure 78. Transport Network topology for DLT evaluation 

Figure 79 shows the Cumulative Distribution Function (CDF) of the DLT latency for the 100 generated 
requests (curves are drawn for Device, Link, Service and Slice). We observe that the delay takes around 
10 seconds for the different curves. The main contribution of this delay is the cost of uploading the 
record into the blockchain due to the consensus and ordering constraints that need to be fulfilled.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 85 of 155 

 

 

Figure 79. CDF for the DLT Delay 

Figure 80 shows the complete information for an inter-domain transport network slice as shown in 
TeraFlowSDN User Interface. It may be observed that multiple sub-slices have been required.  

 

 

Figure 80. Inter-domain Transport Network Slice that includes sub-slices 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 86 of 155 

 

Figure 81 provides the details of the local (from the initial domain perspective) requested sub-slice. 

 

Figure 81. Sub-slice information details 

 

5.3.4. Service/Slice Request Scalability 

The performance assessment of TeraFlowSDN’s scalability has been carried out at CTTC’s testbed 
(described in section 4.3). The controller deployment included the Context, SBI (former Device), 
Service, Slice, Path Computation, WebUI and Load Generator components. The scalability feature for 
the scalable core components (Context, Service, Slice, and Path Computation) has been activated by 
configuring the Kubernetes Pod Auto-Scaler (HPA) for each one of them. Note that the Load Generator 
component issues requests directly to the Service and Slice component depending on the settings 
configured, thus, the NBI (former Compute) component is not required. Indeed, the strategy followed 
by the Load Generator is the same used by the NBI, thus, the measurements are equivalent. 

The HPAs periodically monitor, every 30 seconds by default, the performance of the related 
components and check configurable metrics and thresholds to trigger the scale-up and scale-down 
operations. For this test, we configured a maximum of 100 pods (i.e., replicas) per component, and a 
threshold of 80% over the average CPU utilization metric. That means when the average CPU 
utilization of the existing replicas for a specific scalable component surpasses the threshold, 
Kubernetes will automatically deploy additional replicas to cope with the component's load following 
the standard HPA replication mechanism. 

To perform the assessment, we onboarded the Telefonica Spanish network (14 nodes, 44 
unidirectional links) depicted in Figure 82. Each node was equipped with 50 client endpoints to be 
used as request endpoints. We used emulated routers to assess the performance of the TeraFlowSDN 
controller. The reason for that is to measure how the internal components behave in the worst case 
for the TeraFlowSDN controller, i.e., the configuration of the underlying network devices does not 
consume time; thus the TeraFlowSDN controller components do not have spare time to wait and 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 87 of 155 

 

perform other operations. In practice, we are performing a stress performance assessment where 
requests must be attended to as fast as possible. 

The load generator has been configured to produce 1000 requests randomly mixing types L2 service, 
L2 slice, L3 service, and L3 slice following a uniform distribution, and choosing the endpoints for the 
requests using a random uniform distribution. To emulate a load generation coming from multiple 
tenants, we assumed each tenant, on average, generates 5 Erlangs of load to the system, each 
corresponding to one configuration request among the aforementioned request types. 

 

 

Figure 82 Telefonica Spain Network (14 nodes, 44 unidirectional links) 

In our load generator, we can tune the value of offered load and the number of parallel workers 
generating that load. Given that, we configured the number of workers to be the number of tenants 
in each experiment. Besides, the value of the total offered load in the experiment is computed as the 
product between the desired number of tenants and the average offered load per tenant. We 
assumed a mean hold time of 10 seconds. We computed the mean inter-arrival time for each 
experiment according to this value of the holding time and the variable total offered load. Both the 
hold time and the interarrival time follow an exponential distribution. 

Additionally, the load generator uses a uniform distribution to choose the capacity (0.1 Gbps and 100 
Gbps), the maximum end-to-end latency (between 5.0 ms and 100.0 ms), and availability (between 
0.1% and 99.9999%).  

Table 14 enumerates the set of scalability experiments carried out. The table also includes the 
duration of the experiment. As can be seen, when the offered load and the number of tenants 
increase, the TeraFlowSDN automatically scales the pods per component to meet the requirements. 
Figure 83 illustrates the peak number of pods (replicas per component) the Kubernetes HPA 
configured for the scalable components. 

Even when the total load offered increases, the duration of the experiments decreases while the 
number of pods deployed increases. The duration of the experiments reaches a minimum value at 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 88 of 155 

 

experiment #5 (20 tenants and 100 Erlang of offered load) and later it starts slightly increasing. The 
interesting point is that even when relationship between offered load and experiment duration does 
not increase, the system keeps serving the requests. We computed the number of Erlangs processed 
per second and the value is monotonically increasing, showcasing the capacity of the TeraFlowSDN to 
scale beyond 100 concurrent tenants interacting with the TeraFlow controller. 

Table 14. Scalability Experiment Configurations 

Exp # Settings Duration Erlangs processed per 
Second Tenants Off. Load 

1 1 5 39 min 21 sec 650 msec 0,002 
2 5 25 09 min 33 sec 650 msec 0,044 
3 10 50 06 min 02 sec 487 msec 0,138 
4 20 100 04 min 42 sec 198 msec 0,354 
5 40 200 04 min 58 sec 573 msec 0,668 
6 60 300 04 min 52 sec 663 msec 1,022 
7 80 400 04 min 52 sec 666 msec 1,362 
8 100 500 05 min 23 sec 440 msec 1,546 
9 120 600 06 min 04 sec 313 msec 1,647 

 

Analyzing the number of pods deployed per scalable component (Figure 83) depending on the offered 
load (in Erlangs) we see that the number of pods reaches a maximum at experiment #6; beyond that 
point, the Kubernetes HPAs decide not to scale the Context component, and the number of replicas 
of the Service, Slice and Path Computation components increase, but not significantly. The reason for 
that could be a bottleneck in the underlying database supporting the Context component’s data. Note 
that all the components, in one way or another, depend on the Context component to store and 
retrieve data. To analyze that behavior, we first analyze the response time of the TeraFlowSDN 
controller, and then we inspect the performance reports of the CockroachDB database used by the 
Context component. 

 

Figure 83. Scalability - Number of Pods per Component 

Next, we analyze the response time of the TeraFlowSDN controller under stress. The measurements 
are taken at the Load Generator. The set of figures between Figure 84 and Figure 87 depict the 

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Number of Pods per Scalable Component

Context Service PathComp Slice



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 89 of 155 

 

response time for the setup operation and for each type of request configured; in particular, for L2 
services (Figure 84), L2 slices (Figure 85), L3 services (Figure 86), and L3 slices (Figure 87). 

As expected, setting up services takes less time than setting up slices, and L2 services/slices take less 
time than L3 counterparts. The rationale is that a service backs each slice, thus, the response time for 
setting up a slice also includes the time to set up a service. Regarding the extra time required to set 
up L3 services/slices, L3 services require configuring a larger number of rules in the network devices 
than their L2 counterparts, thus consuming additional processing time. For L2 services in general, 40% 
of them take less than 1 second, and for low offered loads (<50 Erlang), while around 90% of 
executions are completed in less than 2 seconds. When the load increases, the response time 
increases proportionally, reaching up to a few tens of seconds at the maximum offered load 
considered in the experiment. Similar behavior can be observed for L3 services. Regarding L2/L3 slices, 
the difference is the increase in managing in the database of the slice entity, which is represented as 
an addition of hundreds of milliseconds in the overall response time. However, even at high loads, the 
controller can complete the requests within 10 seconds in around 90% of the cases. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 90 of 155 

 

 
Figure 84. Scalability – Setup L2 Service – Response Time 

 

 
Figure 85. Scalability – Setup L2 Slice – Response Time 

 

 
Figure 86. Scalability – Setup L3 Service – Response Time 

 

 
Figure 87. Scalability – Setup L3 Slice – Response Time 

 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 91 of 155 

 

 
Figure 88. Scalability – Teardown L2 Service – Response 

Time 
 

 
Figure 89. Scalability – Teardown L2 Slice – Response Time 

 

 
Figure 90. Scalability – Teardown L3 Service – Response 

Time 
 

 
Figure 91. Scalability – Teardown L3 Slice – Response Time 

 

 

Now we analyze the teardown response time of the TeraFlowSDN controller under the same stress 
conditions as for the setup. Again, the measurements are taken at the Load Generator. The set of 
figures between Figure 88 and Figure 91 depicts the response time for the teardown operation and 
for each type of request configured, i.e., L2 services (Figure 88), L2 slices (Figure 89), L3 services (Figure 
90), and L3 slices (Figure 91). 

The teardown response time is similar to the ones for the setup. Tearing down services takes less time 
than tearing down slices, and L2 services/slices take less time than L3 counterparts. The rationale is 
the same as used to explain this for the setup operation. Note that the teardown operation is generally 
faster than the setup, given that no path computation is required. Removing entities in the database 
is faster than storing them, given that fewer constraints must be enforced. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 92 of 155 

 

For L2 services in general, 50% of requests take less than 1 second, and for low offered loads (<50 
Erlang), about 95% of executions are completed in less than 2 seconds. When the load increases, the 
response time increases proportionally, reaching up to a few tens of seconds at maximum load used 
for this study. A similar behavior can be observed for L3 services. Regarding the L2/L3 slices, 
essentially, the increase in time is due to managing the slice entity in the database. It corresponds to 
an extra hundreds of milliseconds to the overall response time. However, even at high loads, the 
controller can complete the requests within 10 seconds in about 95% of the cases. 

As a final step of the scalability performance assessment, we analyzed the performance of distributed 
database the Context component uses to manage and persist the TeraFlowSDN controller 
information. CockroachDB is a distributed and scalable database using the NewSQL data model. The 
latter implements four key properties of relational database transactions on top of distributed and 
scalable databases. These key properties are: 

• Atomicity: all statements in a transaction are executed as a whole or not executed, but no 
partial transaction is executed. 

• Consistency: each transaction moves the database content from a consistent state to another 
consistent state preserving all the invariants and constraints of the database. 

• Isolation: even when transactions are executed concurrently, multiple reads/writes on a single 
table leaves the data in the same state it would be if transactions were executed sequentially. 

• Durability: once a transaction is committed, even in the case of a system failure, the 
information will be preserved and kept consistent. 

Note that even when such databases bring enhanced scalability, they might suffer from additional 
overheads, given that they need to keep consistency across the distributed nodes forming the 
database cluster. 

To analyze the performance of the CockroachDB database, we recorded directly from the 
CockroachDB cluster dashboard the performance metrics during the execution of the experiments. 
We captured four metrics: 

• The latency between the nodes forming the cluster. 
• The number of SQL statements (queries) executed per second. 
• The 99th percentile service latency for SQL statements. 
• The SQL statement contention. 

The latency between the nodes forming the cluster is illustrated in Figure 92. It is a key performance 
metric since all transactions need synchronization and consensus between the cluster nodes. For this 
reason, this value directly affects all the database operations. Reasonable values with a mean value of 
0.74 ms and a low standard deviation of a few tenths of milliseconds are observed. Besides, no 
connectivity interruptions are identified. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 93 of 155 

 

 

Figure 92. Scalability – CockroachDB – Latency between the nodes forming the cluster. 

 

The other three metrics are plotted in a stacked and time-aligned manner in Figure 93, to help identify 
each experiment. The vertical dashed lines represent the (approximate) beginning of each 
experiment. The first plot illustrates a moving average of the number of SELECT (dark blue), INSERT 
(red), UPDATE (yellow), and DELETE (cyan) statements successfully executed per second across all 
cluster nodes. The second plot depicts the service latency, i.e., over the last minute, the nodes 
executed 99% of SQL statements within this time (each color corresponds to one node in the cluster). 
This time only includes SELECT, INSERT, UPDATE and DELETE statements and does not include network 
latency between the node and client. The third plot showcases a moving average of the number of 
SQL statements executed per second that experienced contention across all nodes. 

As the plots demonstrate, until experiment #4, the system copes well with the load. Starting from 
experiment #5, the number of queries per second increases, the 99th percentile service latency, and 
the average number of queries suffering from contention. To some extent, such contention and 
service latency limit but do not prevent the system's scalability. 

As an outcome, future releases of the TeraFlowSDN controller might address the improvement of the 
database schema to reduce the contention levels and optimize the database queries. This activity is 
outside the scope of the current project. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 94 of 155 

 

 

Figure 93. Scalability – CockroachDB – (a) SQL Statements, (b) 99th Percentile SQL Statement Latency, and (c) SQL 
Statement Contention. 

Final KPI measurements:  

Name Value Measurement Comment 
Multi-tenancy  >100 

tenants 
TeraFlowSDN can support 
more >100 tenants with 
reasonable service latencies. 

The response time might increase at 
high loads due to database latency 
and SQL query contention. Future 
releases might study how to enhance 
the database schema. 

 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 95 of 155 

 

5.3.5. Location-aware Service Updates 

This section discusses the deployment of End-to-End packet-optical connectivity services over an 
edge-cloud continuum, considering the importance of location awareness. It proposes an architecture, 
data models, and placement algorithms for provisioning and updating these services in the 
ADRENALINE Testbed using the ETSI TeraFlowSDN controller. 

Several challenges must be overcome when looking at the deployment of Cooperative, Connected and 
Automated Mobility (CCAM) services over a distributed edge and cloud infrastructure [CTTC22Par]. 
Firstly, we need unified computing, storage, and networking resources management. In this respect, 
the End-to-End SDN Controller (also known as SDN orchestrator, e.g., TeraFlowSDN), together with an 
NFV orchestrator (e.g., OpenSource MANO), will be able to deploy integrated services (i.e., to 
provision cloud/edge computing resources and connectivity between them) and optimize the cloud 
and network resources (i.e., packet/optical) concurrently. Secondly, we must address multi-domain 
networking, where resources must be assigned in each technological domain and combined for an 
end-to-end service.  

Future services are deployed close to the end user, which requires an edge-cloud continuum. This 
concept refers to a distributed computing infrastructure spanning the network's edge (where end 
devices, e.g., sensors, smartphones, and IoT, reside) to the cloud (where data centers and servers 
reside). It encompasses a range of resources and services that can be utilized to process and store 
data closer to the source, providing low-latency and high-bandwidth connectivity, while also 
leveraging the scalability and processing power of cloud computing. The introduction of edge-cloud 
continuum significantly impacts Vehicle-to-Everything (V2X) scenarios, where latency aspect plays a 
significant role. 

V2X technology is revolutionizing the transportation industry by enabling vehicles to communicate 
with other vehicles, infrastructure, and pedestrians. Location is a critical component of many V2X 
services as it provides contextual information about the surrounding environment. One example is 
collision avoidance, where vehicles can exchange location information to avoid collisions.  

This is particularly important in high-density traffic areas, where drivers may be unable to see 
approaching vehicles. Another example is over-the-air software updates, where the vehicle's location 
ensures that the update is delivered to the correct vehicle. This helps to avoid errors that can occur if 
the update is sent to the wrong vehicle. Overall, location is vital to many V2X services and is crucial in 
improving road safety, efficiency, and convenience. 

The location also plays a significant role in hierarchical computing architectures. This emerging 
technology can transform computing by allowing the orchestration of end devices, the edge, and the 
cloud. A survey by Ren et al. [Ren19] compares different network computing paradigms and discusses 
different research issues such as computation offloading, caching, and location awareness. 

Introducing location awareness in end-to-end connectivity services and network topologies is 
indispensable. This section considers the provisioning and updating of end-to-end connectivity 
service, considering that location-aware connectivity services might need service endpoint migration 
due to the dynamic nature of joint edge-cloud continuum and the provisioning of services to moving 
end users.  

This section presents the proposed architecture for the provisioning and updating the aforementioned 
connectivity services, as well as details of the augmented TeraFlowSDN protocol buffers. Moreover, a 
location allocation algorithm is presented to provide endpoint selection based on location. Finally, we 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 96 of 155 

 

have experimentally evaluated the proposed solution in the ADRENALINE Testbed using the ETSI 
TeraFlowSDN controller [OFC22]. 

 

 

Figure 94 Architecture for E2E location-aware services, including SDN controller necessary components 

 

The proposed architecture is depicted in Figure 94. On top, we have the internal cloud-native 
architecture of ETSI TeraFlowSDN, while below we can see the controlled multi-domain scenario, that 
considers E2E connectivity services. It divides the main components of the SDN controller into micro-
services dedicated to specific functionalities of the SDN controller. TeraFlowSDN provides extended 
support for OpenConfig-based routers and interaction with optical SDN controllers through the ONF 
Transport API.  

The scenario in Figure 94 shows a connected vehicle that might be consuming services from a specific 
edge computing node, that in turn is connected to a DC service. As the vehicle moves, the services 
might be migrated to another edge computing location. This triggers the update of the connectivity 
services for the E2E connection towards the DC services. 

In a basic topology, we have included the GPS location for three different service endpoints connected 
to the edge nodes. The user node can then connect to the DC by means of the closest edge node, 
depending on its present location, which is introduced as a constraint to the connectivity service 
request/update. 

The introduction of location awareness in transport networks (i.e., including packet and optical 
domains) requires the introduction of novel concepts to several SDN-based data models. The most 
affected one are the data models related to service endpoints, which refer to the network endpoints 
where connectivity services might be requested. Moreover, connectivity service also needs to include 
a new constraint based on location coordinates or specific region. The proposed modified data models 
for internal TeraFlowSDN usage are depicted in Figure 96. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 97 of 155 

 

The workflow of provisioning and updating a location-aware service in Figure 95 is described in two 
phases (service establishment and follow-me service). Service establishment starts with the request 
to create a new connectivity service between a specific endpoint (e.g., DC location) and the closest 
endpoint to a location (step 1). TeraFlowSDN controller NBI processes the request and forwards it with 
TeraFlowSDN internal data model to Service component (step 2). Location constraints and network 
topology endpoints are matched to best provision the necessary endpoints depending on the location. 
The E2E connection is created following the workflow described in [OFC22], and properly notified 
(steps 3-4). 

 

Figure 95 Sequence diagram of provisioning and update of a location-aware service 

The follow-me service phase starts with an update of the provided service, including the new location 
(steps 5-6). A new endpoint is computed, and then a new path is calculated (steps 7-8). Then the 
service is updated following a break-before-make strategy. The old service is removed (steps 9-12), 
and the service with updated endpoints is provisioned (steps 13-16). Finally, a response is provided to 
the user (steps 17-18). 

To provide location-aware services to TeraFlowSDN, three components have been modified. First, the 
Context module database has been extended to support the data models shown in Figure 95. The 
Device module has also been extended to retrieve the location data from the network devices. Finally, 
the algorithm to retrieve the closest access node was implemented in the Service module.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 98 of 155 

 

 
Figure 96 Internal SDN controller modified data models to support location-aware services. 

The proposed algorithm aims to create a service between a data center (DC) and a user by identifying 
the nearest access edge node to the user's location. To achieve this, the algorithm computes the 
geographical distance between each of the access edge nodes and the user's location provided in the 
connectivity service request. Geographical distance can be computed using various methods. One 
commonly used approach is to calculate the distance between two points on the Earth's surface using 
the Haversine formula, which considers the radius of the Earth and the latitude and longitude of the 
two points to calculate their distance. By selecting the access edge node closest to the user, the 
algorithm can establish a connection between the user and the network with minimal latency and 
increased performance. 

Figure 97 shows the Wireshark capture of creating a location-aware connectivity service and is 
updated with a new location. The 1st packet corresponds to creating the connectivity service, while 
the 2nd packet corresponds to its acknowledgment. The 3rd packet corresponds to the update and 
actual provisioning of the connectivity service, while the 4th packet corresponds to its 
acknowledgement. 

 

 

Figure 97 Wireshark capture of a location-aware service provision and update 

After the user node has changed its position, we ask the TeraFlowSDN NBI to update the connectivity 
service in the 5th packet. The 6th packet corresponds to the removal of the connection that the 
connectivity service has originated, while the 7th packet is about the removal of the connectivity 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 99 of 155 

 

service itself. The 8th packet corresponds to the setting up of the new connection while the final 9th 
packet is the ACK to the update of the service. 

A hundred connectivity services have been requested via the TeraFlowSDN NBI to test the speed of 
the algorithm responsible for selecting the closest node. As shown in Figure 98, all requests were 
finished between 98 ms and 172 ms, fast enough to fulfil most use cases, with a mean of 0.137 ms and 
a standard deviation of 0.0185 ms. 

 

 

Figure 98. Histogram of the time spent on the location selection algorithm 

 

Name Value Comment 
Positioning 100% We have validated location-awareness in end-to-end 

connectivity services and in network topologies. 
TeraFlowSDN has been extended with an augmented 
data model for topology and connectivity services to 
include GPS coordinates and Regions into service 
endpoints and connectivity service constraints.  
The proposed architecture considers the requested end-
to-end connectivity service provisioning and update, 
considering that location-aware connectivity services 
might need service endpoint migration due to the 
dynamic nature of joint edge-cloud continuum.  

5.3.6. Latency budgets as function of the application requirements 

This section shall be included as part of research on T4.3 topics. It provides interesting results, and as 
D4.2 was delivered, we have considered to include in this part. Networked applications broadly range 
concerning their QoS requirements. While purely bandwidth-hungry applications like file downloads 
or video streaming are less sensitive to delays, interactive applications like video conferencing or 
telephony are much more sensitive to delays. This heterogeneity of applications is illustrated in Figure 
99, where the Mean Opinion Score (MOS) - QoS in terms of available bandwidth and experienced 
delay is plotted against the resulting QoE for a total of four applications. In addition to a TCP-based 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 100 of 155 

 

adaptive video streaming application and a UDP-based Voice over IP (VoIP) application, we perform 
what-if analyses involving applications with significantly stricter QoS requirements to mimic emerging 
and more demanding applications such as the ones involving haptic feedback [ZHA2018]. To this end, 
we use the QoS characteristics of the VoIP application, increase its bandwidth requirements and usage 
by a factor of 10, and increase its delay sensitivity by factors of 10 (“Delay Sensitive x10”) and 20 
(“Delay Sensitive x20”), respectively. 

 

Figure 99. QoS-to-QoE relationship for exemplary applications. While the ITU-T P.1203 model is used for adaptive video 
streaming, the ITU-T G.107 e-model is employed in case of VoIP and extrapolated towards delay sensitive apps. 

Several observations can be made. First, the relationship is clearly application-specific, both in terms 
of the sensitivity towards QoS changes as well as in terms of the absolute requirements. In terms of 
delay, the investigated adaptive video streaming applications is able to cope with delays up to 500ms. 
Higher delays impact the performance of the respective control loops, i.e., the adaptive video 
streaming control loop and the TCP control loop. For VoIP, delays in the area of 300 to 400 ms 
significantly affect the voice call's quality. Haptic applications, as emulated by the “Delay Sensitive 
x10” and “Delay Sensitive x20” require much lower delays, namely below 40 and 20 ms, respectively.  
Second, applications exhibit different degrees of elasticity: while the video streaming application 
smoothly transitions between video quality levels, the VoIP application under consideration is inelastic 
and abruptly degrades from a good or acceptable QoE level to the worst level as soon as its bandwidth 
requirement is not met. Third, diminishing returns occur, i.e., past a certain application-specific point, 
lowering an application's delay or increasing its bandwidth slows and eventually stops improving its 
QoE. Additional QoE impact factors such as jitter, packet loss, and subjective user-specific properties 
are deliberately omitted in this work to keep a clear focus on the general ideas of the proposed 
concepts.  

In the following section, we discuss the possibility of using QoS parameters like delay and bandwidth 
and including them in a public Internet setting. Network operators are facing challenges in multiple 
directions. Resources are required dynamically to cope with increasingly varying demands, systems 
become less predictable due to the heterogeneity of services and applications, and control plane 
complexity will grow with multi-dimensional Service Level Agreements (SLAs). Furthermore, service 
delivery expectations are growing from the vertical sectors, the Online Application Providers (OAPs), 
and the consumer side towards a set of smart and specialized connectivity services (SCS) on-demand 
that are universally and equally provided.  
 

5.3.6.1. Service Concepts 
 
In this section, we discuss the requirements and main characteristics of service concepts and key 
principles around SCS to enable an evolution towards smart Public interconnected networks and 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 101 of 155 

 

services (PINS). Furthermore, we identify key elements of the networking ecosystem that need 
attention to address the above challenges related to the long-term success of the service concepts. 
Our approach is inspired by “removing complexity and aiming towards simplicity”. 

Our discussion of service concepts revolves around two aspects relating to treating network traffic, 
traffic modes, traffic aggregates, and connectivity handling. In the following, we define and discuss 
these notions in detail. 

Traffic Modes: due to the variety of applications in terms of their QoS demands and degrees of 
sensitivity and elasticity, we argue that diverse traffic modes which reflect this heterogeneity are 
required for efficient traffic handling. Relative differentiation between flows and absolute 
differentiation with strict performance guarantees can be performed depending on the fair amount 
of complexity, particularly control plane complexity. This way, QoS resources can be adjusted to 
reduce queueing delays for delay-sensitive traffic while identifying more delay-tolerant portions of 
the traffic that might be re-routed via longer paths. Evolving from the “best-effort” traffic mode of 
today’s Internet, we propose and discuss four main traffic modes. These include three best-effort 
modes that differ relatively from each other and allow for more nuanced differentiation while 
retaining the benefits of best-effort handling and an assured quality mode that provides strict 
performance guarantees. 

From today’s perspective, the current best-effort mode could be labeled “Basic Quality (BQ)”. We 
suggest an “Improved Quality (IQ)” mode relative to the BQ mode. The IQ mode improves the quality 
or performance relative to the BQ mode by mechanisms like Weighted Fair Queueing (WFQ) or routing 
via a shortest path. This may result in improvements along multiple dimensions of the connectivity, in 
principle, any combination of improved throughput, (queueing) delay, jitter, or packet-loss 
performance. Moreover, we foresee a “Background (BG)” traffic mode that provides connectivity with 
more relaxed quality properties than the BQ mode. This mode enables the NSP to provide valuable 
connectivity offerings while allowing a higher utilization of network resources. Examples of 
applications using the BG, BQ, and IQ modes could be the automatic download of an Operating System 
(OS) update, an on-demand video stream, and a live video stream with increasingly strict QoS 
requirements while not necessarily being mission-critical and requiring strict performance guarantees. 

Since throughput is less of an issue in backbone networks, the primary difference among the three 
best-effort modes is along the delay performance, where IQ offers lower end-to-end latency than the 
BQ mode, and the BG mode supports more relaxed latency requirements. The BG, BQ, and IQ traffic 
modes can be considered multi-level best-effort. 

The fourth suggested traffic mode, called “Assured Quality (AQ)” mode, offers strict performance 
guarantees. This mode is used if the client needs significantly higher or more stable network 
performance than available by the IQ mode. This will require more complex mechanisms than those 
of the IQ mode. To enable the AQ mode, the QoS, resource, and admission control mechanisms must 
be realized at a finer granularity than those for the IQ mode. 

Traffic Aggregates and Scalable Connectivity Handling: we observe that provisioning connectivity 
resources for each individual traffic flow in an on-demand and end-to-end fashion is not feasible in 
terms of scalability, complexity, and timeliness. Hence, we suggest introducing multiple granularity 
levels of traffic aggregates that differ w.r.t. their size, lifetime, and mode of instantiation. In this 
section, we discuss a two-level example. At the coarse-grained level, we propose Managed Quality 
Paths (MQPs) that are high-capacity, long-lived, and pre-established paths between major 
interconnection points. In this context, multi-domain challenges related to security, information 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 102 of 155 

 

exchange, fairness, and neutrality must be addressed. At the fine-grained level, we envision SCS 
Sessions that are expected to be highly dynamic, on-demand, and between endpoints. In the context 
of these sessions, only paths connecting the endpoints to suitable interconnection points need to be 
provisioned whereas the remainder can be car- ried by a suitable, already provisioned, and well-
dimensioned MQP. These pre-established paths also help reduce the solution space's size and 
therefore allow for faster handling of connectivity requests. Depending on the specific requirements 
of an SCS, different traffic modes might be employed at both the MQP and SCS session-level. Figure 
100 presents the main concepts and key infrastructure elements elaborated further in the following. 
We also show an exemplary SCS flow between the two highlighted endpoints to illustrate the core 
ideas. 

 
Figure 100. Multi-domain scenario: managed quality path infrastructure with exemplary specialized connectivity service 

Peering and transit services in today’s Internet connect very large, coarse-grained regions and have 
only rudimentary SLAs. Evolving from these services, we propose the MQP as a Point-of-Interconnect-
to-Region (PoI2R) interconnection service, where the notion of “region” can be in a 
spatial/geographical or technological sense, e.g., a range of IP prefixes. The core idea of the MQP 
service is to enable dynamic traffic engineering, intelligent management, and configuration of coarse 
traffic aggregates and their services, and it may also support remote peering. 

Since SCS sessions use MQP for PoI2R connectivity, only paths from end-users and application servers 
to endpoints of the corresponding MQP need to be provisioned. These endpoints are Data Center 
Gateway (DC GW) and Service Edge Gateway (SEG), respectively. To achieve QoS handling and 
charging support for SCS between end-user devices and OAP end-points in data centers, we expect 
the necessity for signalling and business relationships between OAPs, NSPs, and end-user devices. 
With the proposed two-level approach, we expect that setting or merely checking policies at the 
gateways is sufficient to cover SCS needs. Hence, signalling and QoS handling can be substantially 
simplified compared to mechanisms such as IntServ that require setting policies on each network 
element along the entire end-to-end path. 

5.3.6.2. Main Solution Elements and Challenges 
In this subsection, we identify key aspects of the networking ecosystem that require attention to pave 
the way towards smart PINS and enable the discussed service concepts. 

 
Figure 101 Overview of solution elements 

We also highlight related research challenges labeled RC. Following the principles introduced above, 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 103 of 155 

 

we cover seven key topic areas that all need to be addressed in the long term and in a holistic, 
coordinated, and interdependent way. A compact overview of these areas and corresponding solution 
elements is provided in Figure 101. While we discuss all seven areas from (A) to (G), we emphasise 
three that we consider critical already in the bootstrapping phase. These include (B) Application-
Network Interaction (ANI), (C) Lightweight and Class-based Admission Handling (LAH), and (F) 
Business Model Elements (BME). 

User Interaction / Interface (UI) / User Experience (UX): The customer shall control the service level 
selection. This can be achieved through precise control via UI and UX dialogues or implicitly based on 
relevant characteristics of the environment and end devices in use. We expect a common approach 
to service level expectations and indicators (RC 1) for this. 

ANI: The goal of ANI is to allow expressing requests for SCS and corresponding NSP offerings. To this 
end, the NSP could provide SCS templates expressing possible QoS value ranges - e.g., target and 
lower bound - regarding supported throughput, latency, and packet loss. A solution should anticipate 
that the elasticity of applications can still be an important feature and support (re-)negotiation in case 
the desired quality level cannot be delivered (RC 2). Ideally, the SCS templates and the Application 
Programming Interfaces (APIs) for ANI should be standardized to ensure scalability, portability, and 
efficiency for the application developer. In order to guide and assist the application’s creation of the 
SCS request, the ANI should also enable applications to query the network for available SCS profiles 
that can be delivered on-demand or at/for a specific time. This way, the application can make requests 
with a high likelihood of success instead of a best-effort approach. Similar application-initiated 
reservation strategies have been proposed for Software-Defined Networking (SDN)-based networks 
in the context of participatory networking [9]. Additionally, IETF efforts regarding Network Service 
Headers (NSH) and Application-Aware Networking (APN) provide building blocks toward achieving 
ANI. 

LAH: According to the SCS session handling introduced above, we suggest a light-weight admission 
handling approach that is still sufficient to achieve the needed traffic handling targets. A fundamental 
objective is to ensure that the volume of admitted SCS sessions will not make the BQ mode and 
general quality level suffer beyond specific committed network performance levels. The concept of 
class-based admission handling is proposed and can be based on trust, logical network IDs, and per-
class SCS treatment. Still, the NSP can monitor application traffic rate and behavior per OAP and 
perform class-based and per-OAP policing by various means in a scalable way. Numerous QoS and 
admission control mechanisms are available at different levels of granularity in the access parts of 4G 
and 5G. They can be aligned with the overall end-to-end approach. 

QoS: QoS mechanisms are available at multiple locations within the User Equipment (UE)/device, 
edge NSP, and OAP domains. These mechanisms allow (re-)aligning the allocation of available 
resources with users’ requirements. In particular, deterministic, time-sensitive, and high-precision 
networking advances can be leveraged to address delay requirements. 

PoI2R: Several variants of the PoI2R / MQP interconnection service are needed to cover the NSP-OAP 
and NSP-NSP segments that form SCS. In the context of NSP-NSP segments, an NSP is referred to as 
transit NSP if it does not contain any endpoint of the SCS. 

BME: Along with the ANI and PoI2R service variants and enablers, BME and charging principles should 
be defined. Here, we underline the need to support hybrid money flows from the customer to both 
the OAP and NSP and optionally support Initiating Party Network Pays (IPNP) for two-way connectivity 
across NSPs. Note that at the PoI2R/MQP level, the BME would be based only on traffic aggregates 
and should support settlement-free and transit-only BMs. Moreover, we anticipate that pricing 
models towards end-customers, in particular, will evolve to ensure a correspondence between the 
price paid and the resources used, hence incentivizing responsible resources use and “Green ICT”. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 104 of 155 

 

Evolved Net Neutrality (eNN): Finally, we anticipate the need to evolve the NN Regulation to ensure 
that open and equal access to SCS can be supported at the global Internet scale. This will be critical 
to realize the vision of smart PINS and achieve the desired multi-level best-effort traffic modes. A key 
question in this context revolves around expressing and measuring the general performance level of 
the BQ mode to ensure the protection of the basic Internet access service (RC 3). 

5.3.6.3. Evidence of Potential 
In order to assess the potential of the proposed multi-level best-effort approach, we have studied a 
simulation that covers the main solution elements outlined in the previous section and compare its 
performance characteristics to those of a traditional best-effort approach. The simulation scenario is 
illustrated in Figure 102. It includes a heterogeneous mix of application servers and clients 
corresponding to four traffic modes: OS-initiated file downloads (DL) in the Background (BG), user-
initiated video streaming (VoD) with Basic Quality (BQ), live video streaming (LVD) with Improved 
Quality (IQ), and a highly delay-sensitive application emulating the exchange of haptic feedback (HAP) 
that requires Assured Quality (AQ). The applications differ not only in terms of their requirements, but 
also w.r.t. their elasticity and transport protocols. For instance, video applications use adaptive 
streaming over HTTP and can adjust to given network conditions, whereas DL and HAP applications 
rely on their respective TCP and UDP connections. 

 

 
Figure 102 Simulation scenario for evaluating the proposed MLBE approach and coverage of corresponding key solution 

elements 

 

The 1 Gbps link between servers and applications is sliced using a Hierarchical Token Bucket (HTB) 
scheduler, which enables us to include the following solution elements: 

Per-slice Guaranteed and Maximum Bit Rate (GBR, MBR) settings and priorities allow for a QoS-based 
resource allocation. Since these settings are on coarse per-application and IP address range 
granularity, they can be provisioned in advance as per the PoI2R/MQP concepts. 

Given the slice parameters, the static number of clients per application corresponds to an admission 
control policy that limits those numbers. 

Slice parameters are chosen in a QoE-aware manner and are tailored to applications’ requirements, 
hence covering aspects of ANI. 

By carefully dimensioning the resources for the BQ mode, we ensure that the user-perceived 
application quality remains unchanged.  

In particular, the GBR, MBR, and priority settings are chosen to represent the typical characteristics 
and requirements of the traffic modes: an isolated high-priority AQ mode as well as BG, BQ, and IQ 
modes with increasing levels of priority and potential for intra-slice capacity borrowing. For the 
following study, 110 active clients for each BG, BQ, and IQ modes and 825 clients of the AQ mode are 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 105 of 155 

 

simulated. The latter number is higher to compensate for the lower capacity consumption per client. 

 
 

Figure 103 Time series of aggregated per-application throughput 

The graphs in Figure 103 and Figure 104 show the aggregated per-application throughput and delay 
characteristics throughout the simulation. Each chart features two curves corresponding to the 
behavior in a Best-Effort (BE) regime without differentiation and the proposed MLBE approach. We 
make several observations on the throughput performance displayed in Figure 103. In there, highly 
fluctuating throughput values for the three TCP-based applications in the BE case are caused by the 
heterogeneous application mix and the clients’ dynamic behavior, which prevents an equilibrium with 
a fully fair share. In contrast, the homogeneity of applications within each class in the MLBE case leads 
to significantly more stable throughput values constrained by the set GBR and MBR values. The UDP-
based HAP application clients manage to send all their packets and achieve the same throughput in 
both the BE and MLBE conditions. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 106 of 155 

 

 
 

Figure 104 Time series of aggregated per-application delays 

However, the delay performance reported at the bottom of Figure 104 highlights that using BE results 
in delays above 12 ms, outside the 3-10 ms range reported as a requirement for haptic applications in 
[ZHA18]. Without differentiation, all applications experience the same delay in the case of BE. When 
using MLBE, on the other hand, the delays of the HAP clients decrease to an average of 2.5 ms but 
come at the price of increased delays for all other applications. However, since these are more delay-
tolerant, the user-perceived application quality is not negatively impacted in the BQ and IQ cases. 

To quantify the QoE for video streaming applications on the 1-to-5 Mean Opinion Score (MOS) scale, 
we leverage the ITU-T P.1203 model. Our results show that while the MOS for the VoD application in 
the BQ mode remains unchanged at 4.18 in both the BE and MLBE cases, the IQ mode’s MOS 
drastically improves from 2.83 to 4.38 when following the MLBE approach. This is mainly due to the 
increased link capacity allocated to the IQ traffic mode. 

Note that although the delay experienced by the background download increases substantially and 
the lowered throughput causes longer download times, it maintains a stable bit rate throughout the 
experiment and is never starved. Since we assume this to be an OS-initiated background process, we 
do not expect this to have a noticeable effect on user experience. In summary, we have illustrated the 
potential of the combined MLBE and AQ approach to support emerging highly demanding applications 
and selectively improve existing applications' performance while limiting the impact on user-perceived 
application quality of background and basic traffic modes in a way that preserves net neutrality. 

More details regarding the mechanisms and evaluation methodology can be found in [BOS2021, 
LON2022]. 

5.3.7. Path Computation within the Green Economy 

This section shall be included as part of research on T4.3 topics. It provides interesting results, and as 
D4.2 was delivered, we have considered to include in this part. Next-generation telecommunications 
systems are envisioned to be sustainable and human-centric [Aho22]. Regarding customer 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 107 of 155 

 

involvement, existing business models are currently limited to performance-focused Service Level 
Agreements (SLAs). It was pointed out in [Hos22] how it is natural for end-users to want the maximum 
Quality of Experience (QoE) possible, at the same time illustrating the potentially significant energy 
savings by passing to “good enough” QoE. Low (or lack of) awareness of end-users on digital services' 
energy usage implications/carbon footprint has been found in [Gna21], along with some indications 
of willingness to compromise. We have explored the said “willingness” and incentivization (for 
favouring energy efficiency at the cost of performance) to motivate environmental-friendly digital 
habits. 

In more detail, the Decarbonization Level Agreements (DLAs) concept is introduced to include green 
intents in the service ordering process and specifically applied to path computation for inter-domain 
connectivity services. Supposing that, (transport) network devices have already started to embrace 
the state-of-the-art energy-aware features and mechanisms (e.g., Low Power Idle (LPI) [Bol11], 
Adaptive Rate (AR) [Les10] and vendor-specific mechanisms like [Ibm13]), green states are defined to 
represent the energy efficiency and performance trade-off in inter-domain links. The abstracted inter-
domain topology can then evolve with information on each hop's available green states. 

Figure 105 illustrates a sample scenario from the perspective of inter-domain connectivity services. 
The inter-domain links between Domain A and Domain B/C are supposed to support a dynamic 
energy-aware mechanism that reconfigures the network devices along the path according to the 
utilization dynamics, maximizing energy savings. At the time of a service order, the available green 
states on the two links differ mainly due to the observed utilization. On the other hand, it is also 
plausible that other inter-domain links support different energy-aware functionalities/mechanisms or 
not at all, as in the inter-domain link between Domain B and Domain D. 

 

Figure 105. Differing green states on inter-domain links 

Green path computation (gPC) policies are proposed with a reward system that allows greener states 
to correspond to higher rewards for lower performance. Considering that some green states might be 
unavailable (due to the trade-off mentioned above) for a given SLA requirement and link utilization at 
certain time intervals, introducing DLAs enables the customer to unlock greener states by allowing a 
certain level of performance degradation. 

 

5.3.7.1. gPC for Inter-domain Connectivity Services 
Let {Gx, x=1, 2, 3, 4} be the set of green states available on inter-domain links enabled by 
functionalities such as LPI and AR, among others. G0 corresponds to the “business as usual” (BAU) 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 108 of 155 

 

case, prioritising performance rather than energy efficiency. Considering the trade-off between 
energy efficiency and performance, the succeeding states G1 through G4 have increased energy 
efficiency at the cost of performance. 

At a working state, mechanisms like AR can adapt the packet processing rates according to the traffic 
demands. On the other hand, mechanisms like LPI look into the burstiness of the traffic and can enter 
different sleeping states with increasing wake latencies and energy savings. Numerous works in the 
literature also try to combine these approaches towards driving energy-aware (network) device/link 
re-configurations according to traffic dynamics [Bol11], [Les10], [Ibm13]. 

Energy savings at the infrastructure layer result in reduced OPEX. This can then be escalated bottom-
up through incentives. For instance, a vertical customer can earn Green Ambassador (GA) badges 
corresponding to increasing rewards as the allowable performance degradation increases. Within the 
green economy, green intents could come either as the desired GA level or for allowable performance 
degradation. Figure 106 compares the BAU, SLA-driven and DLA-driven inter-domain path 
computation. As previously mentioned, the BAU policy maximizes the performance, staying at the 
green state G0. The basic green intent is gPCSLA, which corresponds to GA level 0 and maximizes energy 
saving while meeting the SLA. Going further, gPCDLA maximizes energy saving for an allowable level of 
performance degradation. 

 

Figure 106. Green inter-domain path computation versus BAU 

5.3.7.2. Power-Performance Modelling and Evaluation 
The energy-aware inter-domain link is modeled as an M/M/1/SET queue, derived from the general 
model in [Bol20]. This considers the setup times, for instance, when waking up from a sleep state. 

Considering renewal theory principles, the average power consumption of the link Φ is derived as the 
sum of the average consumption in the busy, wake-up and idle periods: 

Φ =
Φ𝐵𝐵(𝑇𝑇𝐵𝐵 + 𝑇𝑇𝑊𝑊) + Φ𝐼𝐼𝑇𝑇𝐼𝐼

𝑇𝑇𝐵𝐵 + 𝑇𝑇𝑊𝑊 + 𝑇𝑇𝐼𝐼
 

Supposing that the former two consume Φ𝐵𝐵, while the latter consume Φ𝐼𝐼. For a given link speed 𝜇𝜇 
and load 𝜆𝜆, obtaining 𝑇𝑇𝐼𝐼 = 1/𝜆𝜆  and  𝑇𝑇𝐵𝐵 = 1/(𝜇𝜇 − 𝜆𝜆). The parameter 𝛾𝛾 is defined for evaluating AR, 
resulting in the effective link speed 𝛾𝛾𝜇𝜇. The wake-up time is supposed to be fixed as 𝑇𝑇𝑊𝑊 = 𝜏𝜏. 

On the other hand, the one-way delay 𝑊𝑊is derived as the sum of the average waiting time in the 
queue (𝑊𝑊𝑞𝑞) and the propagation delay (𝑊𝑊𝑝𝑝). The former is given as, 

𝑊𝑊𝑞𝑞 =
𝜌𝜌

𝜇𝜇(1 − 𝜌𝜌)
+

2𝜏𝜏 + 𝜆𝜆𝜏𝜏2

2(1 − 𝜆𝜆𝜏𝜏)
 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 109 of 155 

 

where 𝜌𝜌 = 𝜆𝜆
𝜇𝜇

< 1 is the link utilization, while the latter is given as, 𝑊𝑊𝑝𝑝 = Δ ∗ 0.000005, where Δ is the 

distance covered by the link. The reference value (i.e., 5 us per kilometer) for optical fiber in [PRD] is 
considered. 

The power and performance models have been evaluated, and the power savings and delay increase 
are computed concerning the BAU case (i.e., links neither go to sleep during idle periods nor adopt 
lower rates during busy periods to save power). Φ𝐵𝐵 = 𝜇𝜇 ∗ 10 Watts/Gbps is derived from [Van12] for 
core routers. If LPI is disabled, the link does not go to sleep during idle periods, Φ𝐼𝐼 = Φ𝑖𝑖, where Φ𝑖𝑖 =
0.6 ∗ Φ𝐵𝐵; otherwise, Φ𝐼𝐼 = Φ𝑠𝑠, where Φ𝑠𝑠 = 0.2 ∗ Φ𝑖𝑖. 

Figure 107a shows the impact of LPI and AR on power consumption. LPI generates high savings for 
scenarios with low link utilization, while AR improves the savings for scenarios with high link utilization. 
Figure 107b shows the impact of LPI and AR on delay. With the well-known trade-off between power 
and delay, it can be observed that the delay increase is higher when utilization is low. Moreover, 
increasing 𝜇𝜇 has direct effects on performance degradation and AR further worsens the degradation. 

 
   (a)       (b) 

Figure 107. Impact of LPI and AR on: (a) power consumption, and (b) delay. 

5.3.7.3. gPC Evaluation  
The GEANT network topology dataset [ZOO] has been pre-processed such that missing data on link 
speed is set with 100Mbps (i.e., lower than the minimum value in the dataset, 155Mbps). In contrast, 
those with missing geographical locations (i.e., three nodes) are found to be on the edge of the graph, 
and hence, can be pruned. Figure 108 shows the graphical representation of the considered topology, 
with 37 nodes (corresponding to countries) and 58 links. Given the latitude and longitude data on the 
remaining nodes, the distances covered by the links are computed, which become the bases for 𝑊𝑊𝑝𝑝.  

 

Figure 108. Graph representation of the GEANT-based topology. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 110 of 155 

 

On the other hand, the open telecommunications dataset from Telecom Italia [Bar15] is used as basis 
for the utilization variations on the inter-domain links. The data from the 100x100 grid has been 
aggregated into 100 10x10 grids to emulate traffic aggregation in domains. The aggregate values have 
been normalized, then considered as the link utilization dynamics for a given inter-domain hop in the 
path. For this evaluation, 58 out of the 100 utilization dynamics have been randomly selected to 
correspond to links of the topology. Moreover, 30 days’ worth of data with hourly granularity have 
been used for the following results. The hourly load for each link is obtained as, 𝜆𝜆 = 𝜌𝜌𝜇𝜇, while the 
wake-up time has been fixed to 𝜏𝜏 =30 us.   

Four gPC policies are evaluated: 

• gPCSLA selects the greenest state among the ones available for the given SLA, with 
corresponding rewards, Rd0[x], with d0 indicating that the SLA must be fulfilled; 

• gPCDLA-d1 selects the greenest state among the ones available, also unlocking new states for an 
allowable performance degradation, d1, with corresponding rewards Rd1[x]; 

• gPCDLA-d2 selects the greenest state among the ones available, also unlocking new states for an 
allowable performance degradation, d2, with corresponding rewards, Rd2[x]; and  

• gPCDLA-d3 selects the greenest state among the ones available, also unlocking new states for an 
allowable performance degradation, d3, with corresponding rewards, Rd3[x]; 

where d1 < d2 < d3 and Rd0[x] < Rd1[x] < Rd2[x] < Rd3[x]. The allowable performance degradation, d1=2%, 
d2=5% and d3=10% have been considered, with the following rewards equation: 

𝑅𝑅𝑦𝑦[𝑥𝑥] = (𝑦𝑦 + 1)(2𝑦𝑦 + 𝑥𝑥) 

for using the available green state G𝑥𝑥, or unlocking it via GA level 𝑦𝑦. 

Now, suppose a scenario where a customer orders an inter-domain connectivity service between any 
source S and destination D in each hour in the 30-day period, and the inter-domain links in the 
topology either have: (i) Random power saving modes implemented, uniformly distributed between 
BAU, LPI and LPI+AR; or (ii) LPI+AR implemented in all. The SLA requirement is generated from a 
uniform distribution with 1x, 2x and 3x the current delay for the path. 

For simplicity, but without loss of generality, the green states, {Gx, x=1, 2, 3, 4} have been mapped to 
corresponding power saving intervals: (i) G1, 0-20%; (ii) G2, 21-40%; (iii) G3, 41-60%; and (iv) G4, >60%. 
Note that at the time of the service order, the links can then have different green states available for 
a given gPC policy. 

Figure 109a shows the average power savings in the 30-day period when Random or LPI+AR power-
saving modes are implemented across the topology concerning the BAU case. It can be observed that 
gPCSLA improves the power savings for the inter-domain path by an average of around 12% for the 
Random modes, and around 21% for the LPI+AR. With gPCDLA-d1, the savings improved to around 18% 
and around 31%, respectively. By unlocking greener states with allowable degradation levels, the 
savings increased by around 47% with respect to gPCSLA. Similarly, Figure 109b shows the average 
delay increase for the different gPC policies, which are negligible in the order of 10-5 and 10-4. In this 
evaluation, no changes on the power savings and delay increase have been observed when allowing 
more degradation, d2 and d3, since no new green states were unlocked. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 111 of 155 

 

  
       (a)              (b)                 (c) 

Figure 109.  gPC policies comparson in terms of: (a) power saving, (b) delay increase, and (c) rewards. 

Figure 109c illustrates the total rewards earned for the different gPC policies. Substantial rewards can 
be observed moving from gPCSLA to gPCDLA-d1, and for a negligible degradation. This could be a 
interesting way to drive customers towards earning GA badges and behavioural change. 

5.3.8. Toolbox for scalability of Erlang microservices 

TE component has been designed and developed in Erlang. In D3.2, we describe the component as-is, 
but in this section, we provide details on how the different tools in TeraFlowSDN have been used to 
provide scalability of Erlang microservices. These tools have also been reported as open-source 
software and detailed in D6.4. 

TeraFlowSDN is equipped with a toolbox engineered for the scalability of Erlang-based microservices. 
The primary function of this toolbox is to facilitate the deployment, monitoring, and management of 
Erlang microservices, structured as Docker images, along with ensuring secure inter-service 
connectivity. 

The toolbox comprises four primary components: braid, braidnet, braidcert, and braidnode. Braid 
serves as the client interface, designed to allow seamless interaction with the rest of the system. 
Braidnet is installed on each physical machine, acting as the controlling agent for the containers. 
Braidcert manages the Public Key Infrastructure (PKI), generating certificate and for the private keys 
of the Erlang nodes to connect to each other with TLS. Braidnode, on the other hand, functions inside 
each container as an interface between the orchestrator and between the microservices. 

Unlike conventional tools, this unique toolbox extends beyond merely deploying, managing, and 
monitoring microservices. It strategically exploits Erlang's inherent distributed communication model 
to foster a highly interconnected, efficient, and dynamic microservices ecosystem. 

Moreover, a distinct emphasis has been placed on security. This emphasis enables the toolbox to 
handle containers from numerous customers without compromising on privacy or security, thereby 
augmenting the resilience and versatility of the toolbox and making it a suitable choice for multi-
tenant cloud environments. 

The subsequent section provides an in-depth examination of the architectural design of this toolset, 
detailing the guiding principles, integral technologies, and critical architectural decisions that 
constitute the backbone of the toolbox. 

The following section focuses on the specificities of the toolbox's implementation. Here, we delve into 
how these architectural principles have been translated into tangible solutions. 

Finally, we present a comprehensive analysis of the rigorous testing and validation procedures to 
ascertain the toolbox's robustness and effectiveness. This section elaborates on the methodologies 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 112 of 155 

 

employed, the results obtained, and the toolbox's overall performance, thus affirming the toolset's 
reliability and scalability under real-world conditions. 

5.3.8.1. Architecture 
Figure 110 illustrates a typical deployment of two Erlang microservices (Cluster A and B) over four host 
servers. It shows how the Erlang virtual machines are distributed on the different hosts, and how they 
communicate with each other’s. 

 

Figure 110. Example of deployment of multiple sets of services with braid toolkit. 

Braid: The client Interface 
The braid application serves as the client-side segment of this expansive toolbox, designed to 
streamline the management of diverse services. It operates as an intermediary between the system 
administrator and the services that form the backbone of the ecosystem, ensuring efficient 
deployment and seamless management. 

At its core, braid interacts with services through the REST API provided by braidnet. This API serves as 
the communication channel between braid and the various services it is responsible for, handling all 
requests and responses. Using Representational State Transfer (REST) as the underlying protocol 
ensures that braidnet is both simple and scalable, accommodating an increasing number of services 
as the system expands. The statelessness of REST also enhances the reliability and efficiency of the 
braid system, as it eliminates the need to store and manage session information, thus simplifying the 
client-server interaction. 

Braid's architectural design provides two primary modes of operation: as a client library application 
and as an executable script (escript) that runs as a command-line interface (CLI) tool. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 113 of 155 

 

When used as a client library, braid supports direct integration into other applications. This integration 
can enable these applications to programmatically utilize braid's functionalities, allowing them to 
deploy, manage, and communicate with services within the system. This integration mode adds 
versatility and can greatly extend the toolbox's utility, making braid a powerful component within a 
larger system. 

In contrast, when braid is exported as an escript and run as a CLI tool, it operates independently, 
directly interfacing with the system administrator. This allows the administrator to execute commands 
and operations directly, such as deploying new services, managing existing services, or querying the 
system's state. The CLI tool mode offers a straightforward and highly interactive way of managing 
services, which is especially beneficial in environments that require direct control and rapid feedback. 

By providing these two modes of operation, braid demonstrates architectural flexibility that allows it 
to adapt to a wide array of use cases and deployment scenarios, such as the presented in [NFVSDN21], 
all while leveraging the power of the braidnet REST API to ensure efficient, scalable, and reliable 
operation. 

Braidnet: The Orchestrator 
Braidnet functions as the central orchestrator within the toolbox ecosystem. As a service running on 
each host, it manages local services, which are implemented as Docker containers running the Erlang-
based braidnode application. These Docker images are signed by the client, generated with the help 
of the rebar3_docker plugin, adding an extra layer of trust and validation to the system. The system 
leverages Erlang's innate distributed nature, creating an environment characterized by both scalability 
and fault tolerance. 

Braidnet takes advantage of the Cowboy framework [COW] to offer a REST API for braid clients. This 
API provides a streamlined interface for clients to interact with braidnet, enabling them to perform 
operations and access relevant information. By following REST principles, braidnet establishes clear 
endpoints and supports standard HTTP methods. The REST API, implemented with Cowboy, simplifies 
integration and facilitates seamless communication within the braidnet ecosystem. 

To effectively control and monitor the braidnode instance, braidnet establishes a WebSocket 
connection with it. This real-time communication channel allows braidnet to handle the lifecycle of 
each Docker container, from its initialization to eventual termination. Through its role as an 
orchestrator, braidnet can start, stop, and monitor services, ensuring optimal system operations. 

Braidnet also manages service discovery using its Erlang Port Mapper Daemon (EPMD) 
implementation, which keeps track of the nodes available in the network and the corresponding ports 
for communication. The discovery service provides a crucial functionality that ensures segregation 
between the services of different tenants within the ecosystem by maintaining separate namespaces. 

This tenant segregation allows for a clear isolation of services belonging to different tenants, 
preventing unauthorized access and ensuring secure communication within each tenant's 
environment. Braidnet effectively keeps track of the nodes and their corresponding ports specific to 
each tenant, enabling the orchestration and interaction of services within their respective boundaries. 

The braidnet architecture places a significant emphasis on ensuring secure communication between 
services. One of the main features it provides is the delegation of TLS certificate and private key 
handling to the braidnet orchestrator, as shown in Figure 111. This setup ensures that microservices 
can establish secure, authenticated connections with each other without storing any secrets within 
the Docker containers themselves, effectively minimizing the risk of secret leakage. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 114 of 155 

 

 

Figure 111. The delegation of security and discovery functions to braidnet. 

Braidnode: The Service API 
The braidnode component serves a critical role within the toolbox, furnishing microservices with a 
robust, secure, and authenticated pathway to communicate with other microservices. It achieves this 
through a sophisticated integration with the Transport Layer Security (TLS) stack and a series of 
delegated functions to the braidnet orchestrator. 

One of the standout features of braidnode is its ability to hook directly into the TLS stack. By doing so, 
braidnode facilitates secure and private communications, essential in a microservices architecture 
where numerous services interact frequently. A key element of this setup is delegating the private key 
and certificate validation processes to braidnet. 

Rather than storing and handling these security credentials within the microservice or the Docker 
container, this information is managed exclusively by braidnet. As a result, the microservices can 
establish secure, authenticated connections with each other without having to store sensitive 
information themselves, effectively minimizing the risk of secret leakage. 

Braidnode leverages WebSocket, a real-time communication protocol, to maintain an open line of 
communication with braidnet. This persistent connection allows braidnode to relay logs and status 
updates continuously to the braidnet orchestrator, ensuring that the state of each microservices is 
continually monitored and managed. 

Additionally, this WebSocket connection also enables braidnet to send commands directly to the 
braidnode instance, manipulating the lifecycle of the microservice it controls. Whether it's an 
instruction to start, stop, or restart the service, this direct line of command plays an integral part in 
maintaining a responsive and adaptable microservices ecosystem. 

In a usual distributed Erlang system, node resolution would rely on the Erlang Port Mapper Daemon 
(EPMD). However, within our architecture, braidnode delegates this responsibility to braidnet. 

By doing so, braidnode ensures that it can reliably discover other microservices, even in a highly 
dynamic and distributed environment. This strategy also contributes to braidnet's consolidation as the 
central orchestrator, responsible for maintaining the overall system's organization and connectivity. 

In summary, braidnode provides a robust framework for implementing microservices within the 
toolbox. By integrating with the TLS stack, leveraging WebSocket communication, and delegating 
critical functionalities to braidnet, braidnode framework ensures that microservices can operate 
securely and interact seamlessly and be managed effectively in a highly distributed environment. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 115 of 155 

 

Braidcert: Securing the Infrastructure 
Braidcert is a dedicated component of the toolbox that shoulders the responsibility of Public Key 
Infrastructure (PKI) management. It serves as the foundational pillar for creating secure, authenticated 
connections across a network of microservices. As its functions involve high-level security, braidcert is 
implemented as a separate service, further strengthening its security measures and isolating it from 
potential threats in the wider orchestration layer. 

Braidcert's primary function is to receive certificate signing requests from peers to generate 
certificates. These certificates serve as digital identities, allowing microservices to authenticate each 
other and securely exchange information over the network. In this process, the orchestrator generates 
the private key and sends a signing request to Braidcert in order to obtain the proper certificate. In a 
multi-tenant environment, this functionality plays a critical role by enabling access control at the 
microservice level, preventing unauthorized access, and maintaining tenant isolation. 

Through its effective management of the PKI, braidcert not only ensures secure connections but also 
verifies the identities of the services communicating with each other. This process guarantees that the 
services involved in any communication are indeed the ones they claim to be, enhancing the overall 
security of the infrastructure. 

Considering the significance of its role, braidcert is implemented as a separate service to ensure 
optimal security. By separating braidcert from other orchestrators, it is better shielded from potential 
threats that could compromise the system's security. This design choice aligns with the principle of 
least privilege, allowing each component to have only the necessary permissions and access, reducing 
the potential attack surface. 

Furthermore, every braidnet instance must possess a certificate issued by the infrastructure's PKI. This 
requirement is an additional security measure that ensures only authorized entities can access the 
sensitive cryptographic material braidcert manages. 

Braidcert provides a REST API, which is used by braidnet to securely retrieve bundles of certificates 
and generate new ones for authorized clients. This interface ensures an efficient, secure 
communication channel for obtaining the necessary credentials without exposing them to undue risks. 
This design minimizes the attack surface and ensures that braidcert remains the single, trusted source 
of all cryptographic materials. 

In summary, braidcert is the fortress of the toolbox, securing the infrastructure by managing the PKI 
and facilitating the enforcement of authenticated and secure communications. Its architectural 
design, underpinned by strong security principles and efficient interaction with braidnet, ensures that 
braidcert upholds the trust and integrity in the communication between microservices, ultimately 
contributing to the overall reliability and security of the entire system. 

5.3.8.2. Implementation Details 
This section provides a detailed exploration of the braid toolbox internals. The discussion will focus on 
its specific configuration setup, microservices lifecycle management, service discovery protocol, and 
strategies for secure inter-service communication. Accompanying sequence diagrams provide a 
detailed visual narrative of these processes, enhancing understanding and highlighting the interaction 
between different system components. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 116 of 155 

 

Erlang 
Erlang was chosen as the primary language for designing the orchestration toolbox based on several 
unique qualities that facilitate the development of robust, distributed, and concurrent systems. These 
advantages are particularly well-aligned with the requirements of microservice orchestration. 

Erlang's built-in support for concurrency and distribution, combined with its unique 'let it crash' 
philosophy, provides an excellent framework for managing and orchestrating microservices. It allows 
for the handling of multiple microservices concurrently without a significant impact on system 
performance. If one service encounters an error, it crashes and restarts without impacting the other 
running services, thus ensuring system stability. 

For the orchestration toolbox, the decision to use Erlang is further justified when the microservices 
themselves are written in Erlang and run in Docker containers. Using the same language for both 
orchestration and service implementation removes language barriers, simplifies debugging, and 
allows for greater code reuse. It enhances the development experience and encourages a cohesive 
approach to system design. 

While the current architecture primarily leverages Erlang for both orchestration and the 
implementation of microservices, this does not preclude future adoption of other languages. Indeed, 
the microservices architecture by its very nature allows for each service to be implemented in the 
language best suited to its specific requirements. 

In future iterations of the toolbox, it may be beneficial to implement certain microservices in 
languages other than Erlang if the need arises, perhaps due to the service's unique requirements, the 
need for certain language-specific libraries, or team expertise. 

However, in such scenarios, careful consideration will need to be given to the communication and 
integration between the services, especially in terms of data serialization and deserialization. Despite 
this, the inherent flexibility of the microservices architecture would allow for this evolution without 
significant impact on the overall system design. 

Braidnet Supervision Tree 
Braidnet's supervision tree shown in Figure 112 embodies its dual responsibilities. On one side, there 
is Cowboy, which exposes the REST API to braid clients. This component is crucial in providing an 
interface for external clients to interact with the system and perform various operations. 

On the other side, the supervision tree houses the EPMD server, which plays a pivotal role in 
distributed Erlang systems by mapping node names to TCP/IP ports. This component is essential for 
managing inter-node communication within the system. 

The orchestrator worker, a process responsible for managing the lifecycle of microservices, also 
resides within this part of the tree. It communicates with the Docker containers running the 
microservices and performs actions like starting, stopping, or restarting them based on the commands 
it receives. 

Finally, the pool of container managers oversees the management of the Docker containers hosting 
the microservices. Each manager is responsible for a subset of the containers, ensuring that the system 
can efficiently scale to manage many services. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 117 of 155 

 

 

Figure 112. Braidnet supervision tree. 

Braid Configuration 
When configuring a microservice deployment via the braid toolbox, braid serves as the first-stage 
decision-making entity, selecting the appropriate braidnet instances where the microservices will be 
hosted. This deployment configuration, detailed in a map, is then provided to the chosen braidnet 
instances. 

A glimpse into a typical configuration as a map (associative array) might appear like: 

 

Braid's selection process ensures optimal resource allocation and load distribution across all braidnet 
instances. Upon receiving the configuration, each braidnet instance uses this information to manage 
the lifecycle of the microservices specified therein. This dynamic allocation process enables the system 
to balance the load and effectively utilize resources, thereby enhancing overall performance and 
scalability. 

Lifecycle Management of Microservices 
The sequence diagram Figure 113 depicts the process braidnet uses to manage the lifecycle of 
microservices. It demonstrates how braidnet interacts with the braid client and the braidnode service, 

#{ 
    'braidnet-instance-id-0' => 
        #{ 
            alice => #{ 
                image => <<"stritzinger/braidnode:0.1.0">>, 
                epmd_port => <<"43591">>, 
                connections => ['bob@braidnet-instance-id-1'] 
            } 
        }, 
    'braidnet-instance-id-1' => 
        #{ 
            bob => #{ 
                image => <<"stritzinger/braidnode:0.1.0">>, 
                epmd_port => <<"43591">>, 
                connections => ['alice@braidnet-instance-id-0'] 
            } 
        } 
}. 
 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 118 of 155 

 

interprets the given configuration, and uses that information to initialize, monitor, and eventually 
terminate services. 

Braidnet initiates a Docker container for each microservice on the appropriate server based on the 
service constraints specified in the configuration. After initializing the container, braidnet maintains a 
WebSocket connection to the microservice, enabling real-time monitoring and control over the 
service's lifecycle. 

 

Figure 113. Sequence diagram of the microservices life cycle. 

Service Discovery and Connection Details 
The service discovery mechanism is illustrated in details as a sequence diagram in Figure 114. Instead 
of using the traditional Erlang EPMD within the microservice container, braidnode externalizes this 
functionality to braidnet. 

Braidnet handles the process of discovery and connection establishment between services, using the 
information provided in the configuration. This approach streamlines updates and modifications to 
network configurations as changes are made in one central location and instantly propagated across 
the network. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 119 of 155 

 

 

Figure 114. Sequence diagram of service discovery. 

Securing Inter-Service Communication with TLS 
The sequence diagram in Figure 115 illustrates how the braid toolbox ensures secure communication 
between microservices using TLS. braidcert is responsible for generating the certificates for each 
microservice. 

Upon generating these cryptographic elements, braidnet retrieves them via the braidcert REST API. 
These credentials are then passed on to braidnode, which uses them to authenticate and secure 
connections with other microservices. 

 

Figure 115. Sequence diagram of certificate management and secure connection. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 120 of 155 

 

5.3.8.3. Evaluation and Testing 

Objectives 
The objective of the validation procedure presented in this section is to assess the scalable nature of 
the braid toolbox. The procedure aims to demonstrate that the braid toolbox can reliably handle 
complex services running globally across multiple data centers. By conducting a series of tests and 
measurements, we seek to evaluate the performance and scalability of the toolbox in a real-life 
scenario. 

Methodology 
To ensure meaningful and accurate results, we have defined a comprehensive set of testing and 
validation measures. The tests focus on service startup time, messaging latency between services, and 
container recovery time. The tests performed involves starting multiple sets of services and examining 
their behavior in a manner that closely resembles real-life scenarios. 

The set of services/containers are started one after the other to observe the impact on scalability. By 
carefully monitoring the concurrent services and their effect on performance, we can evaluate the 
scalability of the braid toolbox. Additionally, special attention is given to testing crash recovery and 
measuring the time required to resolve a crashing service. 

Test Environment 
For the testing environment, we have opted to use the fly.io platform. This platform allows us to 
deploy servers globally across multiple geographical regions, which closely mimics real-life scenarios. 
We have deployed 10 braidnet instances on 10 different geographical regions using the fly.io 
infrastructure. The servers used for testing are virtual machines with hardware specifications of 16 
CPU cores and 32 GB of RAM each, as defined by the performance-16x virtual machine offering on 
fly.io. The containers are created using rebar3_docker and are based on a simple Erlang microservice. 

Results 
During our testing process, we collected three significant sets of measurements: startup latency, 
messaging latency, and crash recovery latency. 

The startup time of a new set of services/containers is measured in relation to the number of 
concurrent sets already running. The results indicate the system's ability to handle different loads 
while maintaining acceptable startup times. The graph shown in Figure 116 visually represents the 
relationship between startup time and concurrent services, showcasing braid's scalability. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 121 of 155 

 

 

Figure 116. Container startup time in function of the number of concurrent sets of services. 

The measurement of messaging latency between services is conducted as the number of concurrent 
sets of services increases. This measurement reflects how the system performs under increasing loads, 
particularly in terms of the latency of communication between services. The graph shown in Figure 
117 illustrates the relationship between messaging latency and concurrent services, providing insights 
into braid's scalability. 

 

Figure 117. Message roundtrip time in function of the cumber of concurrent sets of services. 

Container recovery time is evaluated by measuring the time required to resolve a crashing service as 
the number of concurrent sets of services containers increases. This measurement assesses the 
system's ability to recover from failures and maintain stability. The graph shown in Figure 118 
showcases the relationship between container recovery time and concurrent services, demonstrating 
braid's resilience. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 122 of 155 

 

 

Figure 118. Container crash recovery time in function of the number of concurrent sets of services. 

Conclusion 
The result of the validation procedure show that the braid toolkit has the potential to ensure sufficient 
scalability. Despite room for improvement, the tests highlight braid's ability to handle complex 
services running globally across multiple data centers. Erlang's inherent strengths are showcased in 
the results, reaffirming the choice of Erlang as the foundation for the braid toolbox. The validation 
report serves as evidence of braid's performance and scalability, paving the way for further 
enhancements and optimizations. 

5.4. Scenario conclusions 

KPI Target Validation results 
Multi-tenancy > 100 tenants TeraFlowSDN can support more >100 tenants with 

reasonable service latencies. 
At high loads, the response time might increase due to 
database latency and SQL query contention. Future 
releases might study how to enhancement the database 
schema. 

Trust/privacy 100% secured 
connections 

All connection related to the DLT component are secured 
and authenticated. 

DLT transaction delay 10s Average latency is between 2.2 and 3.3 seconds, c.f. 
Figure 75. 

Positioning 100% vehicles We have validated location-awareness in end-to-end 
connectivity services and in network topologies. 
TeraFlowSDN has been extended with an augmented 
data model for topology and connectivity services to 
include GPS coordinates and Regions into service 
endpoints, as well as connectivity service constraints.  
The proposed architecture considers the requested end-
to-end connectivity service provisioning and update 
taking into consideration that location-aware 
connectivity services might need service endpoint 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 123 of 155 

 

migration due to the dynamic nature of joint edge-cloud 
continuum. 

Social < 20% cost Green path computation (gPC) policies are proposed 
with a reward system, in which allowing greener states 
correspond to higher rewards for the lower 
performance. Considering that some green states might 
be unavailable (due to the aforementioned trade-off) for 
a given SLA requirement and link utilization at certain 
time intervals, the introduction of DLAs enables the 
customer to unlock greener states by allowing a certain 
level of performance degradation. By unlocking greener 
states with allowable degradation levels, the savings 
increased by around 47% with respect to gPCSLA. 

 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 124 of 155 

 

6. Scenario 3: Cybersecurity 
This section introduces the third and last scenario explored within the TeraFlow project. This scenario 
addresses the cybersecurity aspects of transport network slices from two perspectives: packet-level 
communication or Layer 3 (IP / L3) and optical physical layer. The study emphasizes the important 
challenges in providing a holistic cybersecurity framework supported by SDN. Key aspects considered 
in this scenario include scalability, detection accuracy and reliability, and prompt response to detected 
attacks. 

First, we introduce the scenario. Second, we present its alignment with the TeraFlowSDN architecture. 
Third, we present the performance evaluation work addressing L3 and the optical layer. Finally, we 
provide a summary of the scenario conclusions and future steps. 

6.1. Scenario Introduction 

Nowadays, when an operator moves towards an automated environment, security becomes a key 
feature since network operations are done by software components operating without human 
intervention or oversight. Moreover, the pervasive softwarisation of network and infrastructure 
components is further increasing their attack surface. Indeed, security must undergo a similar 
technological evolution to enable the resilience of SDN controllers, the automation of security policies 
over the network, the use of Machine Learning (ML) to detect and identify attacks, the utilization of 
DLT to ensure configuration and forensic capacity, and the deployment of NFV security functions.  

The same tools can be used for attacks, such as malicious VNFs or weaponized Artificial Intelligence 
(AI). Therefore, it is crucial to provide a combination of innovative solutions that are scalable in a 
production environment and resilient to sophisticated attacks. These solutions need to be presented 
as a common framework that integrates different security technologies to detect, identify, and 
mitigate both traditional and new generations of attacks across different technology domains, e.g., 
optical and IP layers. Figure 119 depicts an example of the envisioned Cybersecurity scenario and of 
the threats in the context of an automated network. Attacks may target the IP and/or the optical layers 
at the data plane. 

 

Figure 119. Scenario 3: Cybersecurity 

Attacks exploiting the IP layer traverse or target devices located in the access segment (e.g., edge DCs), 
the core network, or core DCs. In this case, per-packet inspection is necessary to detect and identify 
attacks, enabling their mitigation. However, inspecting packets is a demanding operation in terms of 
the processing power needed to process packets. Executing this process at a central packet inspector 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 125 of 155 

 

instance is impractical. Packets must be transported from the remote site, e.g., Central Office (CO) or 
DC, to a central location, incurring significant traffic and computing loads. Therefore, designing 
distributed packet inspection becomes necessary for efficient and effective attack detection at the IP 
layer. Moreover, it is necessary to coordinate the distributed packet inspectors, which means that a 
central entity is still necessary, but only for consolidating and coordinating the network's security 
status. 

Attacks exploiting the optical layer can target devices or fiber installations at any point in the network, 
which represents a large vulnerable surface for attacks. Taking advantage of current-generation 
transceivers, monitoring the security of each optical service in the network is possible. However, 
scalability becomes a problem due to the strict monitoring cycles (in terms of the maximum cycle 
processing time) necessary to monitor the optical services to detect attacks in a reasonable time. For 
instance, in a national network with 50 nodes, a single connection between each pair of nodes will 
account for 2,450 optical services to be monitored. Considering that an ideal monitoring cycle ranges 
from 30 seconds to a few minutes, it becomes crucial to provide a solution that can address such 
monitoring tasks in a scalable way. 

6.2. Alignment with TeraFlowSDN architecture 

We developed a Cybersecurity module to address the broad range of cybersecurity threats present in 
this scenario. The Cybersecurity scenario will validate several components and use cases. The 
Cybersecurity module within TeraFlowSDN comprises three components: Centralized Attack Detector 
(CAD), Attack Inference, and Attack Mitigator. The main components involved in this scenario are 
highlighted in Figure 120. They are deployed in different containers to take advantage of cloud-native 
applications' scalability and reliability features. The Cybersecurity components integrate with 
TeraFlowSDN core components in several ways, as illustrated in  Figure 110. The Service component 
is used for the service provisioning and (re)configuration tasks for attack mitigation. Integration with 
the Device component is also needed to perform changes to specific devices when mitigation actions 
are needed. The Context component detects service updates (i.e., creation and deletion) and retrieves 
service details. The Monitoring component retrieves monitoring data and stores the result of the 
security assessment process.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 126 of 155 

 

 

Figure 120. TeraFlow components used in the cybersecurity scenario 

In addition to the components deployed within TeraFlowSDN, a Distributed Attack Detector (DAD) 
located at remote sites interacts with the TeraFlowSDN Controller. Note that the DAD is an external 
component running outside the TeraFlowSDN. We refer to D4.1, Section 3, for a complete description 
of the components responsible for the Cybersecurity assessment. Use cases of interest for testing the 
validity of these components and apps are monitoring, service, context, device, NBI, and path 
computation. More details about these use cases are provided in D2.2, Section 2. 

6.3. Performance Evaluation 

Due to the broad nature of the attacks analyzed in this scenario, we report the performance evaluation 
of the L3 and optical cybersecurity modules in their own subsection. We start by discussing the 
performance evaluation of the L3 Cybersecurity module. Then, we evaluate the performance of the 
Optical Cybersecurity module. We finalize this section with a summary of the results, and future plans. 

6.3.1. Layer 3 Cybersecurity 

For L3 Cybersecurity, the main objective is to inspect packets as they traverse SDN-enabled L3 devices. 
This requires DAD instances to be located close to the L3 devices and receive a copy of the traffic 
traversing the L3 device. The following sub-sections present the testbed setup, workflows, and results. 

6.3.1.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments 
Classical VPN services network operators provide are unaware of cybersecurity attacks, because such 
capability would require additional appliances or solutions to cope with attacks (i.e., Firewalls, 
Intrusion Detection Systems – IDS, etc.). The additional resources must be either located at the client 
facilities or reachable through traffic engineering (i.e., redirection to a cleaning center) on the network 
operator side. This has been considered a disadvantage if we compare it with Software-Defined Wide 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 127 of 155 

 

Area Network (SD-WAN) [WAN19] or Secure Access Service Edge (SASE) [KAS20] overlay solutions. 
Those solutions provide their own devices and overlay network (agnostic to Multiprotocol Label 
Switching - MPLS) centralized in a cloud platform to optimize the delivery of network services over 
multiple locations and integrate network and security services that operates with their own devices 
close to endpoints. The MouseWorld setup aims to represent a common situation where TeraFlowSDN 
can monitor MPLS VPN traffic and apply ML techniques to detect and mitigate a complex 
representative attack such as cryptomining in the network without dedicated endpoint security 
devices. Cryptomining is a process of validating transactions on a decentralized cryptocurrency 
blockchain. The attack works by creating a botnet of devices, called miners, which are used to validate 
transactions and receive rewards in digital currencies, such as Ethereum (ETH) and Monero (XMR). 
Cryptomining attacks open the possibility of leveraging the computational resources provided by the 
network to the attacker's advantage when these resources are connected to the Internet. In the 
context of the massive adoption of cloud-native technologies and pervasive 5G connectivity, 
cryptomining malware-based attacks infecting the resources of those environments are strongly 
appealing.  

The attacker can use devices already infected with malware or can infect new devices, hijacking their 
resources to create the botnet for mining. Attackers can use various ways to infect devices, such as 
spreading malicious links on social networks, using phishing attacks, or spreading malicious 
applications. 

In addition, the attacker must choose the cryptocurrency to be mined and the mining pool they want 
to join to validate transactions. A mining pool is a service that allows miners to combine their resources 
to validate blocks of transactions and receive rewards in exchange. Once the attacker has collected all 
the pieces, they can set up the botnet to mine cryptocurrencies for the criminal’s benefit. 

To detect cryptomining traffic in a timely and accurate manner, the network is the best place to 
identify these types of attacks [PAS20]. However, detecting cryptocurrency mining activity on the 
network can be challenging, as encryption methods have been adopted in most of today’s network 
protocols. For example, the attacker can use the Secure Socket Layer (SSL)/Transport Layer Security 
(TLS) encryption protocol to hide the cryptomining protocol in the payload of the encrypted 
communication. For this reason, classical techniques of Deep Packet Inspection (DPI) or identification 
of mining pool domain names (in the case of using encrypted Server Name Indication – SNI – or web 
proxies) are ineffective in detecting mining activity in today’s networks and more sophisticated 
techniques are needed to prepare today’s cybersecurity professionals to deal with these problems in 
real-life situations. 

The setup considered for this experiment is illustrated in Figure 121. A Level 3 VPN service (L3VPN) is 
deployed using a TeraFlowSDN Controller instance in the Telefónica facilities (we refer for details to 
D5.1, section 6.2), including Mouseworld Lab for traffic attack generation and Future network Lab for 
IP devices and SDN deployment. The TeraFlowSDN Controller activates this service using provisioned 
templates over the standardized IETF NETCONF SBI against the different Provider Edge (PE) routers 
from ADVA manufacturer. In this demonstration, branch and central office, are implemented with 
Mouseworld OpenStack resources through virtual machines that replay a mix of normal traffic with a 
cryptomining malware activity. Also, the central office provides internet access. 

As part of the VPN service provisioning process done by the TeraFlowSDN Controller, a mirror of the 
traffic in the logical interfaces that conform to the L3VPN is also enforced to copy the traffic towards 
the distributed attack detector co-located with the ADVA router. This distributed attack detector 
component will extract and calculate statistical features from network flows to be delivered to the 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 128 of 155 

 

TeraFlowSDN Controller for further processing. The Cybersecurity components will identify the attack 
as a cryptomining activity and propose a mitigation solution to the TeraFlowSDN core components 
that will trigger the mitigation. This mitigation will be instantiated as a new customized Access Control 
List (ACL) rule in the ADVA router with specific parameters (i.e., transport protocol, destination IP 
address, and destination port). This rule can be enforced in additional PE routers that are part of the 
L3VPN to increase the mitigation capacity. 

 

6.3.1.2. Workflows 
In the case of Scenario 3, two complementary yet distinct workflows need to be implemented. One is 
related to monitoring Layer 3 flows, which work with a monitoring cycle that depends on the (user) 
traffic under exam. The second is the monitoring of optical connectivity services, which work with a 
monitoring cycle that the TeraFlowSDN administrator can define. 

This section presents a few general workflows illustrating how the Cybersecurity component interacts 
with other TeraFlowSDN core components. Later, the specifics of the Layer 3 and Optical workflows 
will be detailed. 

Figure 122 shows the general communication among the core and cybersecurity components when a 
new service is created. During start-up, the Cybersecurity component subscribes to service events 
from the Context component. Then, when a service request is received, the service setup stage is 
triggered, performing the necessary changes involving several components of TeraFlowSDN. A 
detailed workflow of the service setup can be found in Section 5.2.4 of D3.2. After the service is set 
up, the service identifier is returned to the customer who requested the service. Then, the KPI setup 
stage starts. At this stage, the Cybersecurity component is notified by the Context component about 
creating a new service. Then, Cybersecurity will create relevant KPIs in the Monitoring component. 
The specifics of this workflow for Layer 3 and Optical Cybersecurity will be detailed later in this section. 

 

 
Figure 121. Deployment of the cybersecurity scenario focusing on L3 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 129 of 155 

 

 

We will now describe the specific workflows that implement the detection and mitigation of network 
attacks at the IP layer. 

Traffic Capture and Feature Extraction at the Network Edge 

 

In this scenario, we assume that the DAD receives a copy of the traffic (i.e., all the packets) traversing 
the endpoint being monitored for L3 attacks. After the DAD receives the traffic, it is grouped into flow-
level statistics using the TSTAT application (TCP STatistic and Analysis Tool). TSTAT allows real-time 
capture of packets, and their analysis. Figure 123 shows that the DAD communicates via gRCP methods 

 

Figure 122. Scenario 3 workflow: General communication when creating a new service 

 

Core NetApps

Customer Service Context Monitoring Device Cybersecurity

Startup

GetServiceEvents()

Service Request

CreateService(Service)

Service setup

Internal communication for service
setup involving several components

Service Reply

ServiceId

KPI setup

ServiceEvent

SetKpi(KpiDescriptor)Include security-related KPI(s)
associated with the service

 
Figure 123. Scenario 3 workflow: Traffic Capture and Feature Extraction Workflow 

 

Remote site TeraFlow SDN Controller
Packet Processor(s) Distributed Attack Detector Centralized Attack Detector Context

sendTraffic(packets)

AggregatePackets()

GetServiceId(context_id)

ListServices(context_id)

service_list

GetEndpointId(context_id)

ListServices(context_id)

service_list

SendInput(L3CentralizedattackdetectorMetrics)

Empty(message)



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 130 of 155 

 

with the Context component to obtain the service_id and endpoint_id attributes, so the connection is 
traceable in the TeraFlowSDN, and the mitigation strategies can later be implemented on the correct 
devices. Once all the connection data is grouped into an L3CentralizedattackdetectorMetrics object, it 
is sent via the gRCP method SendInput to the CAD. 

Detect Known Attacks using Supervised ML 

 
Figure 124 shows the workflow for the detection of known attacks. The CAD component receives, and 
stores flow statistics from the L3CentralizedattackdetectorMetrics objects. A function is then called 
with these objects as the input to perform the ML inference that will classify the data as belonging to 
a cryptomining attack. If the flow statistic has been classified as a cryptomining attack, the SendOutput 
RCP method will be called. It will send the necessary flow and inference data to the Attack Mitigator 
component in a L3AttackmitigatorOutput object. 

Mitigate Detected Attacks 

 
Figure 125 shows that after the Attack Mitigator (AM) component receives the connection data from 
a cryptomining attack, it will create a mitigation strategy. Currently, the strategy consists of generating 
a rule to drop the connection. AM will then need to communicate with the Context component to 
receive the Service instance belonging to the service_id included in the connection data. After 
receiving the Service object, the ComposeMitigation method will add the new rule to drop the 
connection to it. After calling the RCP method UpdateService with the modified service instance, the 
TeraFlowSDN will propagate the changes to the Device component and modify the router's ACL rules 
to drop the connection, thus finishing the current mitigation strategy. 

 
Figure 124. Scenario 3 workflow: Attack Detection Workflow (Layer 3) 

 

TeraFlow SDN Controller
Centralized Attack Detector Attack Mitigator

make_inference(L3CentralizedattackdetectorMetrics)

alt [prediction tag = crypto]
SendOutput(L3AttackmitigatorOutput)

Empty(message)

 
Figure 125. Scenario 3 workflow: Attack Mitigation Workflow (Layer 3) 

 

TeraFlow SDN Controller
Attack Mitigator Context Service Device Router

GetMitigation()

GetService(ServiceId)

Service

ComposeMitigation()

Execute Mitigation

UpdateService(Service)

GetDevice(DeviceId)

Device

ConfigureDevice(Device)

editConfig(NetConf)

DeviceId

ServiceId



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 131 of 155 

 

Monitor Relevant Cybersecurity-related Metrics 
The Centralized Attack Detector monitors five relevant KPIs for each active service. Below, we list the 
cybersecurity KPIs that are observed and recorded and their associated KPI sample type: 

• Cryptomining detector confidence in security status over the last time interval 
(KPI_ML_CONFIDENCE); 

• Security status against cryptomining attacks of the service in a time interval 
(KPI_L3_CRYPTO_SECURITY_STATUS); 

• Number of attack connections detected in a time interval (KPI_UNIQUE_ATTACK_CONNS); 

• Number of unique compromised clients of the service in a time interval 
(KPI_UNIQUE_COMPROMISED_CLIENTS); 

• Number of unique attackers of the service in a time interval (KPI_UNIQUE_ATTACKERS). 

The values of KPI_L3_ML_CONFIDENCE are collected for predictions that take place during a specific 
time interval (e.g., 5 seconds). This is done separately for predictions corresponding to an attack and 
predictions corresponding to normal traffic. At the end of each time interval, the values of both lists 
are aggregated independently, calculating the average. If an attack connection occurred during that 
time interval, the average confidence of the predictions corresponding to an attack are sent to the 
Monitoring component as KPI_L3_ML_CONFIDENCE and "1" as KPI_L3_SECURITY_STATUS_SERVICE. 
Otherwise, the average confidence of the predictions corresponding to normal traffic is sent to the 
Monitoring component as KPI_L3_ML_CONFIDENCE and "0" as KPI_L3_SECURITY_STATUS_SERVICE. 

The KPI_L3_UNIQUE_ATTACK_CONNS counts the unique attack connections detected in each time 
interval. Like the previous KPIs, these values are collected during each time interval. Once the interval 
is over, these values are aggregated and sent to the monitoring component. Note that the packet 
aggregator running in the Distributed Attack Detector component aggregates the new packets from 
the same connections as soon as they are received, and the characteristics are sent to the ML model. 
For this reason, if subsequent packets are received from the same connections, the Decentralized 
Attack Detector will produce new statistics that the ML model will also ingest. For this reason, 
connections may be detected as an attack more than once. However, in 
KPI_L3_UNIQUE_ATTACK_CONNS we will only count these repeated connections once. 

Similar to KPI_L3_UNIQUE_ATTACK_CONNS, KPI_UNIQUE_COMPROMISED_CLIENTS measures the 
number of compromised cryptocurrency clients in each time interval by counting the number of flows 
that correspond to the same source IP. On the other hand, KPI_UNIQUE_ATTACKERS measures the 
number of unique attackers in each time interval by counting the number of flows that correspond to 
the same destination IP. KPI_L3_UNIQUE_ATTACK_CONNS provides a measure of the intensity with 
which compromised clients attack the network. KPI_UNIQUE_COMPROMISED_CLIENTS and 
KPI_UNIQUE_ATTACKERS extend this information by revealing the scale of the compromised network 
and quantifying how many attackers are involved in attacking the network. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 132 of 155 

 

 

Figure 126 shows that the Centralized Attack Detector creates these KPIs at launch time by registering 
KpiRequest for each KPI through the Monitoring client and requesting the Monitoring service process 
to create and add them to the Management Database (DB). For each KpiRequest, a KpiDescriptor 
includes service information, device and endpoint identifiers, and each KPI's description and KPI 
sample type. After successful creation, the KPIs can be effectively monitored by sending samples to 
the Monitoring service via the IncludeKpi RPC method. When the Monitoring service receives each 
sample, they are introduced into the Metrics DB to be accessible through the Grafana dashboard. 

6.3.1.3. Results 
To assess the attack detection capabilities implemented in the scenario, we now focus on evaluating 
the resilience of the machine learning model deployed within the Centralized Attack Detector 
component against adversarial attacks. By understanding the model's response to adversarial attacks, 
we gain insights into its effectiveness in identifying and mitigating sophisticated intrusion to perform 
cryptomining attacks. Furthermore, we devote considerable attention to evaluating the scalability 
performance of the Layer 3 Cybersecurity components. This examination aims to determine the 
system's ability to sustain optimal performance levels as the volume of data traffic increases. By 
assessing scalability, we ensure the cybersecurity infrastructure remains effective and efficient even 
under heavy workload conditions. 

Evaluation of the Resiliency of the Cyberthreat Detector Against Adversarial Attacks 
The technique of adversarial training was chosen to secure the ML model deployed in the Centralized 
Attack Detector (CAD) component against the recently appeared adversarial attacks, which are inputs 
specifically designed to deceive the ML model and trigger incorrect predictions that benefit the 
attacker.  

 
Figure 126. Scenario 3 workflow: Cybersecurity KPIs Monitoring Workflow (Layer 3) 

 

TeraFlow OS SDN Controller Remote site
Context Monitoring Centralized Attack Detector Distributed Attack Detector Packet Processor(s)

Cybersecurity monitoring workflow from the Centralized Attack Detector component

Register new KPIs

loop [(for monitored service)]

loop [(for monitored kpi)]
CreateKpi(KpiRequest)

SetKpi(LpiRequest)

KpiID

Monitor KPIs periodically

Collect KPIs data

sendTraffic(packets)

AggregatePackets()

GetServiceId(context_id)

ListServices(context_id)

service_list

GetEndpointId(context_id)

ListServices(context_id)

service_list

SendInput(L3CentralizedattackdetectorMetrics )

Empty(message)

Send KPIs data

loop [(for monitored service)]

loop [(for monitored kpi)]
ComputeKpiSample(KpiID)

IncludeKpi(KpiID, timestep, KpiValue)



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 133 of 155 

 

The adversarial training approach is a technique employed in the field of ML, which entails retraining 
a model with Adversarial Examples (AEs). This technique aims to enhance the model's robustness and 
ability to defend itself against potential attacks by exposing it to various adversarial scenarios. By 
undergoing this process, the model can better adapt to the challenges presented by such attacks, 
thereby increasing its overall efficacy in combating them. Specifically, we retrain the machine-learning 
model with high-quality AEs to create a resilient classifier that can defend itself against adversarial 
attacks.  

Therefore, to strengthen the TeraFlowSDN ML-based attack detectors against adversarial attacks, we 
designed a Generative Adversarial Network (GAN)-based solution to generate high-quality AEs, which 
are very similar to real attack data but can fool the ML-based attack detector by misclassifying them. 
These high-quality AEs can be used later to retrain the TeraFlowSDN ML models and fortify the attack 
detectors against these sophisticated attacks.  

Specifically, once generated, these AEs are incorporated into the training dataset, and the ML model 
is retrained with it to increase its robustness against the attack. In this way, the decision boundary will 
be adjusted to classify these AEs correctly. However, it should be noted that it is still possible for an 
attacker to generate new AEs that can cause the model to behave improperly. Nevertheless, it should 
be more difficult for the attacker to produce effective new AEs using only small perturbations. 
Moreover, this situation will be more challenging as the black-box model continues to be retrained 
with these AEs in the future. However, adding AEs to the training data set inevitably increases the 
variability of the data, which can hinder model learning and degrade model performance. 

Our solution is inspired by the standard GAN architecture proposed in [GOO14] that consists of two 
main components: the generator and the discriminator. In [MOZ22] it is shown that this architecture 
can be used to generate synthetic network traffic data that can fully replace real data in the training 
of ML models without significant performance loss. 

The generative model developed in this scenario extends the MalGAN architecture [HU23]. This design 
uses the discriminator to model a third component, the unknown black-model target (e.g., the 
attacked TeraFlowSDN ML model). The discriminator in this specific setting is referred to as a 
substitute model, as it will try to learn the black-box behavior. Consequently, this configuration implies 
a higher complexity in the training process than the standard GAN [GON21] as the behaviour of a given 
classifier that will act as a black-box model during the training phase must also be tracked.  

Figure 127 shows an overview of the MalGAN architecture, in which each box contains an ML model 
that produces predictions, and each circle contains input or output data. These boxes are from left to 
right: (i) the generator, which is the Deep Neural Network (DNN) to be trained for AE generation, (ii) 
the black-box detector, which is the model that is the target of the attack, and (iii) the substitute 
model, which will try to learn the behavior of the target model and will also serve as a trainer for the 
generator to learn how to produce effective AEs.  

Benign data represents the normal traffic transmitted on the network and malign data models the 
attack that will be manipulated to fool the ML (black box) model into misclassifying it. Unfortunately, 
experimental observations showed that although the AEs generated by a MalGAN achieved a very 
good ratio of misclassification when input to the black box model (very close to 100% evasion ratio), 
they were very different from both real malign and benign examples, which can favor their detection 
by using simple statistical filters (e.g., based on the mean of the real benign and malign data 
distributions). 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 134 of 155 

 

 
Figure 127. Overview of the enhanced GAN solution based on MalGAN 

As a novelty, our enhanced version of the MalGAN architecture uses a custom activation function 
based on the Smirnov-Transform (ST) [GON22] as the last layer of the generator to help generating 
AEs that mimic the statistical behaviour of real malign examples, transforming the generator output 
variables into variables that from a statistical perspective are distributed exactly the same as the input 
variables.  

Our proposal is related to a key problem with GANs. Typically, without further tuning, the output 
distribution of each of the random variables obtained in the generator output is approximately 
normal. This is related to the mode-collapse problem, a well-reported behavior of the GANs. 

To address this problem, the generator's job is facilitated by using as an activation function of each 
output variable a customized function able to capture the statistical subtleties of each variable of the 
malign data. 

Each customized function implements the inverse of the Smirnov-Transform of each malign data 
variable. This transformation converts random vectors with normal marginal distributions (the output 
of a normal GAN) into random vectors with approximately the marginal distribution of the malign data 
variable. 

In addition, the ST activation function is fully deterministic and differentiable, which allows to be 
seamlessly integrated into the backpropagation step during the GAN training processes. In [GON22], 
experimental results demonstrated the significant improvement provided by this custom activation 
function when applied in GAN architectures in terms of the quality of the generated samples. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 135 of 155 

 

 

Figure 128. (Left column) Distances between samples of real and synthetic data distributions: BM (benign and malign data), 
MG (malign and generated malign data), MGF (malign and generated malign data that fool the black-box model), BG 

(benign and generated malign data), GG (two samples of generated malign data) and MM (two samples of malign data). 
(Right column) Evasion ratios: (blue) generated malign examples (AEs) and (orange) real malign examples that are 

classified as benign by the black-box model. In all figures, the x-axis represents the GAN training epochs. 

The GAN was trained with the same datasets used in 7.6.1.1.2 of D5.2 and previously described in 
[PAS18]. The generator and discriminator networks were defined as a stack of three FCNN (Fully 
Connected Neural Network) layers assuming a moderate complexity in the black box model. In case 
the black box model was supposed to be more complex, more layers and neurons could be added to 
the generator and discriminator. The details of the training process and hyperparameters used are 
similar to those described in [GON22]. 

Figure 123 compares the results obtained for a Vainilla MalGAN to our proposal (MalGAN equipped 
with ST activation functions). The top row shows the vainilla MalGAN distances (Figure 128a) and 
evasion ratios (Figure 128b) at each epoch, and the bottom row plots the distances (Figure 128c) and 
evasion ratios (Figure 128d) for a MalGAN equipped with ST activation functions.  

It can be seen that although the evasion ratios of the Vainilla MalGAN are roughly 1.0, this architecture 
fails completely to generate synthetic AEs that are close to the malign data and far from the benign 
data since its distances between (i) maligns and generated malign (MG), (ii) maligns and generated 
maligns that fool the black box model (MGF), and (iii) benigns and generated maligns (BG) are very far 
from the expected: BG should be similar to the distance between benign and malign data (BM) and 
MG and MGF small and close to the distance between two samples of malign data (MM). This is a clear 
symptom that the generator is producing adversarial (synthetic) examples that are very different from 
real malign examples and, therefore, they could be identified in a real environment using a simple 
statistical filter. Note that to fortify an ML model against these types of attack effectively, AEs should 
be virtually indistinguishable from real malign data.  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 136 of 155 

 

It is worth noting that the Vainilla MalGAN training process was slightly modified to avoid generating 
synthetic data that were very far from the real data by substituting the black box labels that were 
added to the synthetic AEs by their real labels. However, as shown in Figure 128a, the distances of the 
generated synthetic data concerning benign and malign data are still not achieving the expected good 
behaviour as they are far from both the benign and malign data. 

In sharp contrast, our proposal (MalGAN equipped with ST activation functions) generates AEs that 
are close to the real maligns (Figure 128c), as (i) the MG and MGF distances are small and close to MM 
and (ii) BG distances are very similar to BM. The trade-off of this solution is that the evasion ratios 
(blue line in Figure 128d) are not as good as the obtained with the Vainilla MalGAN but at least greater 
than the ratio of misclassified malign data (orange line in Figure 128d).   

Finally, after high-quality AEs were produced, the black-box model of the CAD component was 
retrained using these high-quality AEs to create a resilient ML-based classifier that can defend itself 
against the suggested threat model.  

To test the degree of resilience of the retrained ML model, we reserved a dataset of malign data that 
was not used for training the GAN. 

The reserved data has not been seen by the GAN during its training and can, therefore, be considered 
as data similar to that which could appear in a real scenario. By using examples from this dataset along 
with Gaussian noise vectors, we generate synthetic samples that are statistically very similar to an 
attack generated by a malicious attacker. 

To measure the degree of resilience that the ML model will offer in real-time, we count the synthetic 
samples that manage to deceive the new version of the ML model strengthened with our AEs. This 
approach enables us to assess the robustness of the model to adversarial attacks in a real-world 
scenario. 

Our scenario's result was a retrained ML model, in which the accuracy in detecting new AEs generated 
with different MalGANs increased to 99% (i.e., the evasion ratio decreased from the original 48 to 1%).  

Conclusions 

In conclusion, the evaluation of the resiliency of the cyberthreat detector against adversarial attacks 
focused on using adversarial training to secure the ML model deployed in the CAD component. 
Adversarial training involves retraining the ML model with AEs to enhance its robustness against 
potential attacks. The goal was to create a resilient classifier to defend itself against adversarial 
attacks. 

To strengthen the ML-based attack detectors, a GAN-based solution was designed to generate high-
quality AEs that closely resemble real attack data. These AEs were used to retrain the ML models in 
the TeraFlowSDN system, fortifying the attack detectors against sophisticated attacks. By 
incorporating the AEs into the training dataset, the ML model's decision boundary was adjusted to 
correctly classify these AEs, making it more difficult for attackers to generate new effective AEs using 
small perturbations. 

The proposed solution utilized an enhanced version of the MalGAN architecture, which employed a 
custom activation function based on the ST. This activation function helped generate AEs that mimic 
the statistical behavior of real malign examples, addressing the mode-collapse problem typically 
associated with GANs. The ST activation function transformed the output variables of the generator 
into variables distributed exactly the same as the input variables from a statistical perspective. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 137 of 155 

 

Experimental results demonstrated the superiority of the enhanced MalGAN equipped with ST 
activation functions over the vanilla MalGAN. While the evasion ratios of the vanilla MalGAN were 
high, the synthetic AEs it generated were very different from both real malign and benign examples, 
making them potentially detectable using simple statistical filters. In contrast, the enhanced MalGAN 
produced AEs that were close to real malign examples and exhibited distances similar to the expected 
behavior between benign and malign data. 

Next, the black-box model of the CAD component was retrained using these high-quality generated 
AEs to create a resilient ML-based classifier. The degree of resilience was tested by evaluating the 
ability of the retrained model to detect synthetic samples generated from a dataset of unseen malign 
data. The results showed a significant improvement in the accuracy of detecting new AEs, with an 
evasion ratio decreasing from 48% to 1%. 

Scalability Performance Evaluation 
In this section, we focus on the scalability performance evaluation of the Layer 3 Cybersecurity 
components. 

Experimental Setup 

The proposed experiment aims to evaluate the performance of a Centralized Attack Detector (CAD) 
component under different load levels. The experiment will be conducted using a set of 10 Distributed 
Attack Detectors (DADs), which will generate traffic to the CAD component. The performance of the 
CAD will be evaluated based on the loop time, which is the time required for a request to be processed 
by the CAD component. The loop time is measured as the time taken for a request to travel from a 
DAD instance to the CAD instance, which in turn sends a message to the Attack Mitigator (AM) 
component, back to the CAD instance, and finally to the DAD instance.  

To ensure that components can adapt to varying network traffic, the experimental setup leverages 
the horizontal pod autoscaling capabilities of Kubernetes, in addition to the service provided by the 
Linkerd service mesh. By dynamically adjusting the number of replicas of the centralized components 
(CAD and AM) based on the current load level, the horizontal autoscaling service allows for 
maintaining near-to-optimal performance and responsiveness of the attack detection and mitigation 
process. 

To saturate the CAD, the experiment starts with a single DAD instance and gradually increases the 
number of DAD instances over time. The number of DAD instances will be increased every 30 seconds 
until the maximum number of DAD instances is reached. The component will then wait for a 
stabilization time of 30 seconds before gradually reducing the number of DAD instances every 30 
seconds until only one instance remains. Figure 129 shows the behavior just described where the 
number of DAD instances varies over time. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 138 of 155 

 

 

In addition, the experiment involves the injection of network traffic under both normal and attack 
conditions. The rationale behind this approach is to include the evaluation of the Attack Mitigator 
component within the assessment of the scalability performance. By doing so, the experiment ensures 
that the components are subject to realistic conditions, effectively simulating normal and attack traffic 
scenarios. 

Graphical Representations 

The following plots will be generated offline using the data generated during each test: 

• Nº of Active CAD Instances Over Time: This line plot will show the number of active CAD 
instances over time. The x-axis will show the elapsed time in seconds, and the y-axis will show 
the number of active CAD instances. The plot will also show the mean CPU usage calculated 
by the horizontal pod scaling service. 

• Distribution of Loop Times Over Time: This box plot will show the distribution of loop times 
for different number of active CAD instances. The x-axis will show the elapsed time in seconds, 
and the y-axis will show the maximum, minimum, mean, and median loop times for each 
interval of time without overlap.  

• Number of DAD requests processed Over Time: This line plot will show the number of 
requests processed by all active DAD components over time. This diagram will mainly be used 
to illustrate the increase, stabilization and decrease in load that we want to create in our 
experiment. 

• Mean and Standard deviation of Loop Times Over Time: This bar plots will illustrate the 
behavior of the mean and standard deviation of the Loop Times of all DAD components in 20 
second intervals over time. 

Parameters 

The following parameters will be used in the experiment: 

• Number of DAD Instances: The experiment will start with a single DAD instance and gradually 
increase the number of instances over time. The maximum number of DAD instances will be 
predetermined and should be sufficient to saturate the CAD component. The number of DAD 

 
Figure 129. Experimental setup of scalability experiments. 

 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 139 of 155 

 

instances used in the experiment was determined to be 8 after careful experimental 
evaluation. The objective was to select several instances that would provide a sufficient load 
to saturate the CAD component, ensuring that it operates under demanding conditions 
representative of real-world scenarios. 

• Time Interval: The experiment will increase or decrease the number of DAD instances every 
30 seconds. This time interval allows for gradual changes in load and provides stability periods 
for measurement. 

• Stabilization Time: After reaching the maximum number of DAD instances, the experiment 
will wait for a stabilization time of 30 seconds. This period allows the system to stabilize under 
the maximum load before the gradual decrease in DAD instances begins. 

• Target CPU Usage: The experiment incorporates the mean CPU usage of the CAD replicas as a 
crucial metric for dynamic autoscaling of the CAD component. This metric provides valuable 
insights into the computational resources consumed by the CAD component. By continuously 
monitoring the mean CPU usage, the autoscaling system can assess the efficiency and 
scalability of the CAD component in processing the workload generated by the DAD instances. 
The target CPU usage represents the desired level of CPU utilization that ensures the CAD 
component is appropriately stressed while still operating within acceptable resource limits. 
This target value is strategically set based on the system's capacity and performance 
requirements, aiming to achieve an optimal balance between resource utilization and 
performance. In this experiment, the Target CPU Usage has been specifically set to 80% of 
CPU utilization, indicating the desired level of resource utilization that triggers dynamic 
adjustments in the number of CAD replicas. 

• Maximum Number of CAD Replicas: The number of CAD replicas is a critical parameter that 
reflects the scalability of the CAD component. The maximum number of CAD replicas in the 
experiment will be monitored and controlled. This parameter determines the upper limit of 
the CAD component's scalability and its ability to handle increasing load levels. By gradually 
increasing the number of CAD replicas, the experiment assesses the component's ability to 
distribute the workload effectively across multiple instances and maintain performance under 
high demand. The maximum number of CAD replicas is determined based on system 
constraints, such as available computational resources, network capacity, and the desired 
level of redundancy. It ensures that the experiment covers a range of scalability scenarios, 
from the minimum number of replicas to the point where adding more replicas no longer 
yields significant performance improvements. The maximum number of CAD replicas has been 
set to 20. 

• Inference Batch Size: The batch size parameter plays a crucial role in the experiment by 
determining the number of data instances processed simultaneously by the ML model within 
each CAD replica. The batch size affects the ML model's computational efficiency and memory 
utilization during inference. A larger batch size allows for parallel processing of more data 
instances, which can enhance the overall throughput and speed of the model. However, using 
a very large batch size may lead to higher memory requirements and increased inference time 
per batch. 

On the other hand, a smaller batch size reduces memory usage and inference time per batch. 
However, it may result in slower overall processing due to the need for more frequent model 
updates and potential overhead in processing smaller batches. Through careful 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 140 of 155 

 

experimentation and evaluation, we determined that a batch size of 10 balances 
computational efficiency and overall throughput. It ensures that the ML model within each 
CAD replica efficiently processes a moderate number of data instances simultaneously, 
achieving good performance without excessive memory demands or inference delays. 

Results 

As we specified in the experimental setup, we chose to activate up to 10 Distributed Attack Detector 
machines at constant intervals to show an increase in load in the CAD component. After a stabilization 
time, we gradually shut down these machines to show the inverse effect, causing a load decrease. This 
behavior can be observed in Figure 130, where we show the number of requests processed by all DAD 
machines over time. 

 

 

 

 
Figure 130. Sum of the number of requests processed by all DADs over time. 

 

 

 
Figure 131. Evolution of CAD replicas and CPU usage over time 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 141 of 155 

 

In Figure 131 we can observe the evolution of the number of existing CAD replicas along with their 
mean CPU usage calculated by the horizontal pod scaling service along with the target CPU usage, 
which in this case was set to 80%. With a limited number of active DADs, CPU usage remains below 
the set threshold, and the number of CAD replicas remains constant. However, as the number of active 
DADs grows, the CPU usage starts to exceed the specified threshold. In response, the horizontal pod 
autoscaling service initiates the creation of new CAD replicas. 

The creation of additional CAD replicas allows for efficient distribution of the workload among the 
CAD components. These newly created replicas become available to the DAD machines through 
Linkerd's load balancing mechanism, ensuring a balanced distribution of requests. 

As the traffic escalates and the number of active DADs keeps rising, the CPU usage consistently stays 
above the threshold. Consequently, the horizontal pod scaling service continues to generate new CAD 
replicas, aiming to keep up with the increasing demand for processing power. 

However, once the traffic reaches a stabilized state, we observe a plateau in CPU usage (i.e., between 
500 and 600 seconds). The CPU usage no longer exhibits rapid growth beyond the specified threshold, 
indicating that the current number of CAD replicas is sufficient to handle the incoming requests 
effectively. Consequently, the horizontal pod scaling service halts the creation of new replicas. 

Over time, as the workload fluctuates, there may be instances where the CPU usage decreases below 
the threshold. In such cases, the horizontal pod scaling service identifies the surplus CAD replicas that 
are no longer required and deletes them. This intelligent scaling mechanism ensures optimal resource 
utilization, dynamically adapting the number of CAD replicas based on demand. 

 

In Figure 132, we can observe that thanks to the horizontal scaling service that enables the creation 
of new CAD replicas as needed, the median loop time stays constant throughout the experiment. One 
noteworthy observation in the experiment is that a larger range of values is present in the third and 
fourth quartile groups in the first three 50-second intervals. This can be justified because as the traffic 
suddenly increases, the horizontal pod scaling service takes some time to adjust to the sudden change 
by creating new replicas. This can increase the loop time for a short time initially as the CAD 

 

Figure 132. Box plots describing the DAD loop times in 50 second intervals 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 142 of 155 

 

component is not able to handle all the traffic as quickly. However, as this upward trend in CPU load 
increase continues, we also observe in Figure 131 that new replicas are created more quickly as the 
service considers this increase a trend. Therefore we do not see these big increases in loop time in 
further stages of the experiment. 

 

In Figure 133 we can observe the mean loop time in all DAD machines over time in 20 second intervals. 
The figure shows that the mean loop time stays mostly stable throughout the experiment thanks to 
the creation of new CAD replicas that allow this component to handle the increased traffic. We can 
notice a small spike in the mean loop time at the beginning of the experiment when the horizontal 
pod scaling service still had not noticed the increase in traffic and had therefore not triggered the 
creation of new replicas, causing the requests to be answered more slowly. In a similar fashion, we 
can observe that at the end of the experiment, the mean loop times are smaller than average, this is 
because the system is experiencing reduced traffic and still has a high number of replicas to handle it, 
which will slowly be removed as the horizontal pod scaling service detects the decrease in CPU usage. 

Conclusions 

Based on the experiment results, it can be concluded that the implemented experimental setup 
successfully demonstrated the effect of load variation on the CAD component's performance. The 
number of requests processed by the DAD machines showed an increase during the load increase 
phase and a decrease during the load decrease phase, validating the experimental setup. 

The evolution of the number of CAD replicas and their mean CPU usage over time showed that the 
horizontal pod scaling service effectively created new CAD replicas as the load increased, maintaining 
the CPU usage above the threshold. This ensured that the CAD component could handle the increased 
traffic, demonstrating the effectiveness of dynamic autoscaling. Once the traffic stabilized, the CPU 
usage reached a steady state, and the number of CAD replicas remained constant, indicating the 
system's stability under the given load conditions. 

The distribution of loop times over time showed that while there were slight increases in loop time 
during the initial stages of load increase, as the system adapted by creating new replicas, the loop 

 

Figure 133. Mean loop time of DAD machines over time in 20 second intervals 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 143 of 155 

 

time stabilized and remained consistent throughout the experiment. The mean loop time in all DAD 
machines also remained stable, with only a small spike observed at the beginning when the scaling 
service had not yet triggered the creation of new replicas. 

In summary, the experimental results confirmed the scalability and performance of the CAD 
component under varying traffic loads. The dynamic autoscaling mechanism effectively adjusted the 
number of CAD replicas based on CPU usage, allowing the component to handle increased traffic while 
maintaining stable loop times and mean processing times. These findings demonstrate the viability 
and effectiveness of the proposed system architecture in real-world scenarios involving cybersecurity 
components and emphasize the importance of load testing and scalability evaluations in ensuring the 
robustness and efficiency of cybersecurity systems. 

6.3.2. Optical Cybersecurity 

Optical Cybersecurity's main objective is to perform physical layer attack detection over all the optical 
services running in the network, within a predefined monitoring cycle (e.g., 30 seconds). This requires 
the workflow to be divided among a few components, providing the scalability necessary for the task. 
In D5.2, Section 7.6.2.1, the results of accuracy of the models used to detect and identify the physical 
layer attacks were reported. In D5.3, we focus on the scalability results. The following presents the 
testbed setup, dataset, workflows, and results. 

 

6.3.2.1. Emulated Optical Setup for Optical Cybersecurity Experiments 
The objective of this setup is to enable us to reproduce Optical Performance Monitoring (OPM) data 
from optical physical layer attacks captured in a real-world testbed. Since scalability is a key concern 
in this scenario, we need to be able to quickly create a high number of optical services being operated 
with the help of TeraFlowSDN. Then, TeraFlowSDN is responsible for its optical cybersecurity 
assessment. 

Due to the high complexity, time constraints, and cost associated with reproducing experiments with 
real optical devices, we decided to use an emulated optical infrastructure. The high complexity comes 
from the fact that imposing attacks on the physical layer of optical networks require special 
equipment, and very specific configurations. Moreover, there are several time constraints. For 
instance, once (re)configured, optical devices may require a few minutes to a few hours to reach a 
stable working condition, making it impractical for experiments to be reproduced several times, as 
required in our case. 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 144 of 155 

 

 

Figure 134 presents a simplified illustration of the setup considered. We use TeraFlowSDN at the 
control plane. The components tested are the Centralized Attack Detector (referred to hereinafter as 
Attack Detector in the context of the optical layer), Attack Inference, and Attack Mitigator. The 
Monitoring component and Prometheus are used as data sources for the visualizations, which are 
created using Grafana. We also created a custom script that acts as an OSS/BSS and can be configured 
to generate optical service requests to TeraFlowSDN’s SBI. 

The emulated optical network was configured to replay the dataset reported in [JLT2019]. The dataset 
consists of OPM samples collected from a real testbed using commercial coherent transceivers, able 
to report detailed OPM parameters with a frequency of once per minute. The data was collected using 
a custom-made agent and consolidated into a dataset. The OPM features captured were: 

• Chromatic dispersion 
• Differential group delay 
• Optical signal-to-noise ratio 
• Polarization-dependent loss 
• Q-factor 
• Block errors before FEC 
• Bit error rate before FEC 
• Uncorrected blocks 
• Bit error rate after FEC 
• Optical received power 
• Optical received frequency 
• Loss of signal 

In addition to normal operating conditions, the setup was configured to emulate three types of attack: 
in-band jamming, out-of-band jamming, and polarization scrambling. For each type of attack, a light 
and a strong intensity were imposed, forming seven attack conditions: 

1. Normal operating conditions 
2. Light in-band jamming attack 

 
Figure 134. Simplified view of the emulated deployment 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 145 of 155 

 

3. Strong in-band jamming attack 
4. Light out-of-band jamming attack 
5. Strong out-of-band jamming attack 
6. Light polarization scrambling attack 
7. Strong polarization scrambling attack 

Each attack condition was captured for 24 hours, which accounts for any transition period that the 
transmission might undergo (i.e., instability of the channel due to changes). 

The dataset was used by a custom-made Optical Line System (OLS) that emulates the optical network 
and communicates with TeraFlowSDN. The emulation happens in the optical service provisioning and 
the optical service monitoring phases. The emulated OLS assumes an optical data plane with infinite 
spectrum resources. This enables us to perform stress tests and validate the cybersecurity 
component's scalability properties without worrying about the service blocking ratio performance of 
the service provisioning strategy. 

The OLS reports OPM values to TeraFlowSDN during the optical service monitoring according to a 
configurable setting. By default, new optical services will replay data pertaining to normal operating 
conditions. However, each channel can be associated with a particular attack condition, upon which 
the emulated OLS will start replaying, for that specific service, the data captured from the attack 
condition. 

6.3.2.2. Workflows 
The Optical Cybersecurity scenario follows a similar service creation workflow as the L3 one. However, 
when initializing the Attack Detector, the component retrieves a list of current services. Figure 135 
shows the initialization of the Attack Detector component. The component retrieves a list of all 
services current running in the network. The Attack Detector filters only those related to optical 
services and keeps them in an internal list. The internal list maintains the current optical services 
running in the network by using the events API from the Context component, as explained next. 

 

Figure 136 is similar to the one introduced in the L3 Cybersecurity but reproduced here for 
completeness. Figure 136 shows the communication among the core and cybersecurity components 
when a new service is created. First, during start-up, the Cybersecurity component subscribes to 
service events from the Context component. Then, when a service request is received, the service 
setup stage is triggered, performing the necessary changes involving several components of 
TeraFlowSDN. A detailed workflow of the service setup can be found in D3.2, Section 4.2.4. After the 
service is set up, the service identifier is returned to the customer who requested the service. Then, 
the KPI setup stage starts. At this point, the Cybersecurity component is notified by the Context 
component about creating a new service. Then, the Cybersecurity component will create relevant KPIs 
in the Monitoring component. 

 
Figure 135. Initializing the Optical Attack Detector component 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 146 of 155 

 

 

Given that the Attack Detector has an updated list with all the active optical services, the Optical 
Cybersecurity module periodically monitors all the services, checking whether or not they are under 
security threats. The operator can select the monitoring cycle (i.e., the interval between two 
consecutive monitoring loops) based on the pulling rate of OPM data from the optical devices. In 
current networks, we believe a setting between 30 seconds and 1 minute is appropriate, given that 
shorter cycles should not yield significant benefits [Vel17, JLT2019]. 

 

 

Figure 136. Scenario 3 workflow: General communication when creating a new service 

 

Core NetApps

Customer Service Context Monitoring Device Cybersecurity

Startup

GetServiceEvents()

Service Request

CreateService(Service)

Service setup

Internal communication for service
setup involving several components

Service Reply

ServiceId

KPI setup

ServiceEvent

SetKpi(KpiDescriptor)Include security-related KPI(s)
associated with the service

 
Figure 137. Cybersecurity monitoring of optical services 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 147 of 155 

 

Figure 137 shows the workflow followed during each monitoring cycle. To better represent the 
functionality of the Attack Detector, we separate the Attack Detector into two parts: stateful and 
stateless. The stateful part maintains the current list of optical services and triggers the monitoring 
cycle. The stateless part is responsible for performing the monitoring cycle for each individual service. 
This design provided us with a scalable yet flexible Optical Cybersecurity module. 

First, for each optical service, the stateful Attack Detector requests the stateless part, delegating the 
monitoring of each service. Then, the stateless part of the Attack Detector queries the cache for the 
latest monitoring samples. The cache allows us to offload the Monitoring component from queries 
that encompass a large number of samples. Then, we can query the Monitoring component requesting 
only the samples since the last monitoring cycle. The Attack Detector also updates the cache with the 
latest samples. Then, based on a window of samples, the Attack Detector queries the Attack Inference, 
which returns whether or not an attack is being observed in the service. The Attack Detector saves the 
result of the inference in the Monitoring component, enabling the analysis of the monitoring data and 
the ML inference. Based on this result, the Attack Detector may also trigger the Attack Mitigator. 

The figure does not represent the interaction with the Attack Mitigator due to its straightforward 
implementation. In summary, upon receiving the attack report, the Attack Mitigator will establish a 
new optical service following the make-before-break principle. Once established, the new optical 
service will receive all the traffic from the service under attack. Finally, the service under attack will 
be torn down. 

6.3.2.3. Results 
In this section, we present the performance evaluation of the Cybersecurity component used to detect 
physical layer attacks in optical networks. First, we present a quick summary of the results of the ML 
model for physical layer attack detection and identification (detailed results are present in D4.2, 
Section 3.3.4). Then, we also show results related to the scalability properties of the Cybersecurity 
optical performance analysis loop designed and implemented in TeraFlowSDN. The scalability aspects 
of the solution have also been presented as a proof-of-concept demonstration [OFC23b]. 

Accuracy Performance Evaluation 
A detailed accuracy performance evaluation has been presented in D5.2, Section 7.6.2.1. In this 
deliverable, we summarize the accuracy results in Table 15. We adopted an artificial neural network 
trained over the dataset provided in [JLT2019] to detect known attacks. While the results for specific 
attack classification (i.e., identifying which specific attack is being launched) have accuracy lower than 
the targeted 99%, when considering the task as an attack detection (i.e., whether or not an attack is 
present), the accuracy surpasses the targeted value. 

Table 15. Summary of the accuracy performance for the optical physical layer attack detection 

KPI Target Validation results Comments 

Security 

> 99% accuracy 
(known attacks) 

• Accuracy: 0.996 
• F1 score: 0.996 

Result obtained considering the 
attack detection task. 

> 90% accuracy 
(unseen attacks) 

• Accuracy: 0.817 
• F1 score: 0.803 
• Accuracy w/ WAD: 0.99 
• F1 score w/ WAD: 0.99 

Applying WAD from [JLT2020] with 
𝜏𝜏 = 3 and 𝛿𝛿 = 10 allowed us to 
achieve the desired accuracy level. 

For the case of detecting unseen attacks, we adopted an unsupervised learning method which allowed 
us to achieve an accuracy close to the target. Then, to increase accuracy and reduce the presence of 
false positives, we adopted the Window-based Attack Detection (WAD) method proposed in 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 148 of 155 

 

[JLT2020]. This method allows for the detection of not only the latest but a window of the latest 
samples. This allowed us to increase the accuracy beyond the targeted level. The drawback is that the 
detection may take slightly longer (e.g., four samples in our case). Therefore, considering a monitoring 
cycle of 30 seconds, the attack detection time increases from 30 seconds to up to 2 minutes. 

Scalability Performance Evaluation 
In this section, we focus on the scalability performance of two components: the Attack Detector and 
the Attack Inference. In the case of the Attack Mitigator, scalability is expected to be less of an issue 
due to the sporadic triggering of events. In order to evaluate the scalability of the entire Cybersecurity 
module, we designed tests that drastically increase the number of optical services being served by 
TeraFlowSDN. These drastic increases represent extreme stress cases, due to the fact that optical 
devices are relatively slow in the configuration. This leads to optical services being added to the 
network much more slowly than services like L3VPN. 

For the scalability performance evaluation, we designed a script to generate many optical service 
requests to TeraFlowSDN. Moreover, to accommodate such a high number of services, we disabled 
the resource availability checks when performing the provisioning of new services. Finally, we 
configured the emulated optical data plane to replay data captured as detailed in Section 6.3.2.1. For 
the results in this deliverable, we only replay data from normal operating conditions, given that the 
scalability of the Attack Mitigator component is not assessed. 

 

 

Figure 138 shows the number of optical services in the network (left) and the measured loop time 
(right, in seconds). For this experiment, the target monitoring cycle is 30 seconds. The experiment 
starts with 100 optical services, and a loop time below 10 seconds. Then, a drastic increase in the 
number of optical services (from 100 to 1,000) is reflected by a drastic increase in the loop time. 
However, the loop time quickly stabilizes below the targeted value. A second drastic increase, now 
from 1,000 to 1,500 services, shows that the loop time is violated for a few of the cycles. Again, the 
loop time stabilizes below the targeted value. These results show that the Cybersecurity module is 
able to quickly adapt to drastic changes in the number of services. In [JOCN23], more detailed 
experiments, with other loads, are analyzed. 

 

Figure 138. Number of optical services over time and measured loop time 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 149 of 155 

 

 

Figure 139 shows the average response time taken to analyze each service (left) and number of 
replicas (right) observed during the experiment. We can see that the cache is responsible for a very 
minor part of the time taken to perform the security analysis of the optical services. Most of the time 
is taken by the ML inference that uses an unsupervised learning (denoted as UL in Figure 139) 
algorithm. Moreover, sudden increases in response time are related to the increase in the number of 
services reported in Figure 138. The number of replicas explains why the loop time remains within the 
target even for a drastically different number of optical services. We can see that when 1,000 services 
are present, the Attack Detector increases to 8 replicas, while the Attack Inference scales to 5 replicas. 
However, when the number of services increases to 1,500, the Attack Inference scales to 8 replicas, 
allowing the Attack Detector to scale down to 6 replicas. 

The results show that the scaling of the Attack Detector and Attack Inference are closely related. When 
a lower number of Attack Inference replicas is deployed, the Attack Detector needs to wait longer for 
an answer from the Attack Inference, leading to more replicas of the Attack Detector. When the scaling 
threshold for the Attack Inference is crossed and new replicas are deployed, the Attack Detector needs 
to wait less time for an answer from the Attack Inference. This leads to a scaling down of the Attack 
Detector. In general, when substantial changes in the number of services are observed, it takes only a 
few minutes for the components to balance the number of replicas. 

 

Next, we move to the resource consumption of the Cybersecurity module, characterized by Random 
Access Memory (RAM) and the Central Processor Unit (CPU) usage. Figure 141 shows the evolution of 
the usage of these resources over time. We can see that, overall, the resource consumption of the 
module is relatively low. For instance, the overall CPU consumption for the entire module is around 2 
CPUs and 2 GB of RAM for 1,500 services. We can also observe that resource consumption is very low 
when a few services are present (the first part of the plots). 

In summary, the developed Cybersecurity module is able to quickly adapt to drastic changes in the 
number of optical services and remain below the targeted monitoring cycle time. This is achieved by 
leveraging the autoscaling capabilities of Kubernetes, in addition to a carefully designed architecture 
of components. 

 

Figure 139. Response time and number of replicas 

 

 

Figure 140. CPU and RAM usage of the Cybersecurity module 

 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 150 of 155 

 

6.4. Scenario conclusions 

Table 16 summarizes the KPIs and KVIs achieved by the final implementation of Scenario 3. 

Table 16. Target and achieved KPIs and KVIs for Scenario 3. 

KPI  Target  Validation results  
Layer 3  Optical  

Security  
  

> 99% accuracy (known 
attacks)  

- Accuracy Score: 0.99966 
- False positive: 0  
- False negative: 144  
- True positive: 1494  
- True negative: 421968  
- F1 Score: 0.95402  

- Accuracy Score: 0.996 
- F1 Score: 0.996 

> 90% accuracy (unseen 
attacks)  

N/A  - Accuracy Score: 0.99 
- False Positive Rate: 
0.00063 

Reliability  > 90% accuracy in 
detecting and avoiding 
known adversarial 
attacks.  

- 99% accuracy in detecting and 
avoiding known adversarial 
attacks (i.e., 1% evasion rate). 

N/A  

Energy  > 25% resource 
consumption  

- Percentage of Total Average 
CPU Energy Consumption 
Reduction with respect to the 
original model in the inference 
stage (Knowledge Distillation, 
batch size: 256): 82.304%.  
- Loss in the accuracy: 0.016%.  
- Loss in the balanced 
accuracy: 0.008%.  
- Loss in the F1 Score: 0.011  

N/A 

Scalability < 20% increase in the 
mean loop time 
between low and high 
traffic load 

The mean loop time varies 
15.7% (between 0.0247 and 
0.0293) between low and high 
traffic load conditions. 

N/A 

 < 5 minutes violation of 
the targeted monitoring 
cycle time 

N/A The module is able to 
stabilize from a drastic 
increase in the number 
of services (in the order 
of 10x) in less than 5 
minutes. 

 

  



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 151 of 155 

 

7. Conclusions 
This deliverable reports the efforts in demonstrating and evaluating the performance of TeraFlowSDN 
release 2.1. Three scenarios are leveraged to drive the integration of TeraFlowSDN, offer concrete 
workflows to be evaluated, and benchmark TeraFlowSDN across all its components. The main 
outcomes are a set of testbed setups, workflows, and performance assessment results. These 
outcomes characterize the performance of TeraFlowSDN across a variety of use cases. The results 
show that TeraFlowSDN can complete the multiple proposed use cases. The set of KVIs and KPIs 
achieved has been highlighted in the conclusion section of each scenario. 

Regarding testbed setups, each scenario provided a set of setups located at different partners and 
tailored specifically for testing specific workflow(s).  In the case of scenario 1, testbed setups were 
developed in CTTC, TID, and UBI. For scenario 2, CTTC, ADVA, TNOR, and NEC were responsible for 
setting up testbeds. Finally, in scenario 3, CHAL, UPM, and TID setup up testbeds to perform the 
performance evaluation. The testbeds represent the multi-domain, multi-vendor, multi-layer, and 
multi-protocol networks expected for beyond 5G. 

The set of workflows devised ranges from more isolated operations (e.g., setting up devices) to broad, 
distributed, and coordinated actions, such as setting up slices across multiple network domains using 
devices from multiple vendors. Some tests were also tailored to test the scalability performance of 
TeraFlowSDN. A new Load Generator component was developed and integrated into the TeraFlowSDN 
ecosystem to facilitate the scalability tests. 

The performance evaluation work presented in this deliverable shows that TeraFlowSDN provides the 
necessary support for the designed use cases. In scenario 1, the performance results show that 
TeraFlowSDN is ready to be integrated into the autonomous operation of networks beyond 5G. The 
assessment shows that TeraFlowSDN is not only efficient but also scalable. The numbers shown also 
highlight the stability of the operating delays, represented by small margins between minimum and 
maximum processing times measured in several operations. 

In scenario 2, TeraFlowSDN was tested against several workflows that evaluate its ability to serve as 
an SDN controller in inter-domain and multi-tenant environments. The results show that TeraFlowSDN 
provides all the necessary interfaces for multi-domain scenarios. Moreover, advanced functionalities 
such as providing latency-bound and energy-aware services across multiple domains were 
demonstrated. Finally, two different ways of implementing inter-domain communication were 
validated: through direct connection or DLT. 

In scenario 3, the preliminary accuracy results presented in D5.2 were substantially extended. This 
deliverable reports the efforts of taking the AI/ML models previously introduced and improving their 
scalability, energy efficiency, and reliability while being used within TeraFlowSDN. In other words, the 
focus was on integrating the AI/ML models within the TeraFlowSDN workflows. In particular, the 
cybersecurity monitoring of L3 services was enhanced with attack detection mechanisms. These 
mechanisms were optimized for energy efficiency. Moreover, their ability to ignore adversarial attacks 
that maliciously modify their input data was demonstrated. The cybersecurity monitoring of optical 
services was enhanced by devising a scalable architecture that ensures that the monitoring cycles are 
respected regardless of the number of optical services being monitored. 

In summary, TeraFlowSDN excelled in all the different aspects tested. In the future, the activities in 
the H2020 TeraFlow project will continue in the ETSI Open Source Group for TeraFlow SDN (ETSI OSG 
TFS). As an open-source initiative, TeraFlowSDN seeks contributions from different partners (e.g., 



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 152 of 155 

 

academic, and industrial). The objective is to develop an open-source cloud-native SDN controller 
enabling smart connectivity services for future networks beyond 5G. Since the perspective is that 
networks continue to increase their heterogeneity, TeraFlowSDN will continue its development of 
state-of-the-art functionalities that also integrate with existing solutions in the fixed and wireless 
networks and the cloud computing space.   



D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 153 of 155 

 

References 
[Aho22] P. Ahokangas, M. Matinmikko-Blue and S. Yrjola, “Visioning for a Future-Proof Global 6G from 

Business, Regulation and Technology Perspectives,” in IEEE Communications Magazine, doi: 
10.1109/MCOM.001.2200310. 

[Bar15] G. Barlacchi et al., “A Multi-Source Dataset of Urban Life in the City of Milan and the Province 
of Trentino,” in Scientific Data, vol. 2, Oct. 2015, art. no. 150055. 

[BMV2023] Behavioural model (bmv2) reference P4 software switch, Mar. 2023, Available: 
https://github.com/p4lang/behavioral-model. 

[Bol11] R. Bolla, R. Bruschi and P. Lago, “The hidden cost of network low power idle,” in Proc. 2013 
IEEE International Conference on Communications (ICC), Budapest, Hungary, pp. 4148-4153. 

[Bol20] R. Bolla, R. Bruschi, F. Davoli and J. F. Pajo, “A Model-Based Approach Towards Real-Time 
Analytics in NFV Infrastructures,” in IEEE Transactions on Green Communications and 
Networking, vol. 4, no. 2, pp. 529-541, June 2020. 

[Bos2021] Bosk, M., Gajić, M., Schwarzmann, S., Lange, S., Trivisonno, R., Marquezan, C., & Zinner, T., 
“Using 5G QoS mechanisms to achieve QoE-aware resource allocation,” in 2021 17th 
International Conference on Network and Service Management (CNSM) (pp. 283-291), 2021. 

[Bou2019] M. Boucadair, Q. Wu, Z. Wang, D. King, and C. Xie, “Framework for Use of ECA (Event 
Condition Action) in Network Self Management,” IETF, Internet-Draft, Nov. 2019, work in 
Progress. 

[COW] Cowboy, https://github.com/ninenines/cowboy 

[CTTC22Par] R. Parada, F. Vazquez-Gallego, R. Sedar, and R. Vilalta, “An inter-operable and multi-
protocol v2x collision avoidance service based on edge computing”, in 2022 IEEE 95th Vehicular 
Technology Conference (VTC2022-Spring), IEEE, 2022, pp. 1–5. 

[DepG] "TeraFlowSDN deployment guide” [Online]. Accessed: 2023-06-28. Available: 
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.1.-Introduction 

[EDG22] “300G CELL SITE ROUTER” [Online]. Accessed: 2022-12-15. Available:  https://www.edge-
core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955  

[Gna21] V. Gnanasekaran, H. T. Fridtun, H. Hatlen, M. M. Langøy, A. Syrstad, S. Subramanian, and K. 
De Moor, “Digital carbon footprint awareness among digital natives: an exploratory study,” 
[Online]. Available: https://ntnuopen.ntnu.no/ntnu-
xmlui/bitstream/handle/11250/2985003/919-Article\%2bText-2210-1-10-
20211115.pdf?sequence=1 (Last accessed: 10 Feb 2023) 

[GOO14] I. Goodfellow et al., “Generative Adversarial Nets,” in Advances in Neural Information 
Processing Systems, Curran Associates, Inc., 2014. Accessed: May 08, 2023. [Online]. Available: 
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html 

[GON21] Á. González-Prieto, A. Mozo, E. Talavera, and S. Gómez-Canaval, “Dynamics of Fourier Modes 
in Torus Generative Adversarial Networks,” Mathematics, vol. 9, no. 4, Art. no. 4, Jan. 2021, doi: 
10.3390/math9040325. 

[GON22] Á. González-Prieto, A. Mozo, S. Gómez-Canaval, and E. Talavera, “Improving the quality of 
generative models through Smirnov transformation,” Information Sciences, vol. 609, pp. 1539–
1566, Sep. 2022, doi: 10.1016/j.ins.2022.07.066. 

https://github.com/p4lang/behavioral-model
https://github.com/ninenines/cowboy
https://labs.etsi.org/rep/tfs/controller/-/wikis/1.-Deployment-Guide/1.1.-Introduction
https://www.edge-core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955
https://www.edge-core.com/productsInfo.php?cls=291&cls2=342&cls3=343&id=955
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.3390/math9040325
https://doi.org/10.1016/j.ins.2022.07.066


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 154 of 155 

 

[Hos22] T. Hoßfeld, M. Varela, L. Skorin-Kapov and P. E. Heegaard, “What is the trade-off between 
CO2 emission and video-conferencing QoE?,” ACM SIGMM Records. [Online]. Available: 
https://records.sigmm.org/2022/03/31/what-is-the-trade-off-between-co2-emission-and-
video-conferencing-qoe/ (Last accessed: 10 Feb 2023) 

[HPSR23] P. Famelis et al., “P5: Event-driven Policy Framework for P4-based Traffic Engineering,” IEEE 
24th International Conference on High Performance Switching and Routing (HPSR), 
Albuquerque, NM, USA, 2023, pp. 1-3, doi: 10.1109/HPSR57248.2023.10148012. 

[Ibm13] “IBM EnergyScale for POWER7 Processor-Based Systems,” [Online]. Available: 
https://www.ibm.com/downloads/cas/AEOV6OL4 (Last accessed: 1 Feb 2023) 

[JLT2019] C. Natalino, et al., “Experimental Study of Machine-Learning-Based Detection and 
Identification of Physical-Layer Attacks in Optical Networks,” in Journal of Lightwave Technology, 
vol. 37, no. 16, pp. 4173-4182, Aug. 2019. DOI: 10.1109/JLT.2019.2923558 

[JLT2020] M. Furdek, C. Natalino, F. Lipp, D. Hock, A. D. Giglio and M. Schiano, “Machine Learning for 
Optical Network Security Monitoring: A Practical Perspective,” in Journal of Lightwave 
Technology, vol. 38, no. 11, pp. 2860-2871, June, 2020, doi: 10.1109/JLT.2020.2987032. 

[JOCN23] Carlos Natalino, Lluis Gifre, Francisco-Javier Moreno-Muro, Sergio Gonzalez-Diaz, Ricard 
Vilalta, Raul Muñoz, Paolo Monti, and Marija Furdek, “Flexible and scalable ML-based diagnosis 
module for optical networks: a security use case,” J. Opt. Commun. Netw. 15, C155-C165 (2023). 
DOI: 10.1364/JOCN.48293 

[KAS20] Kasten, M., & Tewari, N. (2020). SASE: Enabling the Cloud-First Enterprise. Cisco Press. 

[Les10] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: the laws of diminishing 
returns,” in Proc. 2010 international conference on Power aware computing and systems 
(HotPower'10), Vancouver, BC, Canada, pp. 1–8. 

[Lon2022] Lønsethagen, H., Lange, S., Zinner, T., Øverby, H., Contreras, L. M., Ciulli, N., & Dotaro, E., 
“Towards Smart Public Interconnected Networks and Services – Approaching the Stumbling 
Blocks,” Techrxiv, 2022 

[MOZ22] A. Mozo, Á. González-Prieto, A. Pastor, S. Gómez-Canaval, and E. Talavera, “Synthetic flow-
based cryptomining attack generation through Generative Adversarial Networks,” Sci Rep, vol. 
12, no. 1, p. 2091, Dec. 2022, doi: 10.1038/s41598-022-06057-2. 

[NFVSDN21] S. Merle, et al., Scalable and resilient network traffic engineering using erlang-based path 
computation element, 2021 IEEE Conference on Network Function Virtualization and Software 
Defined Networks (NFV-SDN). 

[NFV22] Ll. Gifre, et al., “DLT-based End-to-end Inter-domain Transport Network Slice with SLA 
Management Using Cloud-based SDN Controllers”, IEEE NFV-SDN, 2022. 

[OECC22] R. Vilalta, et al., “End-to-end Interdomain Transport Network Slice Management Using 
Cloud-based SDN Controllers “, OECC/PSC 2022. 

[OFC22] Ll. Gifre, et al., “Demonstration of Zero-touch Device and L3-VPN Service Management using 
the TeraFlow Cloud-native SDN Controller”, OFC, 2022. 

[OFC23a] Ll. Gifre, et al., “Slice Grouping for Transport Network Slices Using Hierarchical Multi-domain 
SDN Controllers,” 2023 Optical Fiber Communications Conference and Exhibition (OFC), San 
Diego, CA, USA, 2023, pp. 1-3, doi: 10.1364/OFC.2023.M3Z.9. 

[OFC23b] C. Natalino, L. Gifre, R. Muñoz, R. Vilalta, M. Furdek and P. Monti, "Scalable and Efficient 
Pipeline for ML-based Optical Network Monitoring," 2023 Optical Fiber Communications 

https://doi.org/10.1038/s41598-022-06057-2


D5.3 Final demonstrators and evaluation report 
 

© 2021 - 2023 TeraFlow Consortium Parties  Page 155 of 155 

 

Conference and Exhibition (OFC), San Diego, CA, USA, 2023, pp. 1-3, doi: 
10.1364/OFC.2023.M3Z.12. 

[PAS18] A. Pastor, A. Mozo, D. R. Lopez, J. Folgueira, and A. Kapodistria, “The Mouseworld, a security 
traffic analysis lab based on NFV/SDN”, in Proceedings of the 13th international conference on 
availability, reliability and security, 2018, pp. 1–6. 

[PAS20] A. Pastor et al., "Detection of Encrypted Cryptomining Malware Connections With Machine 
and Deep Learning," in IEEE Access, vol. 8, pp. 158036-158055, 2020, DOI: 
10.1109/ACCESS.2020.3019658. 

[PRD] “Propagation Delay,” [Online]. Available: 
https://wiki.geant.org/display/public/EK/PropagationDelay 

[Ren19] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud orchestrated network 
computing paradigms: Transparent computing, mobile edge computing, fog computing, and 
cloudlet”, ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–36, 2019. 

[RFC8466] G. Fioccola, et al., “A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service 
Delivery,” IETF RFC 8466, October, 2018. 

[SPI22] Spirent SPT-N12U Mainframe Chassis. [Online]. Accessed: 2022-12-15. Available: Spirent SPT-
N12U Mainframe Chassis datasheet – Spirent 

[Van12] W. Van Heddeghem, F. Idzikowski, W. Vereecken, et al., "Power Consumption Modeling in 
Optical Multilayer Networks,'' in Photonic Network Communications, vol. 24, pp. 86–102, Jan. 
2012. 

[Vel17] A. P. Vela et al., "BER Degradation Detection and Failure Identification in Elastic Optical 
Networks," in Journal of Lightwave Technology, vol. 35, no. 21, pp. 4595-4604, 1 Nov.1, 2017, 
doi: 10.1109/JLT.2017.2747223. 

[WAN19] Wang, Q., Chen, M., Wu, Y., & Sun, Y. (2019). Software-defined wide area networks: a survey. 
IEEE Network, 33(6), 216-223. 

[Zha18] Q. Zhang, J. Liu, and G. Zhao, “Towards 5G Enabled Tactile Robotic 
Telesurgery,” arXiv preprint arXiv:1803.03586, 2018. 

[ZOO] “The Internet Topology Zoo,” [Online]. Available: http://www.topology-zoo.org/dataset.html 
(Last accessed: 21 Apr 2023) 

 


	Executive Summary
	List of Figures
	List of Tables
	Abbreviations
	1. Introduction
	1.1. Purpose
	1.2. Relationship with other Deliverables
	1.3. Structure

	2. Architecture Overview
	3. Metrics Definition and Collection
	3.1. Micro-service gRPC Calls
	3.2. Prometheus
	3.3. Grafana
	3.4. Load Generator

	4. Scenario 1: Autonomous Network Beyond 5G
	4.1. Scenario Introduction
	4.2. Alignment with TeraFlowSDN architecture
	4.3. Performance Evaluation
	4.3.1. Testbed Setup
	4.3.2. Zero-touch Device Automation
	4.3.3. L2/L3 VPN Service Management and Integration with ETSI OpenSource MANO
	4.3.3.1. L2 VPN Service Management
	4.3.3.2. L3 VPN Service Management
	4.3.3.3. End-to-end Service Setup and IETF L2VPN SBI
	4.3.3.4. Integration with ETSI OpenSource MANO
	4.3.3.5. Packet layer traffic monitoring using Grafana
	4.3.3.6. Final KPI Measurements

	4.3.4. Slice Grouping
	4.3.4.1. Experimental Assessment
	4.3.4.2. Slice Grouping Performance Evaluation
	4.3.4.3. Final KPI Measurements

	4.3.5. Policy-driven Service Restoration with P4 devices
	4.3.5.1. Concept
	4.3.5.2. Testbed
	4.3.5.3. Workflow
	4.3.5.4. KPI Measurements

	4.3.6. Energy-Efficient Path Computation
	4.3.6.1. Transport Network Energy Model
	4.3.6.2. Workflow
	4.3.6.3. Considered Path Computation Algorithms
	4.3.6.4. Experimental Scenario: Topology, Connectivity Service Request, and Performance Metrics
	4.3.6.5. Numerical Results


	4.4. Scenario conclusions

	5. Scenario 2: Inter-domain
	5.1. Scenario Introduction
	5.2. Alignment with TeraFlowSDN architecture
	5.3. Performance Evaluation
	5.3.1. Testbed Setup
	5.3.2. Inter-domain Provisioning using Transport Network Slices with SLA
	5.3.3. Distributed Ledger Technologies
	5.3.3.1. DLT Trust and Privacy
	5.3.3.2. DLT Gateway and Blockchain Performance
	5.3.3.3. Inter-domain Provisioning through DLT

	5.3.4. Service/Slice Request Scalability
	5.3.5. Location-aware Service Updates
	5.3.6. Latency budgets as function of the application requirements
	5.3.6.1. Service Concepts
	5.3.6.2. Main Solution Elements and Challenges
	5.3.6.3. Evidence of Potential

	5.3.7. Path Computation within the Green Economy
	5.3.7.1. gPC for Inter-domain Connectivity Services
	5.3.7.2. Power-Performance Modelling and Evaluation
	5.3.7.3. gPC Evaluation

	5.3.8. Toolbox for scalability of Erlang microservices
	5.3.8.1. Architecture
	Braid: The client Interface
	Braidnet: The Orchestrator
	Braidnode: The Service API
	Braidcert: Securing the Infrastructure

	5.3.8.2. Implementation Details
	Erlang
	Braidnet Supervision Tree
	Braid Configuration
	Lifecycle Management of Microservices
	Service Discovery and Connection Details
	Securing Inter-Service Communication with TLS

	5.3.8.3. Evaluation and Testing
	Objectives
	Methodology
	Test Environment
	Results
	Conclusion



	5.4. Scenario conclusions

	6. Scenario 3: Cybersecurity
	6.1. Scenario Introduction
	6.2. Alignment with TeraFlowSDN architecture
	6.3. Performance Evaluation
	6.3.1. Layer 3 Cybersecurity
	6.3.1.1. MouseWorld Setup for Layer 3 Cybersecurity Experiments
	6.3.1.2. Workflows
	Traffic Capture and Feature Extraction at the Network Edge
	Detect Known Attacks using Supervised ML
	Mitigate Detected Attacks
	Monitor Relevant Cybersecurity-related Metrics

	6.3.1.3. Results
	Evaluation of the Resiliency of the Cyberthreat Detector Against Adversarial Attacks
	Scalability Performance Evaluation


	6.3.2. Optical Cybersecurity
	6.3.2.1. Emulated Optical Setup for Optical Cybersecurity Experiments
	6.3.2.2. Workflows
	6.3.2.3. Results
	Accuracy Performance Evaluation
	Scalability Performance Evaluation



	6.4. Scenario conclusions

	7. Conclusions
	References

