

Grant Agreement No.: 101015857
Research and Innovation action
Call Topic: ICT-52-2020: 5G PPP - Smart Connectivity beyond 5G

Secured Autonomic Traffic Management for a Tera of SDN Flows

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

Deliverable type R (Report)

Dissemination level P (Public)

Due date 31.12.2022

Submission date 31.12.2022

Lead editor Juan Carlos Caja (TID)

Authors Juan Pedro Fernandez-Palacios, Juan Carlos Caja, Oscar González-de-

Dios, Pablo Armingol, Antonio Pastor (TID), Georgios P. Katsikas,

Dimitrios Klonidis (UBITECH), Stanislav Lange (NTNU), Lluís Gifre, Pol

Alemany, Ricardo Martínez, Michela Svaluto, Javier Vilchez, Ricard Vilalta

(CTTC), Alberto Mozo, Luis de la Cal, Amit Karamchandani (UPM), Carlos

Natalino (CHAL), Sebastien Andreina, Konstantin Munichev, Giorgia

Mason (NEC), Min Xie, Jane Frances Pajo, Håkon Lønsethagen, Hanne

Kristine Hallingby (Telenor), Achim Autenrieth, José Juan Pedreño

Manresa (ADVA), Mika Silvola (Infinera), Michele Milano, Nicola

Carapellese (SIAE), Javier Moreno, Sergio González, Esther Garrido

(ATOS), Sebastien Merle, Peer Stritzinger (Stritzinger)

Reviewers Adrian Farrel (ODC), Oscar González-de-Dios (TID)

Quality Check team Adrian Farrel (ODC), Daniel King (ODC)

Work package WP2

This deliverable is subject to final acceptance by the European Commission. The results of this
deliverable reflect only the authors’ view and the Commission is not responsible for any use that
may be made of the information it contains.

Abstract

This document reports the final version of the use case requirements, architecture design, business
models, and data models that refer to ETSI TeraFlowSDN release 2.0. This document is an update of
D2.1, based on comments from WP3, WP4, and WP5, and including lessons learned from TeraFlow
SDN release 1.0. A new class of secure cloud native Software-Defined Networking (SDN) controller,
called TeraFlowSDN (TFS) controller, is described that significantly advances the technology used in
Beyond-5G (B5G) networks offering ground-breaking features for both flow management (service
layer) and the integration of optical/microwave network equipment (infrastructure layer). This new

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 2 of 120

SDN controller will be able to integrate with the existing Network Functions Virtualisation (NFV) and
Multi-Access Edge Computing (MEC) frameworks and incorporate security using Machine Learning
(ML) and forensic evidence for multi-tenancy based on Distributed Ledger Technologies (DLT).

[End of abstract]

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 3 of 120

Revision History

Revision Date Responsible Comment
0.1 25.07.2022 Editor Initial structure of document
0.2 28.10.2022 All Preliminary contributions and first draft
0.3 18.11.2022 All Final contributions
0.4 13.12.2022 Editor Internal review
0.5 25.12.2022 Editor Apply changes after Technical and QA review
1.0 26.12.2022 Editor Final version

Disclaimer

This report contains material which is the copyright of certain TeraFlow Consortium Parties and may
not be reproduced or copied without permission.

All TeraFlow Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License0F

1.

Neither the TeraFlow Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

 CC BY-NC-ND 3.0 License – 2020 - 2023 TeraFlow Consortium Parties

Acknowledgment

The research conducted by TeraFlow receives funding from the European Commission H2020
programme under Grant Agreement No 101015857. The European Commission has no responsibility
for the content of this document.

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 4 of 120

EXECUTIVE SUMMARY

This document is an update of D2.1, based on comments from WP3, WP4, and WP5. This deliverable
offers a final version of the use case requirements, architecture, design, and data models that refer to
ETSI TeraFlowSDN release 2.0.

This document opens with an introduction that describes the goal of this delivery, how it relates to
previous deliverables, and how this document is organised. The following parts describe the use cases,
then a business case analysis based on potential cost reductions and new revenue prospects for telcos
is also included. The fourth section summarises the received feedback from release 1. The next
sections present the most recent and brand-new specifications for TeraFlowSDN controller, followed
by the updated architecture. The document completes with the prospective topics, future work, and
the conclusions. Internal workflows are provided as Annex, and they will be further detailed in D3.3,
D4.2 and D5.2.

In summary, a brand-new class of secure cloud native Software-Defined Networking (SDN) controller,
called ETSI TeraFlowSDN (TFS) controller, will significantly advance the technology used in Beyond-5G
(B5G) networks offering ground-breaking features for both flow management (service layer) and the
integration of optical/microwave network equipment (infrastructure layer). This new SDN controller
will be able to integrate with the existing Network Functions Virtualisation (NFV) and Multi-access
Edge Computing (MEC) frameworks and incorporate security using Machine Learning (ML) and
forensic evidence for multi-tenancy based on Distributed Ledger Technologies (DLT).

In the first section, we focus on the use cases. The use cases help to identify the specific requirements.

Figure 1 and Figure 2 show the detailed use cases per TeraFlowSDN component. Specific information

about the use cases is provided within each of the sections describing the different scenarios.

Figure 1 ETSI TeraFlowSDN Release 2.0 Use Cases (part 1/2)

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 5 of 120

Figure 2 ETSI TeraFlowSDN Release 2.0 Use Cases (part 2/2)

Business model analysis for TeraFlowSDN controller is important, as we need to design a valid business

model for the controller. We have suggested five preliminary business model canvases for four actor

roles. They all indicate potential ways to extract revenue from potential customers in a regime with

full compatibility, e.g., enabled by TeraFlowSDN. One key observation is the difference between a

future hardware (HW), i.e., bare metal, provider and software (SW) providers. The HW provider will

be in a classic manufacturing market where economies of scale drive competition, however, timely

on-premises installation and SW configuration may significantly affect the market. Following a life-

cycle management of HW, leasing may be an interesting revenue model for HW providers. The

providers of SW, NetApps, and TeraFlowSDN related services have two main business models. One is

labour intensive, addressing a market for consulting and integration. The other relies on Intellectual

Property Rights (IPR), where it may be possible to use a license revenue model. We anticipate that the

market for integration will be a mass market in the sense that most operators are potential customers.

For NetApps and specific SDN features, we assume that the potential customers are fewer or smaller,

and that this is will be a niche market, potentially with a premium price. The elaborated business

model canvases and comparison of them will be subject to further analyses in the next phase.

We can summarise the received feedback from release 1.0 in two main groups: Requested new

features, and a desire for simplification and more depth in describing the user and developer

guidelines for TeraFlowSDN.

Moreover, TeraFlowSDN functional and non-functional requirements are presented. They serve as the

basis for the ETSI TeraFlowSDN controller release 2.0. The functional requirements are classified into

components, and the non-functional requirements include performance, usability, scalability,

reliability, and portability.

The release 2.0 architecture is show in Figure 3. It is based on a micro-service architecture, and each

component is detailed, later in this document, through a template that describes the main

functionality, the operations for the component, and the internal data models. A protocol buffer is

described for each of the components in order to model the services.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 6 of 120

Figure 3 ETSI TeraFlowSDN Release2.0 Architecture

We have analysed the use cases, and Figure 4 lists the workflows for TeraFlowSDN and their internal

components.

Figure 4 TeraFlowSDN Release 2.0 Workflows

This milestone has served the main purpose of simplifying the development of features and

architecture for ETSI TeraFlowSDN release 2.0. Next steps will be provided within WP3 and WP4, and

feedback to WP2 will be received in order to formulate the final version of the release 2.0 architecture.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 7 of 120

Contents
Executive Summary ... 4

List of Figures .. 12

List of Tables ... 14

Abbreviations .. 15

1. Introduction .. 19

2. Use Cases .. 20

2.1. Inventory ... 20

2.1.1. Hardware Inventory Collection ... 20

2.1.2. Logical Inventory Collection .. 20

2.1.3. Host Tracking... 20

2.2. Topology.. 20

2.2.1. Context and Service Endpoints Discovery ... 21

2.2.2. Single Layer Topology ... 21

2.2.3. Multi-Domain Service Endpoint and Topology ... 21

2.2.4. Multilayer IP and Optical Topology ... 21

2.3. Context .. 24

2.3.1. Operate TFS at Scale ... 24

2.3.2. Flow Descriptors for IoT Services .. 25

2.4. SBI (Formerly the Device Component) ... 26

2.4.1. IP Routers Control and Management ... 26

2.4.2. Microwave Integration.. 27

2.4.3. Point to Multi-Point Integration of XR Optical Transceivers ... 28

2.4.4. P4 Integration.. 29

2.5. Services ... 29

2.5.1. Service-ACL Management ... 30

2.5.2. Service SLA Violation Detection and Recovery ... 31

2.5.3. Location-Aware Context Management ... 31

2.5.4. L3VPN Service Provisioning ... 31

2.5.5. L2VPN Service Provisioning ... 33

2.6. Forecaster ... 33

2.6.1. Traffic Forecast .. 33

2.7. Monitoring .. 34

2.7.1. Monitoring-Telemetry Management .. 34

2.8. Traffic Engineering .. 35

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 8 of 120

2.8.1. PCEP for Segment Routing .. 35

2.9. Path Computation ... 36

2.9.1. Support for Path Computation ... 36

2.9.2. Add Service Constraints for Path Computation .. 38

2.10. Automation ... 39

2.10.1. Automated Provisioning of P4 Devices and Programs .. 39

2.11. Policy ... 39

2.11.1. Automated SLA Enforcement .. 39

2.12. Transport Network Slicing ... 40

2.12.1. Slices with SLAs ... 40

2.12.2. Optimal Slice Grouping for Multiple Tenants ... 41

2.13. Centralized Attack Detector .. 42

2.13.1. Scalable Attack Detection ... 42

2.14. Distributed Attack Detector .. 42

2.14.1. Edge-Based Attack Detection .. 42

2.15. Attack Inference .. 43

2.15.1. Detection and Identification of Attacks .. 43

2.16. Attack Mitigator .. 43

2.16.1. Mitigating the Execution of Attacks .. 43

2.17. Distributed Ledger and Smart Contracts .. 44

2.17.1. Advancing the State of the Art of the Core Building Blocks of Blockchains 44

2.17.2. Using DLT for Inter-Domain Service Provisioning and SLA Violation Detection 45

2.18. NBI (Including the Old Compute Component) .. 45

2.18.1. Energy-Based Service Placement between Edge and Core Compute Resources 46

2.19. Web User Interface (WebUI) .. 47

2.20. Inter-Domain ... 48

2.20.1. E2E Routing and SLA Violation Detection ... 48

3. Business Model and Ecosystem Analysis .. 49

3.1. The Ecosystem and Actor Roles .. 49

3.2. The Network Operator – The Customer ... 51

3.3. System Integrators Serving Operators .. 51

3.4. Operators and Regimes for Testing of HW ... 53

3.5. HW Provider .. 54

3.5.1. HW as Bare Metal ... 54

3.5.2. HW Retaining Some Dedicated Embedded SW .. 55

3.6. SW Provider .. 55

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 9 of 120

3.7. NetApp Provider ... 56

3.8. Provider of TFS Related Products and Services .. 57

3.8.1. TFS as a Service ... 57

3.8.2. Development of New TFS Features ... 58

3.9. Neutral Lab – Testing and Certifying ... 59

3.10. Summary ... 63

4. Feedback from Release 1.0 ... 64

4.1. Feedback from Advisory Board ... 64

4.2. Feedback from Users .. 64

4.3. Feedback for TFS Questionnaire ... 65

4.3.1. TFS Questionnaire ... 65

4.3.2. Preliminary Feedback Analysis .. 65

5. Updated Requirements for the TFS Controller ... 68

5.1. Functional Requirements .. 68

5.1.1. Context .. 68

5.1.2. SouthBound Interface (SBI) ... 68

5.1.3. Service ... 68

5.1.4. Forecaster ... 69

5.1.5. Monitoring .. 69

5.1.6. Traffic Engineering .. 70

5.1.7. Path Computation ... 70

5.1.8. Automation ... 71

5.1.9. Policy ... 72

5.1.10. Transport Network Slicing ... 72

5.1.11. Centralized Attack Detector .. 73

5.1.12. Distributed Attack Detector .. 73

5.1.13. Attack Inference .. 73

5.1.14. Attack Mitigator .. 73

5.1.15. Distributed Ledger and Smart Contracts .. 73

5.1.16. NorthBound Interface (NBI) .. 74

5.1.17. Inter-Domain ... 74

5.1.18. Web User Interface ... 75

5.1.19. TFS Controller Security .. 75

5.2. Non-Functional Requirements .. 76

5.2.1. Performance.. 76

5.2.2. Usability... 76

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 10 of 120

5.2.3. Scalability .. 76

5.2.4. Security ... 77

5.2.5. Reliability ... 77

5.2.6. Portability .. 77

6. Updated Architecture ... 78

6.1. Overall Architecture Update ... 78

6.2. Detailed Architecture .. 80

6.2.1. Context .. 80

6.2.2. SBI (Formerly Device Manager) .. 82

6.2.3. Service ... 82

6.2.4. Forecaster ... 83

6.2.5. Monitoring .. 84

6.2.6. Traffic Engineering .. 87

6.2.7. Path Computation ... 87

6.2.8. Automation (ZTP) .. 88

6.2.9. Policy Manager .. 90

6.2.10. Slice Manager .. 91

6.2.11. Centralized Attack Detector .. 92

6.2.12. Distributed Attack Detector .. 94

6.2.13. Attack Inference .. 94

6.2.14. Attack Mitigator .. 95

6.2.15. Distributed Ledger .. 96

6.2.16. NBI (Previously Compute) ... 97

6.2.17. Inter-Domain ... 98

6.2.18. Web User Interface (WebUI) .. 98

6.2.19. Cloud Orchestrator Features .. 98

7. Prospective Topics and Future Work .. 101

7.1. Regional Extensions to IETF Slicing ... 101

7.1.1. Interconnected Sliced Networks and Services .. 102

7.1.2. Mechanisms for Filtering and Classifying Traffic onto Slices and Regions 103

7.2. TFS as a Dedicated Technology SDN Controller .. 103

7.3. TFS as a Toolbox for Intent-Based Networking ... 104

7.4. TFS as a QKD SDN Controller and SDN Orchestrator .. 105

7.4.1. QKD SDN Controller .. 105

7.4.2. QKD SDN Orchestrator .. 106

8. Conclusion and Next Steps ... 107

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 11 of 120

9. References .. 108

Annex I: Workflows ... 110

L3VPN Establishment with SLA ... 110

L3VPN Establishment .. 111

L2VPN Establishment .. 111

Inventory ... 112

Multi-Layer Topology Discovery ... 113

Service ACL .. 113

Service Location-Awareness ... 114

Traffic Engineering .. 115

Slice SLA Enforcement .. 116

Slice Grouping ... 116

Forecaster ... 117

Inter-Domain Slice SLA Enforcement .. 118

DLT Record Exchange Between DLT Connector and DLT Gateway ... 119

Inter-Domain DLT .. 119

Energy-Aware Network Service Placement .. 120

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 12 of 120

List of Figures
Figure 1 ETSI TeraFlowSDN Release 2.0 Use Cases (part 1/2) .. 4

Figure 2 ETSI TeraFlowSDN Release 2.0 Use Cases (part 2/2) .. 5

Figure 3 ETSI TeraFlowSDN Release2.0 Architecture .. 6

Figure 4 TeraFlowSDN Release 2.0 Workflows ... 6

Figure 5 IP Topology .. 22

Figure 6 PLUG-ID Usage. Optical Domain, and Topology ... 23

Figure 7 IP Mono-Domain Topology ... 24

Figure 8 IP IGP and LLDP Augmentations.. 24

Figure 9 Microwave Integration .. 27

Figure 10 XR Optical Transceivers Integration .. 28

Figure 11 gNMI Telemetry Architecture ... 35

Figure 12 PCEP for Segment Routing New Requirements .. 36

Figure 13 Internal Architecture of Path Comp Component .. 37

Figure 14 Sequence Diagram for DLT .. 45

Figure 15 Illustration of Start and Endpoint of the Evolution of a Transport Network Ecosystem 49

Figure 16 Updated TFS Ecosystem .. 50

Figure 17 Sequences in Business Transaction between Operator and Providers of HW, SW, NetApps,

and SDN Services... 51

Figure 18 Illustration of System Integration and Testing Regimes in Business Transaction between

Operator and Providers .. 53

Figure 19 Factors Affecting Business Models and Ecosystem Paths and-State – dots for illustration

only.. 62

Figure 20 Stakeholders Involved in the Answers .. 66

Figure 21 Main Interest in TeraFlowSDN .. 67

Figure 22 Expected Usage of TFS .. 67

Figure 23 TFS Release 2.0 Architecture .. 78

Figure 24 Context Data Model .. 81

Figure 25 Device Internal Data Model .. 82

Figure 26 Forecaster Internal Data Models .. 83

Figure 27 TeraFlow Monitoring Component Updated Architecture .. 84

Figure 28 Monitoring Data Model .. 86

Figure 29 Path Computation Internal Models .. 88

Figure 30 Automation Component Architecture. ... 89

Figure 31 Automation Internal Data Models .. 89

Figure 32 Policy Component Architecture. ... 91

Figure 33 Policy Internal Data Models .. 91

Figure 34 L3 Attack Mitigator Output ... 93

Figure 35 L3 Centralized Attack Detector Internal Data Model .. 93

Figure 36 Attack Inference Data Model .. 95

Figure 37 L3 Attack Mitigator Output Data Model ... 96

Figure 3838 Optical Attack Mitigator Data Model .. 96

Figure 39 DLT Component Data Model... 97

Figure 57 I2NSF Architecture .. 105

Figure 58 Depiction of an SD-QKD Network Showing a Set of SD-QKD Nodes 105

Figure 59 Use Case of SDN Orchestrator for QKD Network and OTN... 106

Figure 40 L3VPN Provisioning with SLA .. 110

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 13 of 120

Figure 41 L3VPN Provisioning ... 111

Figure 42 L2VPN Provisioning ... 111

Figure 43 Inventory ... 112

Figure 44 Multi-Layer Topology Discovery ... 113

Figure 45 ACL Service Deployment ... 113

Figure 46 Service Location-Awareness Sequence Diagram .. 114

Figure 47 Traffic Engineering Sequence Diagram ... 115

Figure 48 Slice SLA Enforcement Sequence Diagram ... 116

Figure 49 Slice Grouping Sequence Diagram .. 116

Figure 50 Forecaster Sequence Diagram .. 117

Figure 51 Inter-Domain Slice SLA Enforcement Sequence Diagram ... 118

Figure 52 Inter-Domain SLA Violation Reaction Sequence Diagram .. 118

Figure 53 DLT Record Exchange Between DLT Connector and DLT Gateway Sequence Diagram 119

Figure 54 Inter-Domain Service Preparation and Activation with DLT Sequence Diagram 119

Figure 55 Inter-Domain SLA Violation Reaction with DLT .. 120

Figure 56 Energy-Aware Network Service Placement Sequence Diagram ... 120

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 14 of 120

List of Tables
Table 1 Business Model Canvas for System Integrator in the Transport Network 52

Table 2 Business Model Canvas for Providers of Bare Metal HW .. 54

Table 3 Business Model Canvas for Providers of Dedicated HW .. 55

Table 4 Business Model Canvas for SW Providers .. 56

Table 5 Business Model Canvas for NetApp Providers ... 57

Table 6 Business Model Canvas for Provider of TFS Package and Service.. 58

Table 7 Business Model Canvas for TFS Related Provider – Develop New Features 59

Table 8 Advantages and Disadvantages Regarding Handling of Devices to be Tested 60

Table 9 Business Model Canvas for a Provider Which is a Neutral Test Lab .. 61

Table 10 Business Model Canvas for the Actor Role Which Issues Certificates for Compatibility 62

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 15 of 120

Abbreviations
ACL Access Control List

AM Attack Mitigator

API Application Programming Interface

AI Artificial Intelligence

AS Autonomous System

B5G Beyond 5G

BGP Border Gateway Protocol

CAD Centralized Attack Detector

CD Continuous Delivery

CE Customer Edge

CI Continuous Integration

DAD Distributed Attack Detector

DLT Distributed Ledger Technologies

DSCP Differentiated Service Code Point

DWDM Dense Wavelength Division Multiplexing

E2E End-to-End

E-NNI External Network-to-Network Interface

EVPN Ethernet VPN

G/MPLS Generalised Multiprotocol Label Switching / Multiprotocol Label Switching

gNMI Google Network Management Interface

gRPC Google RPC

GUI Graphical User Interface

HL3 Hierarchical Level 3: Aggregation stage 2

HL5 Hierarchical Level 5: Access

HW Hardware

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPR Intellectual Property Rights

IS-IS Intermediate System to Intermediate System protocol

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 16 of 120

KPI Key Performance Indicator

L0 Layer 0

L2 Layer 2

L2VPN Layer 2 Virtual Private Network

L3 Layer 3

L3NM Layer 3 Network Model

L3VPN Layer 3 Virtual Private Network

L4 Layer 4

LAG Link Aggregation Group

LAN Local Area Network

LLDP Link Layer Discovery Protocol

LSP Label Switched Path

MANO Management and Orchestration

MEC Multi-access Edge Computing

ML Machine Learning

MPLS Multiprotocol Label Switching

MQP Managed Quality Path

MW Microwave

NBI North-Bound Interface

NEP Node Edge Point

NFV Network Functions Virtualisation

ONF Open Networking Foundation

OPM Optical Performance Monitoring

OSM Open Source MANO

OSPF Open Shortest Path First protocol

OSS Operation Support System

P4 Programming Protocol-independent Packet Processors

PCE Path Computation Element

PCEP Path Computation Element Protocol

PE Provider Edge

PiL PoP Interconnecting Link

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 17 of 120

PoP Point of Presence

QKD Quantum Key Distribution

RAT Radio Access Technology

RPC Remote Procedure Call

RSVP Resource Reservation Protocol

SBI South-Bound Interface

SCS Specialised Connectivity Services

SDN Software-Defined Networking

SIP Service Interface Point

SLA Service Level Agreement

SLO Service Level Objective

SME Small and Medium Enterprises

SNMP Simple Network Management Protocol

SR Segment Routing

SW Software

TAPI Transport API

TC Traffic Class

TDM Time Division Multiplexing

TE Traffic Engineering

TED Traffic Engineering Database

TFS ETSI TeraFlowSDN

TN Transport Network

TSN Time Sensitive Networking

TTL Time To Live

UNI User-to-Network Interface

VL Virtual Link

VLAN Virtual Local Area Network

VNF Virtual Network Function

VPLS Virtual Private LAN Service

VPN Virtual Private Network

VPWS Virtual Private Wire Service

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 18 of 120

VRF Virtual Routing and Forwarding

VSI Virtual Server Instance

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WIM WAN Infrastructure Manager

WP Work Package

XR Point-to-Multipoint coherent optical technology

ZTP Zero-Touch Provisioning

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 19 of 120

1. Introduction
This document is an update of D2.1 [6], based on comments from WP3, WP4, and WP5. This
deliverable provides a final version of the use case requirements, architecture, design, and data
models that refer to ETSI TeraFlowSDN release 2.0. Furthermore, it also includes a business case
analysis based on potential savings and new business opportunities for telcos. The final analysis of
business cases will be provided in D6.4.

The ETSI TeraFlowSDN (TFS) controller is a new type of secure cloud native SDN controller that will
radically advance the state-of-the-art in B5G networks. This new SDN controller will be able to
integrate with the current NFV and MEC frameworks as well as provide revolutionary features for both
flow management (service layer) and optical/microwave network equipment integration
(infrastructure layer), while incorporating security using ML and forensic evidence for multi-tenancy
based on DLT.

Use cases for IP and optical networks are addressed and demonstrated in commercial solutions based
on standard interfaces. The network area for the solution is transport network scenarios integrated
with (edge) computing and storage resources. ETSI TeraFlowSDN will adapt dynamically based on
flows and applications. TFS covers a wide variety of networks, ranging from distributed edge-
computing, through transport backhaul (including optical and microwave solutions), to the network
core. TFS provides carrier-grade connectivity services for B5G networks.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 20 of 120

2. Use Cases
This section reports use cases as well as extensions and updates to those already presented in D2.1
[6].

2.1. Inventory
This set of uses cases provides means to recover information and state about hardware components

of network elements, and the logical configuration of the devices intended to be performed by any

NBI client controller, module, or application that aims to discover the component hierarchy of the

equipment. Inventory use cases for optical and IP domains are further described in [18], [12].

2.1.1. Hardware Inventory Collection
Technologies

Involved

IP, Optical, Microwave

Type Inventory

Description This use case consists of retrieving all hardware (physical) information about the equipment

available from the TFS Controller. These components might be line cards, transceivers, ports,

etc.

2.1.2. Logical Inventory Collection
Technologies

Involved

IP, Optical, Microwave

Type Inventory

Description This use case consists of retrieving all logical configuration information about the equipment

available from the TFS Controller. Logical inventory refers to layer 3 and layer 2.

There are three modes for this use case:

• Retrieve logical interfaces inventory - focus on retrieving all the logical or virtual

interfaces of specific equipment, such as sub-interfaces, VLAN interfaces, tunnel

interfaces, and other non-physical interfaces.

• Retrieve logical resources inventory - focus on retrieving all the logical or virtual

resources of specific equipment such as system policies for routing, access, logging,

security, etc.

• Retrieve logical protocols inventory - focus on retrieving information regarding

all logical protocols such as BGP, MPLS, and RSVP.

2.1.3. Host Tracking
Technologies

Involved

IP

Type Inventory

Description This use case retrieves all detected hosts (both at IP and MAC layers) and the latest detection

time. This will allow identification of possible required flows, and implementation of other

use cases such as E2E service provisioning.

2.2. Topology
A set of abstractions has been defined to represent several views of the network topology. Context

and Topology discovery use cases for optical and IP domains are further described in [18], [12]. There

are two modes of operations:

• Polling mode - based on polling retrieval operations issued periodically and after each service

creation to reconcile the actual state of the network.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 21 of 120

• Event-triggered mode - based on an initial proactive synchronisation done from the NBI client

module and a connection-oriented notification subscription session based on the NBI

Notification mechanism.

In the following sections, we use “layer 0” to refer to transport using optical and microwave networks,

“layer 2” to indicate transport in Ethernet networks, and “layer 3” for IP and MPLS packets. Multi-

layer topologies include transport mechanisms that integrate multiple layers, typically IP over

optical/microwave networks.

From the SDN controller perspective, a network domain includes the network elements that the SDN

controller manages and may be specific areas of technology, clusters vendor-specific devices, or

administrative regions. A multi-domain topology includes the combined view of multiple SDN

controlled domains.

2.2.1. Context and Service Endpoints Discovery
Technologies

Involved

Optical, IP, Microwave

Type Topology

Description This use case retrieves all Service Endpoint [18] information available from the TFS

Controller. It is intended to be performed by any NBI client controller, module, or application

to discover the logical representation of the network as viewed by the TFS Controller

2.2.2. Single Layer Topology
Technologies

Involved

Optical, IP, Microwave

Type Topology

Description This use case retrieves all topological information available from the TFS Controller. It is

intended to be performed by any NBI client controller, module, or application that aims to

discover the logical representation of the network.

2.2.3. Multi-Domain Service Endpoint and Topology
Technologies

Involved

Optical, IP, Microwave

Type Topology

Description This use case intends to define how the TFS Controller exposes a unified multi-domain

topology, including its service mapping list and topological information.

The discovery of this information is intended to be requested proactively from a TFS

Controller to synchronise the information which must be updated when the OSS requests it.

UNIs and E-NNIs must be exposed as new service ports in the topological information.

2.2.4. Multilayer IP and Optical Topology
Technologies

Involved

IP and Optical

Type Topology

Description To represent the different relationships between IP and Optical network elements (physical

or logical) to be consumed for different applications.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 22 of 120

IP topology comprises node, ports, and L0/L2/L3 connections as shown in Figure 5.

Figure 5 IP Topology

We consider two different topological views:

• Physical topology:

o Nodes:

▪ Physical Nodes

▪ Geographical Location

o Links:

▪ Physical connections between routers (back-to-back connections)

o Termination Points:

▪ IP Interfaces

▪ Loopback Interfaces

▪ Ports

▪ LAGs

• Logical topology: per-protocol topologies (e.g. OSPF, IS-IS, BGP,…), per-layer

(e.g. IP connectivity, layer 2 connectivity),…

Topologies are stacked and related. One over the other (e.g., logical over physical, IP over

optical).

RFC8345 (generic network YANG model) [30] provides the supporting-termination-point

through the ietf-network:networks/network = {NetID}/node = {NodeId}/ietf-

network:termination-point = {Tp-Id} attribute:

A reference to an L0 network for a reduced TE Topology is added from RFC 8795 [25] to

use the inter-domain-plug-id attribute based on a unique number that identifies, in the

network, a connectivity supporting a given inter-domain TE link through ietf-

network:networks/network = {NetID}/node = {NodeId}/ietf-network:termination-point =

{te-tp-id}:

The implementation starts at the SIP where it is logically mapped to at least one topology

NEP through the TAPI-topology:owned-node-edge-point/mapped-service-interface-point

attribute:

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 23 of 120

From this requirement, it can be concluded that the Optical TE shows a SIP as the border

between both worlds, and it must be augmented, with a new attribute called "inter-layer-plug-

id" with its respective value as a "string", as presented in the following object:

PLUG-ID Usage Example:

Figure 6 PLUG-ID Usage. Optical Domain, and Topology

TFS Target

Objective

Objective 1.1 Accelerate innovation in transport (optical and microwave) and IP networks.

Research

Actions

Part of Scenario 1 demo, to be demonstrated at OFC23.

TFS

Architecture

Update

RFC8345 [30] and the TAPI NBI in the core modules showing abstracted IP and optical

topology views towards third party applications (e.g., external multilayer planning tools).

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 24 of 120

New

Requirements

Figure 7 IP Mono-Domain Topology

Figure 8 IP IGP and LLDP Augmentations

2.3. Context
In this section, we present two use cases that evolve the Context component architecture.

2.3.1. Operate TFS at Scale
Technologies

Involved

All

Type Context, Load Balancer

Description This use case tests the TFS Controller under heavy request loading.

TFS Target

Objective

Objective 1.2: Introduction of cloud-native flow management with a control plane latency

below 10 milliseconds.

IETF RFC 8345

Draft-dong-i2rs-l2 RFC 8346
Augments the generic
network data model
with information data
models with L2-
specific topology
attributes.

• Shows a generic Network.

• Enable a definition of network
hierarchies, or networks that are
layered on top of each other
maintenance of an inventory of
nodes contained in a network.

• Adding the concepts of "links"
and "termination points”.

Augments the generic
network data model
with information data
models with L3

Abstract
Topology

Model

L1 Topology
Model

L2 Topology
Model

L3 Topology
Model

Reduced Draft-ietf-teas

Augments the generic
network data model with
information data models
with L1-specific topology
attributes.

IP Mono-Domain Topology

UNI Topology
Model

draft-UNI

Augments the generic
network data model
with information data
models with UNI-
specific topology
attributes.

IETF RFC 8346

ietf-l3-ospf-topology ietf-l3-isis-topology

L3 Topology
Model

OSPF
Topology

Model

ISIS Topology
Model

BGP Topology
Model

ietf-l2-lldp-topology

Augments the L2 network
data model with information
of basic LLDP protocol
attributes.

IP IGP Augmentations & LLDP Augmentation

L2 Topology
Model

ietf-l3-bgp-topology

Draft-dong-i2rs-l2

LLDP Topology
Model

Augments the L3 network
data model with information
of basic OSPF protocol
attributes.

Augments the L3 network
data model with information
of basic ISIS protocol
attributes.

Augments the L3 network
data model with information
of basic BGP protocol
attributes.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 25 of 120

Objective 2.1: Increase by an order of magnitude (x10) the flow processing capabilities of

current SDN controllers. This results in the ability to handle a Tera of connectivity services.

Provide resilience mechanisms for the TFS components (self-healing, auto-scaling, and load

balancing).

New

Requirements

Context Component needs to be able to replicate. This means that the internal database needs

to be distributed.

Research

Actions

Design of TFS as a cloud-native application.

Detailed review of distributed cloud-native databases.

Introduction of service mesh for micro-services.

TFS

Architecture

Update

No interfaces or sequence diagrams need to be updated.

2.3.2. Flow Descriptors for IoT Services

Technologies

Involved

IP, Optical

Type Context, Service, SBI

Description Extend service protocol buffer definition in order to include the following information:

• Timestamp, End-Point Location

• ACL

o L0

▪ Lightpath

o L2

▪ Source-mac

▪ Destination-mac

▪ Ethertype

▪ VLAN-id/VPLS

o L3

▪ Source-address

▪ Destination-address

▪ DSCP

▪ Protocol number (payload type)

▪ Hop-limit (TTL)

o L4

▪ Source-port

▪ Destination-port

▪ TCP flags

▪ MPLS/SR

▪ TC bits

▪ TTL

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 26 of 120

▪ Label values

• Constraints

o Time and Location

o Duration

o Calendar

o End-Point Location

o SLA Constraints

o Isolation-level (e.g., disjoint paths, …)

o E2E latency

o Capacity

o Recovery-path

TFS Target

Objective

Objective 2.2: Ability to handle multiple technology flows (multi-RAT) and introduce the

necessary flow descriptors for IoT services (across layers 2, 3, and 4).

Introduce context-awareness in flow management. The introduction of follow-me network

connectivity services shall generate at least a 10% reduction in the network flow requests that

are generated due to network mobility.

New

Requirements

Add support for constraints in the Service Component and the SBI.

Add service constraints to path computation.

Research

Actions

The use case will be demonstrated within the context of multiple scenarios.

There is no specific research activity for the use case, but it will serve as a background for

research activities related to specific flow descriptions and SLA validation.

TFS

Architecture

Update

It requires update of the protocol buffers used for Context.

It requires dedicated handling of SLA constraints by Service and Path Computation

Components.

2.4. SBI (Formerly the Device Component)
2.4.1. IP Routers Control and Management

Technologies

Involved

IP

Type SBI

Description This use case considers the management and control of IP/MPLS routers which expose a

Netconf API with OpenConfig YANG data models. The TFS controller will maintain a

Netconf session with the device and will be able to:

• Retrieve configuration and state data from the relevant data models of the device.

• Edit configuration in the device to fulfil the different Service Provisioning, Traffic

Engineering, Provisioning, Topology, and Inventory use cases.

TFS Target

Objective

Objective 1.2: Beyond 5G integration with L3VPN/L2VPN up to the network edge. This

objective requires a clear network programmability framework to provide cloud-scale

network management capabilities.

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and

provisioning. This objective includes the adoption of novel network equipment control and

management paradigms, far beyond classical SNMP. The introduction of novel control and

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 27 of 120

management interfaces, such as OpenConfig and gNMI, will provide the necessary benefits

to TFS for supporting upcoming B5G networks.

New

Requirements

Validation and verification of proper OpenConfig implementation of L3VPN services.

L3VPN life cycle management, including use cases of SLA violation detection and recovery.

Research

Actions

This use case will be demonstrated in Scenario 1, in demo paper for OFC23.

TFS

Architecture

Update

No architectural update needs to be performed.

2.4.2. Microwave Integration
Technologies

Involved

Microwave using SIAE MW Links

Type SBI and Service Component integration.

Description Manage and configure MW devices to Add/Delete/Modify and monitor L3VPN E2E services

involving routers at edge interfaces of the MW transport layer.

Management of MW devices is achieved through an intermediate controller that exposes, in

its NBI, the standard IETF Network Topology and Ethernet Transport Service models, and

the ONF TR532 MW model.

Figure 9 Microwave Integration

TFS Target

Objective

Objective 1.1: Accelerate innovation in transport (optical and microwave) and IP networks,

and ultimately help operators provide better connectivity for communities all around the

world.

Demonstrate the integration of the management of microwave transport networks in a multi-

technology and multi-vendor environment.

New

Requirements

Integrate MW links into the L3VPN workflow.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 28 of 120

Research

Actions

Possible demonstration in ICC Rome 23 or with ETSI ISG mWT Proof of Concept.

TFS

Architecture

Update

Several data models need to be updated, as the service protocol buffer needs to include:

node_id_src, tp_id_src, node_id_dst, tp_id_dst, vlan_id.

Device protocol buffer includes the following extensions:

• MICROVAWE_RADIO_SYSTEM

• DEVICEDRIVER_IETF_NETWORK_TOPOLOGY

Include SBI support towards microwave SDN controller through IETF Network Topology

YANG model.

2.4.3. Point to Multi-Point Integration of XR Optical Transceivers
Technologies

Involved

Optical (Point-to-multipoint DWDM with Infinera XR solution)

Type SBI

Description This use case is for point-to-multipoint network optical network discovery and optical

bandwidth allocations changes.

Figure 10 XR Optical Transceivers Integration

TFS Target

Objective

Objective 1.1: Accelerate innovation in transport (optical and microwave) and IP networks,

and ultimately help operators provide better connectivity for communities all around the

world.

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and

provisioning.

New

Requirements

SBI and Service Component integration , and managing XR pluggables via the Infinera

Intelligent Pluggable Manager (IPM).

Research

Actions

Possible OFC23 regular paper, or OFC23 demo participation.

TFS

Architecture

Update

A new driver implementing the IPM REST API will be provided.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 29 of 120

2.4.4. P4 Integration
Technologies

Involved

Packet (Programming Protocol-independent Packet Processors (P4) domain-specific

language).

Type TFS device driver over software-based (i.e., bmv2 P4 switch) and/or hardware-based (i.e.,

Intel Tofino-2 switch or Xilinx Alveo SN-1000 SmartNICs).

Description This use case demonstrates how TFS manages P4 devices.

TFS Target

Objective

Objective 1.2: Adaptation of flow requirements by means of flow definition extensions and

the introduction of network programable languages, such as P4.

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and

provisioning.

New

Requirements

P4-01: The P4 device driver requires a means to load an already-compiled P4 program, i.e.,

a pair of p4.info and a p4.json files. This will be made possible using the **settings argument

of the device driver constructor. When the TFS P4 device driver is loaded, the P4 info and

JSON files will be stored into the deployed instance of the driver, such that when a connection

attempt is made towards a P4 device (i.e., using the Connect RPC), a new instance of the

P4RuntimeClient will be created and the driver will be able to call the client’s

“set_fwd_pipe_config(p4info_path, p4_bin_path)” method. This method takes the two P4

files as input arguments and configures the P4 device through an RPC to the device’s

P4RuntimeServer. Obviously, this integration assumes that P4Runtime is the key dependency

(TFS Controller on the client side, and the device on the server side).

P4-02: After loading a given P4 program onto the target P4 device, the TFS P4 device driver

should be able to configure the forwarding pipeline at runtime. This will be achieved using

the SetConfig and DeleteConfig RPCs of the driver, which will be developed in a way that

allows the TFS device driver to pass a list of forwarding rules for insertion or deletion

respectively.

P4-03: To monitor the runtime state of the pipeline, the TFS P4 device driver will employ

the GetConfig RPC, which will fetch the installed rules from the switch and report them to

the TFS Controller.

P4-04: To allow zero-touch provisioning of P4 devices (provided by the Automation

Component) when new, unconfigured devices appear in the network, the GetInitialConfig

RPC method will be implemented. This RPC will return a minimal set of pipeline instructions,

which, when enforced by the Automation Component (see the use case in Section 2.10) to a

target P4 device, will allow this device to perform simple L2 forwarding, thus being

immediately functional when it appears in the network. After this point, it is up to the network

operator to install more advanced forwarding rules which may realise additional, and

potentially more complex, network functions.

With these new requirements in place, the TFS Controller will be able to fully-configure

programmable P4 pipelines.

Research

Actions

Euro P4 ‘22 demo or OFC ‘23 or P4 Workshop ‘23 or IEEE HPSR’ 23 demo/tutorial.

TFS

Architecture

Update

The planned RPCs will be implemented in a way that no or only minor changes will be

required to the device protobuf. Should any changes occur, they will be reported in the context

of WP3 in MS3.3.

2.5. Services
In this section, we present use cases that evolve the Context component architecture. In the L3VPN

for 5G Services, the nodeB (i.e., antenna) are directly connected to the cell site (HL5 layer). The cell

site acts as a first aggregation layer, for nodes that share the same geographical location. The

connections between the next Access Router layer (HL3) and cell site layer are made in a ring topology.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 30 of 120

The HL3 receives and aggregates traffic from the rings of the same region (geographical location). In

the HL5, an L3VPN is created to receive the interfaces of each nodeB [MUS21]. L3VPNs are used to

deploy 5G, but fixed and enterprise services can be applied in the network to transport and guarantee

the right SLAs to the mobile customers mainly because they offer several traffic discrimination policies.

Such L3VPNs have been typically statically configured, and with the adoption of modern protocols,

they can now be dynamically configured on IP routers. IP routers are interconnected using underlying

network elements, such as DWDM or MW transport networks. To provide E2E connectivity services,

underlying network connections shall be controlled and managed [2].

2.5.1. Service-ACL Management

Technologies

Involved

IP

Type Service

Description Configuration of network access control lists (i.e., filters, rules, etc.). ACLs are organised

into ACL sets, with each set containing one or more ACL entries. ACL sets are identified by

a unique name, while each entry within a set is assigned a sequence-id that determines the

order in which the ACL rules are applied to a packet. Individual ACL rules specify match

criteria based on fields in the packet, along with an action that defines how matching packets

should be handled. Entries have a type that indicates the type of match criteria, e.g., MAC

layer, IPv4, IPv6, etc.

Functions Covered:

Create the ACL:

 Configure the name or number for the ACL

 Provide a description

 Define the type (IPv4, IPv6, L2, MPLS, Mixed)

 Provide the ID (user defined identifier)

Define the rules used to match the packet:

 Destination address

 DSCP

 Protocol

 Source address

 Destination port

 Source port

Define the action for the matched packets:

 Forwarding-action (drop, accept, reject)

 Log-action (log-syslog, log-none)

 Define the sequence to apply the ACL (sequence-id)

Apply the ACL to an interface (interface / sub-interface):

 Specify the direction to apply the ACL on the interface (ingress / egress)

 Set-Name

• Type

TFS Target

Objective

Objective 1.2: B5G integration with L3VPN/L2VPN up to the network edge.

New

Requirements

OpenConfig extensions for Service ACL management.

Research

Actions

Regular paper contribution at conference, in the scope of Scenario 1 or 3.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 31 of 120

TFS

Architecture

Update

NBI support in core modules enabling standard integration with external provisioning tools

through vendor agnostic APIs.

2.5.2. Service SLA Violation Detection and Recovery
Technologies

Involved

All

Type Service

Description TFS provides continuous service monitoring and SLA guarantees. This use case provides the

necessary requirements for SLA violation detection and service SLA guarantee.

TFS Target

Objective

Objective 1.2: B5G integration with L3VPN/L2VPN up to the network edge. This objective

requires a clear network programmability framework to provide cloud-scale network

management capabilities.

New

Requirements

TFS shall support SLA monitoring.

TFS shall trigger a Policy, when SLA violation is detected.

TFS shall provide service restoration using a break-before-make strategy.

Research

Actions

To be demonstrated in Scenario 1, in OFC23 demo.

TFS

Architecture

Update

New workflow sequence needs to be included, considering the necessary control loop,

between Monitoring, Policy and Service.

2.5.3. Location-Aware Context Management
Technologies

Involved

All

Type Inter-domain

Description Service endpoints can be updated to support follow-me connectivity.

TFS Target

Objective

Objective 2.2: Introduction of a new architecture to support massive IoT and new mobility

paradigms.

Objective 3.3: Support for context-awareness and follow-me applications in cross-border

scenarios.

Introduce context-awareness in flow management. The introduction of follow-me network

connectivity services shall generate at least a 10% reduction in network flow requests that are

generated due to network mobility.

New

Requirements

Requested services can be constrained to a certain region or locations.

Services can be updated due to change in endpoints.

Research

Actions

To be demonstrated with Scenario 2.

TFS

Architecture

Update

Need for an updated service workflow.

Inclusion of location in Endpoints and Location Constraints in Services.

2.5.4. L3VPN Service Provisioning
Technologies

involved

IP/MPLS

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 32 of 120

Type SBI, Service

Description This use case allows the provisioning, modification, and deletion of an L3VPN service

spanning one or more IP/MPLS routers via the TFS Controller using the L3NM data model

(RFC 9182) [3]. The L3VPN creates a virtual routing network instance (usually known as

VRF) in each of the routers involved in service deployment. The routing instance (VRF)

created at every router allows routing information propagation between all of the sites

involved in the service.

The main functionalities covered in this use case are the following:

• Provide a name and a description for the new L3VPN service.

• The type and data plane encapsulation in this use case is limited to BGP based

L3VPNs (type=L3VRF) over MPLS (encapsulation-type=MPLS).

• Set the route distinguisher (RD) that should be used each VRF when it is signalled

via BGP. In this use case, the RD has to be explicitly provided.

• It is possible to configure a router-id to identify the routing device and used by BGP

and OSPF to function in a routing instance.

• Enable/disable the configured network instance on the network element. Note that

some vendors’ implementations do not allow disabling the configured network

element so that the network instance will be enabled immediately after creation and

kept enabled until it is deleted.

• Label allocation (per prefix, per next-hop, or a single label per VRF) should be set

to single label per VRF.

• Enable the Address Families (AF) supported within the L3VPN. Note that some

vendors may enable all families by default.

• Configure Route Target for export and import. The controller will take care of

creating the policies in the device automatically.

• Create vpn_node (VRF) profiles to reuse when there are multiple VRFs. VPN

topologies can be indicated (hub & spoke, full mesh, custom) as informative. The

topology is achieved via a Route Target (RT) assigned for import and export.

• Attach sub-interfaces to be bound to the L3VPN at L2 (single or double tagging,

LAG members if applicable) and configure L3 information (IP address, loopback

type interface). The physical interface configuration is out of scope of this use case.

• Attach existing routing policies to the VPN for import and export

• Control the VPN lifecycle using status variables such as pre-deployment, testing, or

up.

• Configure CE-PE routing, including static routes.

TFS Target

Objective

Objective 1.2: B5G integration with L3VPN/L2VPN up to the network edge. This objective

requires a clear network programmability framework to provide cloud scale network

management capabilities.

Objective 1.3 Automated service management for transport network slices.

Requirements The device driver needs to send the necessary Netconf/OpenConfig queries to the IP/MPLS

routers to create the service, VPN nodes, VPN access, and to add the corresponding routing

protocols. The L3VPN VPN API exposing the L3NM data model can be consumed internally

by TFS Apps (e.g., can be used to produce a network slice, or can be fully automated) or

externally by an OSS.

Research

Actions

To be demonstrated in Scenario 1 and demonstrate cloud-native features of the TFS

Controller components (auto-scale, self-heal, load-balancing).

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 33 of 120

TFS

Architecture

Update

Novel component.

2.5.5. L2VPN Service Provisioning
Technologies

involved

IP/MPLS

Type SBI, Service

Description This use case allows the provisioning, modification, and deletion of a Layer 2 VPN service

spanning one or more IP/MPLS routers via the TFS Controller using a subset of the L2NM

data model (RFC 9291) [4]. The types of L2VPN in scope are:

Virtual Private LAN Service (VPLS) (RFC4761 [31] and RFC4762 [32])

Virtual Private Wire Service (VPWS) (Section 3.1.1 of RFC4664 [33])

Various flavours of EVPNs, such as VPWS EVPN (RFC8214 [34]) and EVPN over MPLS

(RFC7432 [35]).

The functionalities of the use case include

• Create a new service with a name and indicate the type (VPLS, VPWS, EVPN)

• Indicate the endpoints of the service

• Attach the interface/sub-interface to the VPN at every node

• To control the VPN lifecycle using status variables such as pre-deployment,

testing, or up.

TFS Target

Objective

Objective 1.2: B5G integration with L3VPN/L2VPN up to the network edge. This objective

requires a clear network programmability framework to provide cloud scale network

management capabilities.

Requirements TFS customers may use various means to request a service that may trigger the instantiation

of an L2NM. Customers may use L2SM (e.g., from the NBI Component) or more abstracted

models such as a Network Slice Service (from the Slice Component). In both cases, L2NM

may also be exposed directly for an operator’s OSS.

TFS needs to provide the necessary Netconf/OpenConfig commands to

create/modify/delete the L2 VPN service.

Research

Actions

To be demonstrated in Scenario 1 and demonstrate cloud-native features of the TFS

Controller components (auto-scale, self-heal, load-balancing).

TFS

Architecture

Update

Novel component.

2.6. Forecaster
2.6.1. Traffic Forecast

Technologies

Involved

All

Type New component (Forecaster)

Description Forecaster is a new component which is able to perform proactive SDN traffic optimisation

by means of ML algorithms (e.g., collection of real-time KPI data and use of ML to forecast

where and when a problem is likely to occur, so as to reroute traffic before it happens).

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 34 of 120

TFS Target

Objective

Objective 1.3: Proactive SDN traffic optimisation by means of ML algorithms (e.g.,

collection of real-time KPI data and use of ML to forecast where and when a problem is likely

to occur, so as to reroute traffic before it happens). Reduction by 25% of resource usage due

to ML-based traffic optimisation.

New

Requirements

A component shall be able to obtain the history of requested and serviced connectivity

services with duration and capacity constraints.

Forecaster shall include ML algorithms (prophet or AutoML) for predicting traffic forecasts.

Traffic forecasts shall be analysed before determining whether to accept a new service

request.

Research

Actions

ICC regular paper.

TFS

Architecture

Update

New component.

Context data models shall be extended including service timestamp, service duration, and

service capacity.

Policy Component requires a new action for service update.

2.7. Monitoring
The high density and heterogeneity of B5G networks will require extensive monitoring capabilities in

order to gather the maximum number of metrics for network management, failure detection, and

network optimisation purposes. For that reason, a highly scalable monitoring system is required by

the TFS Controller, supporting novel monitoring, telemetry, and alarm interfaces, in order to cope with

the stringent requirements of B5G systems.

2.7.1. Monitoring-Telemetry Management
Technologies

Involved

IP

Type Monitoring

Description This use case will undertake the introduction of novel monitoring, telemetry, and alarm

interfaces that will provide the necessary benefits to TFS for supporting the requirements of

forthcoming B5G networks.

This use case will demonstrate the integration of gNMI in the monitoring and telemetry

procedures. The adoption of gNMI will allow the use of standards-defined interfaces using

YANG and protocol buffer data models in addition to increasing the efficiency, reducing

control latencies, and improving the network resource usage.

This use case will also demonstrate the subscription and alarm system of the Monitoring

Component, that is required for the proper operation of the rest of the TFS components.

TFS Target

Objective

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and

provisioning.

Research

Actions

Part of Scenario 1 demonstration.

TFS

Architecture

Update

Develop the required extensions in the TFS components to support gNMI dial-in monitoring.

The required extensions are highlighted in red in Figure 11, while the extensions that are

already developed are shown in green. The required extensions include the development of a

new gNMI driver with a gNMI collector and integration with the already available monitoring

loops.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 35 of 120

Figure 11 gNMI Telemetry Architecture

New

Requirements

Develop a gNMI driver in the SBI, including a gNMI collector.

Integrate the gNMI collector with the monitoring loops already developed in the SBI.

2.8. Traffic Engineering
The Traffic Engineering (TE) Component allows the enforcement of traffic steering by leveraging MPLS

tunnels or Segment Routing paths. This makes it possible to increase the efficiency of network

resource usage by correctly mapping the traffic flows to the available resources and improving

network management, identifying issues, and reacting to overcome difficult failure situations.

Furthermore, the PCE function has been defined to allow the performance of complex constraint-

based path computation over a network graph representation. This improves the application of TE

policies in G/MPLS networks. Based on these functionalities, one of the primary purposes of TE is to

reduce overall operating costs through more efficient network resource usage, including link

occupation, traffic rerouting, and network availability [13].

Inter-domain path computing was previously done by the PathComp Component, and for each domain

in this path, the segment is delegated to the TE component for in-domain optimisation. The TE

component subscribes to the relevant monitoring events regarding SLA compliance and may

preventively modify the LSPs/SR paths to avoid SLA breaches.

2.8.1. PCEP for Segment Routing
Technologies

Involved

IP

Type PCEP for Segment Routing (path creation, modification, and deletion with SR).

Description This use case consists of creating, modifying, and deleting segment routing paths on the

available hardware for a given domain, considering specific constraints and the available

resources. For example, the constraints given to the PCE for the calculation of the path could

be required latency, bandwidth consumption, hop count, and whether the result should be a

strict explicit path or a loose one.

TFS Target

Objective

Objective 1.3: Automated service management for transport network slices.

Research

Actions

Possible demo at NetSoft23.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 36 of 120

TFS

Architecture

Update

NBI support in TE core module enabling standard integration with external orchestrators.

New

Requirements

Figure 12 PCEP for Segment Routing New Requirements

2.9. Path Computation
The PathComp Component is an element in the TFS Controller handling the route and transport

resource selection for the incoming network connectivity services. It operates as a server, receiving

requests from the Service Component and, interacting with the Context Component, retrieves

information about the underlying topologies to seek feasible paths and resources fulfilling the

demanded network service requirements, e.g., minimum bandwidth, maximum permitted latency,

path disjointedness, etc. The PathComp Component is envisioned to support heterogeneous

algorithms tackling diverse objective functions such as inter-domain path computation, i.e., deploying

connectivity services with endpoints located at different domains, or energy-aware traffic routing

aimed at rolling out the connectivity services with reduced energy consumption.

2.9.1. Support for Path Computation
Technologies

Involved

Inter-domain, Context Component, Service Component, Slice Component, Circuit-

switched networks

Type Path and transport resource algorithms with multi-objectives and constraints

Description The PathComp Component functionalities are queried on-demand by the Service Component

at the time of provisioning a new network connectivity service or set of services. It could be

also queried when updating an active network connectivity service whose requirements need

to be modified. The inputs to the PathComp Component are:

• Endpoints (e.g., PEs) to be interconnected

• Service requirements, e.g., bandwidth, latency, path disjointedness, etc.

• Algorithm identifier which is bound to a specific objective to be addressed by a

determined algorithm, e.g., attain an efficient use of the transport resources, reducing

the overall transport network energy consumption, etc.

• Context information containing details of the involved topologies, connectivity,

device and link attributes and constraints, etc.

The PathComp Component may include a pool of specialised algorithms one of which is

picked according to the algorithm identifier carried in the request. The output of the

PathComp Component specifies:

• No Path when the algorithm is unable to find a feasible path and transport resources

fulfilling the network service requirements

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 37 of 120

• The explicit path and transport resources through which the connectivity service

needs to be set up

The planned set (not exhaustive) of algorithms to be offered in the PathComp Component

includes:

• Constrained K-Shortest Path (Yen) for handling different additive metrics, e.g., hops

and maximum latency

• Energy-aware routing

• Disjoint working/backup path computations

The planned implementation (short term) is to enable a front-end (written in Python) to enable

interaction with other TFS components (e.g., Service and Context) via a gRPC API. The back-

end (written in C) interacts with the front-end using a REST API. The back-end is used to

support “fast” and “intensive” execution of any selected algorithm. For the sake of

completeness, a long-term future task will revisited the necessity of having a front-end/back-

end architecture of the PathComp Component.

Figure 13 Internal Architecture of Path Comp Component

TFS Target

Objective

The PathComp Component aims to offer a dedicated entity for computing the path/route and

transport resources fulfilling diverse connectivity service requirements and tackling

heterogenous network objectives. This specific functionality may be computationally

intensive and should scale well with the size of the Context (underlying transport domains).

Moreover, the PathComp Component represents a single and specialised entity where

different algorithms can be hosted. This permits that any new algorithm to be used does not

impact on other TFS components (e.g., Service). To this end, the PathComp Component relies

on well-defined workflows and APIs to interact with other TFS components such as the

Service and Context Components.

New

Requirements

The PathComp component is a new core component being developed in the TFS Controller.

The identified requirements are:

• Interaction with the Service Component via gRPC (request and respond PathComp)

specifying the endpoints, algorithm identifiers, service identifier, and service

constraints

• Interaction with the Context Component via gRPC (request and respond

GetContext) to retrieve the Context (topologies, devices and links attributes, etc.)

used as input to trigger the selected path computation and resource selection

• Definition of the algorithms dealing with the identified network objectives within

the project, e.g., energy-oriented routing, disjoint-path computation, etc.

Research

Actions

The PathComp Component offers a complementary functionality (i.e., automatic path

computation and resource selection) needed to perform operations such as the

provisioning/updating of network connectivity services, slices, etc. An important aspect is

that this function can be used to fulfil network service demands and also to target interesting

networking objectives such as the reduction of energy consumption. Thus, the PathComp

gRPC

Front-End
PathComp

REST API

A
lg. #1

PathComp

Back-End
PathComp

A
lg. #2

A
lg. #N

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 38 of 120

Component would be part of different research actions where the route and resource selection

are key aspects.

TFS

Architecture

Update

The introduction of the PathComp Component will require that it interacts with the Service

and Context Components. The interactions with the former (based on gRPC) will enable

handling the PathComp request/response messages for selecting the route and the resources

meeting an incoming network connectivity request. On the other hand, the interactions with

the Context Component allow the PathComp Component to retrieve the topology information

including the device and link attributes. This information is essential to trigger a selected

routing algorithm triggered within the PathComp Component.

2.9.2. Add Service Constraints for Path Computation
Technologies

Involved

Calendar, disjoint, capacity, latency, Segment Routing, MPLS, …

Type Context, Service, SBI

Description Extend service protocol buffer definition in order to include the following information:

• L2VLAN-id/VPLS

o MPLS labels

• L3

o DSCP

▪ Protocol number (payload type)

• L4

o MPLS/SR

o Label values

• Constraints

o Time and Location

o Duration

o Calendar

o End-Point Location

• SLA Constraints

o Isolation-level (e.g., disjoint paths,…)

o E2E latency

o Capacity

o Recovery-path

TFS Target

Objective

Objective 2.2: Ability to handle multiple technology flows (multi-RAT) and introduce the

necessary flow descriptors for IoT services (across layers 2, 3, and 4).

New

Requirements

Add support for constraints in Service Component and SBI.

Add service constraints to path computation.

Research

Actions

To be demonstrated in Scenario 1 (restoration and intra-domain SLA enforcement) and

Scenario 2 (inter-domain SLA enforcement).

TFS

Architecture

Update

It requires update of the protocol buffers of Context.

It requires dedicated handling of SLA constraints by Service and Path Computation

Components.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 39 of 120

2.10. Automation
2.10.1. Automated Provisioning of P4 Devices and Programs

Technologies

Involved

IP using the Programming Protocol-independent Packet Processors (P4) domain-

specific language.

Type Automation

Description Automation Component to provide zero-touch provisioning of P4 devices (i.e., automation

of P4 integration described in Section 2.4.4).

TFS Target

Objective

Objective 1.2: Adaptation of flow requirements by means of flow definition extensions and

the introduction of network programable languages, such as P4.

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and

provisioning.

New

Requirements

AUT-01: Automatically provision a P4 program in addition to the device itself. To meet this

requirement, the following prerequisites should be met:

• The P4 device driver should be able to connect to a P4 device (Connect RPC) and

load a desired (pre-compiled) P4 program as described in Section 2.4.4.

- The P4 device driver should implement the GetInitialConfig RPC, which allows the

Automation Component to auto-provision a new P4 device through the ztpAdd RPC.

Specifically, the Automation Component will fetch the Device object from the

Context Component and then call the Device object’s GetInitialConfig RPC to

receive an initial configuration for this device. Once this configuration is received,

the Automation Component will update its local Device object with the received

configuration and attempt to set this configuration to the device. Upon success, the

device will make its new configuration available through the Context Component.

AUT-02: The ztpUpdate RPC will be implemented, to support provisioning automated

configuration updates onto a target device. This RPC will be given a DeviceID and a list of

configuration rules which will comprise the update. Upon invocation, the Automation

Component will fetch the Device object from the Context database, apply the updated

configuration rules to the local Device object, and call the ConfigureDevice RPC to enforce

the updated configuration to the target device. This will also result in an updated Device

object being automatically populated into the Context database. In the context of automated

provisioning of P4 devices, this method will assist the ztpAdd with runtime device updates.

AUT-03: The ztpDelete RPC will be implemented, aiming at automatically removing certain

configuration from a target device. This RPC will follow an identical workflow to the

ztpUpdate RPC, except that it performs deletion, rather than update of a given configuration.

In the context of automated provisioning of P4 devices, this method will assist the ztpAdd

with runtime device configuration removal.

Research

Actions

Euro P4 ‘22 demo or OFC ‘23 or P4 Workshop ’23 or IEEE HPSR’23 demo/tutorial

TFS

Architecture

Update

To realise AUT-02 and AUT-03, the ztpUpdate and ztpDelete RPCs may be updated with an

additional input argument that describes the updated/deleted configuration to be applied to

the device. The automation.proto will be updated accordingly.

The rest of the RPCs will be implemented in a way that no or only minor changes will be

required to the device protobuf. Should any changes occur, they will be reported in the context

of WP3 at the upcoming MS33.

2.11. Policy
2.11.1. Automated SLA Enforcement

Technologies

Involved

IP

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 40 of 120

Type QoS Management

Description The TFS Policy Management Component provides means to schedule network management

operations in response to events, based on the event-condition-action policy model drafted

by the IETF [10]. Such policies can be applied either at the level of individual devices (i.e.,

device-level policies) or across entire network domain (i.e., network-wide policies).

Policy Conditions

TFS provides a powerful mechanism to express policy conditions encoded as AND/OR-

separated policy condition patterns, where each pattern is in turn expressed in the form of:

Monitoring.KPI, numericComparisonOperator, Monitroing.KPIValue. For example, a policy

condition could check whether “PacketLoss > 2%” on a given connection/service. To realise

such policy conditions, the Policy Management Component relies on services provided by

the Monitoring Component. Specifically, the alarm subsystem of the Monitoring Component

(planned for the TFS 2.0 release) allows external entities to create conditional queries on

monitoring data. When these conditions are met (e.g., a Monitoring KPI exceeds a specific

value, falls within a certain range, etc.) the Monitoring Component raises alarms which are

sent back to the origin component (i.e., the component that requested the conditional query)

for internal consumption. When the Policy Management Component receives such an alarm

on a conditional query, it triggers an action as a response.

Policy Actions

Reacting to (conditional) policy events means allowing the TFS Controller to apply certain

actions to restore a given set of devices or services back to a desired state. The Policy

Management Component offers a modular set of actions which can be technically expressed

as enum action items mapped to (i) RPC calls to other TFS components (e.g., SBI, Service,

etc.), and (ii) parameters to pass to these RPC calls so as to enforce the desired action.

TFS Target

Objective

Objective 2.3: Adoption of novel protocols for inventory, alarms, telemetry, and provisioning

Research

Actions

OFC ‘23 demo or IEE HPSR’23 demo

TFS

Architecture

Update

An updated policy.proto is part of the develop branch on GitLab.

A new policy-condition.proto is part of the develop branch on GitLab.

A new policy-action.proto is part of the develop branch on GitLab.

New

Requirements

To be able to apply QoS-related policies, data plane devices should be configured

accordingly. For this to happen, OpenConfig extensions are planned for QoS management in

IP devices.

2.12. Transport Network Slicing
2.12.1. Slices with SLAs

Technologies

Involved

All

Type Slice

Description A slice request will include a set of end-points, several connections between them, and a

group of SLOs constituting the full SLA.

The constraints described by the SLA shall be preserved during the slice lifespan.

TFS Target

Objective

Objective 1.3: Automated service management for transport network slices.

New

Requirements

Components shall provide slices and interface in terms with IETF draft-ietf-teas-ietf-

network-slices. [21]

https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/policy.proto
https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/policy-condition.proto
https://gitlab.com/teraflow-h2020/controller/-/blob/develop/proto/policy-action.proto

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 41 of 120

Slice SLAs shall be mapped as technology-agnostic intents, regardless of the underlying

implementation (e.g., L2VPN, L3VPN).

Slices, once deployed, shall be monitored and enforced, in terms of SLA constraints.

Research

Actions

To be tested and demonstrated in Scenario 1.

TFS

Architecture

Update

Extend slice data model or select from existing model (to be further discussed, best candidate

for slice service request is draft-ietf-teas-ietf-network-slice-nbi-yang [29], realisation is

proposed to be done using existing implementation of L2/3VPN services, Timestamp, End-

Point Location.

Required parameters for slice service request:

• Timestamp

• Slice tenant/owner

• Set of end-points

• Set of connections between end-points

• Duration (may be indefinite)

• SLA constraints (as a set of SLOs), e.g.:

o Guaranteed bandwidth

o Availability

o Maximum E2E latency

o Maximum packet drop

o Isolation level

2.12.2. Optimal Slice Grouping for Multiple Tenants
Technologies

Involved

All

Type Slice

Description Similar slice requests can share underlying services.

Clustering algorithm for slice grouping. Consider both paths and SLA constraints.

SLA monitored by slice group.

TFS Target

Objective

Objective 3.2: Provisioning of multi-tenant transport network slices.

Improve network resource usage by 30% by adopting multi-tenancy resource allocation

algorithms.

Optimal slice grouping: trade-offs between economies of scale and limitations as to which

SLAs can be grouped together need to be considered. Optimal grouping of slices is required

to maximise KPIs, such as resource utilisation, utility of the connectivity, and energy

efficiency. In this context, trade-offs between the resulting control plane complexity and

differential treatment of SLA classes should be considered.

New

Requirements

User can select if slice grouping is performed per-slice request.

Slice grouping introduces a clustering algorithm for finding service optimisation while

preserving slice SLA.

Service (re-)optimisation is provided.

Research

Actions

Research paper Q4 2022.

TFS

Architecture

Update

Update Slice service RPC to include Slice Grouping.

Use novel Slice model with SLA constraints.

Use Policy Component with action to update services to apply slice grouping.

Describe Slice service operation modes: per-request or user-triggered.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 42 of 120

2.13. Centralized Attack Detector
2.13.1. Scalable Attack Detection

Technologies

Involved

L3 and Optical ML-based detectors

Type ML-based security

Description This use case introduces scalable and reliable security assessment of the services established

using TFS. This use case focuses on two different types of service: optical and IP.

For optical services, the Centralized Attack Detector (CAD) must collect monitoring samples

made available by coherent optical transceivers, and use this information to detect and

possibly identify attacks. For this type of service, security monitoring cycles are executed

periodically (e.g., every 30 seconds, every 1 minute). The monitoring samples are collected

through the device driver and stored in the monitoring component.

For IP services, the CAD receives per flow statistics summaries from the Distributed Attack

Detector (DAD). The CAD stores the flows statistics received within a certain time window

(which can be parametrised) in a buffer. A ML model classifies each flow in the buffer as

normal traffic or as being part of an attack, and a confidence level in the decision is obtained.

If a flow is detected as being part of an attack with a confidence level equal or greater than a

configurable threshold, the CAD sends the attack flow information to the AM Component in

order to trigger an adequate action to mitigate the detected attack. In addition, for monitoring

purposes, security monitoring cycles are executed periodically (e.g., every 5 seconds).

TFS Target

Objective

Objective 4.1: Cyberthreat analysis and protection

New

Requirements

Upon the creation, update, or deletion of services, the CAD must set up appropriate

background information within TFS (e.g., new monitoring KPIs).

For the optical service, at the end of a security assessment cycle, the security status associated

with the services under monitoring must be reported as KPIs of the TFS Monitoring

Component.

For the IP service, no new requirements have been considered.

Research

Actions

Will be provided as part of Scenario 3.

TFS

Architecture

Update

For the optical service, the interface provided by the Monitoring Component will be extended

to provide functionalities needed to realise this use case.

A new argument (service_id) has been added to L3AttackmitigatorOutput which is the object

used to send the attack detection information from the CAD to the AM Component with the

RCP function SendOutput. The new argument is used to provide the AM Component with

the identifier of the service where the attack was detected. This identifier is later used by the

AM Component to enforce the mitigation action only in the network service represented by

the service_id. Another argument called endpoint_id has also been added to keep track of the

endpoint the attack came from in order to take it into account when performing the mitigation.

2.14. Distributed Attack Detector
2.14.1. Edge-Based Attack Detection

Technologies

Involved

L3. ML-based feature aggregator

Type ML-based security

Description The Distributed Attack Detector (DAD) monitors the network data plane for the presence of

malicious network flows and is deployed at the network edge to improve scalability and

response time in the attack detection process and enable real-time detection of malicious

traffic. To this end, a feature extractor is deployed at the network edge to collect and generate

statistical summaries of network flows. To do this, packets are aggregated into flow-level

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 43 of 120

statistics, where each flow is an aggregate of packets belonging to the same packet flow (same

source IP address, source port, destination IP address and destination port). This aggregation

is performed for all new packets that arrive within a specific time window which can be

configured. In this way, each aggregation of flow statistics is sent to the CAD to detect

malicious traffic.

TFS Target

Objective

Objective 4.1: Cyberthreat analysis and protection

New

Requirements

New component definition and distributed allocation.

Research

Actions

Part of scenario 3 demonstration.

TFS

Architecture

Update

A new argument (service_id) has been added to sendFlow which is the RPC used to send the

network connection information from the DAD to the CAD. The new argument is used to

provide the CAD with the identifier of the service to which the connection belongs to.

A new argument (service_id) has been added to L3CentralizedattackdetectorMetrics which

is the object used to send the network connection information from the DAD to the CAD with

the RCP function SendInput. The new argument is used to provide the CAD with the identifier

of the service to which the connection belongs. Another argument called endpoint_id has also

been added to keep track of the endpoint the attack came from in order to take it into account

when performing the mitigation.

2.15. Attack Inference
2.15.1. Detection and Identification of Attacks

Technologies

Involved

Optical

Type ML-based security

Description This use case refers to the ability of performing inference over monitoring samples using

AI/ML techniques and models in order to detect (and possibly identify) attacks being

launched over services provisioned using TeraFlowSDN.

TFS Target

Objective

Objective 4.1: Cyberthreat analysis and protection.

New

Requirements

The AI/ML model shall not require any prior knowledge of the attacks it is detecting.

Therefore, unsupervised or semi-supervised learning techniques will be adopted.

Research

Actions

Possible demo at OFC’23.

TFS

Architecture

Update

A new module was created within the Cybersecurity Component to accommodate the

functionalities of this use case. The gRPC interface was defined by a new protobuffer file.

2.16. Attack Mitigator
2.16.1. Mitigating the Execution of Attacks

Technologies

Involved

Optical, L3

Type ML-based security

Description The Attack Mitigator (AM) Component prevents the execution of attacks identified by the

CAD. The CAD detects per connection if an attack occurs in the network. If an attack is

detected, the CAD sends a notification to the AM Component indicating the details of the

attack.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 44 of 120

If the attack detected is at Layer 3, the CAD includes the source and destination of the attack

flow and the confidence level of the detection, as well as other relevant information about

the detection (timestamp, ML model identifier, flow identifier, etc.). If the attack detected is

at the optical physical layer, the CAD includes the service identifier of the affected service.

The role of the AM Component is to instruct some core components of TFS to enforce

adequate actions that can mitigate the attacks on the network. For example, in case of

detection of an attack at Layer 3, the AM Component could instruct the Service Component

and SBI to drop the malign connection. To achieve this goal, the AM Component

communicates with the Context Component to update the service on which the attack has

been detected in order to create a new ACL ruleset in the service, and to implement a new

ACL rule on the devices traversed by the attack connection. If the attack is detected in an

optical service, the AM Component will mitigate the attack by using a make-before-break

strategy. This strategy consists in creating a new service that uses a different set of resources,

i.e., a link-and-node-disjoint path, moving the traffic into the new optical service, and

deleting the old (under-attack) service.

TFS Target

Objective

Objective 4.1: Cyberthreat analysis and protection.

New

Requirements

Integration with Service and Context Components (and collaterally with the SBI and physical

routers).

Research

Actions

To be discussed with partners during the plenary meeting.

TFS

Architecture

Update

When the CAD detects that a connection to the TFS Controller is part of an attack, the CAD

will inform the AM Component about the detection. For this purpose, a new RPC has been

created to send the information about the attack detection, including the source and

destination addresses, and the confidence level related to the attack detection, as well as other

relevant information about the detection (timestamp, ML model identifier, flow identifier,

etc.). When the information of an attack flow is received, the AM Component will trigger

the mitigation procedure. To decide which action should be applied to the packets sent by

the marked source address to mitigate the attack, the AM Component will call the

GetMitigation method, which will return the most adequate mitigation action to be applied

to the packets. In the release 2.0, this mitigation action will only consist of discarding packets

transmitted from the source address (i.e., dropping the connection).

In addition, using the identifier of the service where the attack was detected, the AM

Component will update the corresponding service where the attack was detected by

communicating with the Context and Service Components to create a new ACL ruleset in

the service, and to implement a new ACL rule in the devices traversed by the attack

connection in order to perform attack mitigation. To this end, a new RPC between the AM

and Context Components is added (UpdateService) to describe the ACL rule to be

implemented by the Service Component.

2.17. Distributed Ledger and Smart Contracts
2.17.1. Advancing the State of the Art of the Core Building Blocks of
Blockchains

Technologies

Involved

All

Type DLT

Description Improving scalability of blockchain.

Improving smart contract security.

TFS Target

Objective

Objective 4.2:

• Optimised consensus algorithms for permissioned ledgers that scale above 100

nodes.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 45 of 120

• Automated patching of smart contracts.

New

Requirements

-

Research

Actions

Developing a new, generic methodology for scaling permissioned blockchains (associated

research paper published at ACSAC’21).

Developing a novel automated tool for the online detection of smart-contract vulnerabilities.
TFS

Architecture

Update

Research to be performed.

2.17.2. Using DLT for Inter-Domain Service Provisioning and SLA Violation
Detection

Technologies

involved

All

Type DLT

Description DLT Connector is the DLT Component of TFS. Through it, different DLT records can be

stored in the blockchain, including events from SBI, Service Component, or Slice

Component. The DLT Connector implements a generic protocol buffer offered by the DLT

gateway to operate JSON encoded messages in the blockchain.

Figure 14 Sequence Diagram for DLT

The sequence diagram is depicted in Figure 14.

TFS Target

Objective

Objective 4.2: Distributed ledger technologies.

In particular, the ledger will use blockchain mechanisms to protect data related to network

resources and services of the various stakeholders. Another building block of the distributed

ledger is dedicated smart contracts (which TFS will also provide) for accessing and updating

the blockchain.

New

Requirements

TFS user can select the amount of information that is shared through the blockchain.

The TFS DLT Connector interacts with a DLT gateway using a generic protocol buffer and

gRPC, using JSON encoded records.

The TFS DLT Connector allows stream reception of new elements from the blockchain.

Research

Actions

Demonstration at IEEE NFV-SDN 2022.

TFS

Architecture

Update

DLT Connector is part of TFS and will implement the protocol buffer towards the DLT

gateway. DLT gateway will be provided by NEC as it talks directly with the blockchain.

2.18. NBI (Including the Old Compute Component)
The NBI includes the function of the old Compute Component. It allows TFS to interconnect to an

external NFV Orchestrator. By doing so, the TFS can automatically handle the lifecycle management

of network connectivity services between remote data centre/cloud sites. In other words, the NBI acts

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 46 of 120

as a front-end to receive, process, and trigger the creation/update/removal of network connections

fulfilling the requirements of the network services (involving both cloud and network resources)

managed by the NFV Orchestrator. Thus, the NFV Orchestrator serves as a client demanding network

connectivity services from the NBI . The NBI then interacts with other components, such as the Service

Component, to meet the requested operations (e.g., connectivity creation, update, or removal).

2.18.1. Energy-Based Service Placement between Edge and Core Compute
Resources

Technologies

Involved

NFV Orchestrator (OSM), Placement Component of the OSM, NBI, Service Component,

PathComp Component, Context Component.

Type Network services involving compute and network resources

Description The NBI (including the function of the old Compute Component) provides an API translation

and mapping between the OSM WIM connector and the Service Component. Specifically,

the OSM relies on a REST API to register and request diverse network connectivity

operations such as creation, updating, and removal. TFS release 2.0 deployment of the NBI

enables it to receive and process the establishment of network connectivity services with

specified endpoints. TFS r2.1 is expected to tackle advanced functionalities such as: i)

deploying network services dealing with energy-oriented objectives; and ii) requesting

disjoint network connectivity services (i.e., primary and backup).

The placement of incoming network services (set of VNFs and VLs) entails that the NFV

Orchestrator (OSM) decides the PoPs (either edge or core) as well as their interconnecting

PoP links. To do this, TFS will leverage the Placement Component offered by the OSM

frametwork. The Placement Component outputs the PoPs that host the VNFs, and the PoPs’

interconnecting links (PiLs) that need to be deployed to deliver the VLs.. Such PoP and PiLs

selection is done fulfilling the network service requirements (e.g., latency), but also

considering energy consumption. For the latter, the Placement Component defines a (static)

list of “Prices”: 1) a price for deploying a VNF in a given PoP (i.e., pop_price); and 2) a price

for rolling out a VL using a specific PiL (pil_price). The idea is to bind such prices to energy

consumption. For instance, the pop_price could be set to the aggregated amount of the power

consumed by all the servers in a PoP. Alternatively, pop_price may be tied to the PoP location

characteristics (e.g., edge/core) assuming that an edge PoP consumes less energy that a core

PoP. A pil_price could be bound to the minimum number of devices to be traversed for

interconnecting a pair of PoPs over the underlying transport infrastructure. Therefore,

minimizing the pil_price may favour reducing the number of involved network devices,

which in turn could reduce the energy consumption.

The role of the TFS Constroller, and particularly the NBI, focuses on receving and processing

every OSM-selected PiL (specifying the PoPs to be interconnected) throughout a Network

Service VL that is being deployed. This represents a new network connectivity service setup

request, which entails seeking a transport path and networking resources that meet the specific

VL demands (e.g., bandwidth and latency). The selected path and networking resources must

be computed targeting energy-oriented objectives. To do that, the dedicated TFS components

such as the Service Component and the PathComp Component, will be enhanced to adopt

algorithms/mechanims favoring the reduction of the consumed energy. These adopted

energy-aware algorithms could foster deploying network connectivity services over devices

with occupied resources (i.e., grooming strategies/statistical multiplexing), avoiding having

large activedevices which consume lots of energy even with low resource usage, and shutting

down devices as much as possible, etc. These algorithms/strategies will be conducted in the

context of the PathComp Component where an important goal is to attain a “good” trade-off

between transport resource utilisation and resulting energy consumption.

Another relevant aspect related to the new improved capabilities of the TFS NBI is to receive

and process nertwork connectivity requests from the OSM demading disjoint transport paths.

The idea is that the REST API communicating the OSM and the NBI support the disjoint

transport path for a single service request. This capability entails also improving the gRPC

communication between the NBI and other TFS components such as the Service Component.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 47 of 120

Additionally, the PathComp Component is used to output (upon demand) a pair of disjoint

transport paths.

TFS Target

Objective

Leveraging the OSM Placement Component to select the PoPs and PiLs to attain an energy-

aware deployment of the incoming network service requests. With respect to the TFS

components, the aim is to continue supporting the automatic lifecycle management of

network services where the NBI operates as the front-end of the TFS Controller to set

up/update/delete the derived connectivity services. Besides fulfilling the network service

requirements, such bandwidth, latency, and disjoint transport paths, other components in the

TFS Controller will also handle energy-oriented objectives when selecting the transport

resources for network connectivity services.

New

Requirements

Utilisation of the available OSM Placement Component to select PoPs and PiLs for incoming

network service requests targeting overall energy reduction. At the TFS Controller, the idea

is to exploit the PathComp Component to select transport resources that fulfil the network

connectivity requests (bound to the network services) and accomplish an effective energy

reduction. This entails deploying specific energy-aware algorithms and strategies within the

PathComp Component.

Support in the OSM: The NBI API support of new connectivity service attributes and

requirements such as disjoint paths for a single network connectivity service request. These

new features and requirements also need to be mapped into the gRPC API between the NBI

and Service Component, and to support in the PathComp Component the calculation of a pair

of primary and backup paths meeting the service demands.

Research

Actions

Both the energy-oriented service placement and the support of network connectivity services

with enhanced requirements (e.g., path disjointedness) are planned to be presented in strategic

international conferences (e.g., OFC, netsoft, etc.). The targeted conferences will depend on

the adopted underlying transport infrastructure, i.e., either optical or packet switching

technologies.

TFS

Architecture

Update

For energy-oriented service placement, the PathComp Component supports executing

explicit transport path computation and resource selection to meet not only demanded service

requirements in terms of bandwidth, latency, and disjoint paths, but also handling devised

energy-aware routing computation. Thus, it is planned to add specialised algorithms dealing

with such energy-aware objectives to the PathComp Component. This entails revisiting the

Context Component attributes/data models of both devices and links to characterise their

incurred energy consumption. This information is then used as input to derive the path and

network resource selection. Another important aspect in this scope is the interactions between

both the Service and PathComp Components to request/respond path computations

specifying the objective functions and requirements.

To support enhanced network connectivity service requirements demanded by the OSM to

the TFS Controller (e.g., disjoint paths), the REST API communicating with both OSM and

the NBI needs to be extended. This extension will also need to be covered through the rest of

the TFS components such as between the NBI and Service Component, and between the

Service and PathComp Components.

2.19. Web User Interface (WebUI)
The Web-based User Interface (WebUI) is one of the microservices that make up the TFS Controller.

The WebUI enables a network operator to manually interact with the TFS Controller to perform

configuration operations and inspect the state of the network.

Technologies

Involved

All

Type User Interface

Description The WebUI enables a network operator to manually interact with the TFS Controller to

perform configuration operations and inspect the state of the network.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 48 of 120

TFS Target

Objective

Objective 1: Adoption of SDN by telecom operators

New

Requirements

The WebUI needs to be implemented as another TFS micro-service.

The WebUI needs different sections: Home, Device, Link, Service, Slice, Grafana, and

About.

Research

Actions

WebUI will be present in all TFS demos.

TFS

Architecture

Update

A new component is introduced in TFS architecture: WebUI. It consumes REST NBI calls.

2.20. Inter-Domain
2.20.1. E2E Routing and SLA Violation Detection

Technologies

Involved

IP, optical

Type Context, Service, Monitoring, Policy, Inter-domain

Description To demonstrate E2E routing of connectivity services and transport slices, and the

enforcement of SLAs.

TFS Target

Objective

Objective 1.1: Accelerate innovation in transport (optical and microwave) and IP networks

and ultimately help operators provide better connectivity for communities all around the

world

Objective 1.3: Automated service management for transport network slices

Objective 3.3: Inter-domain provisioning of connectivity services

New

Requirements
• Create and manage inter-domain transport slices using collected per-domain topologies.

(See also Section 8.)

• Monitor inter-domain KPIs to validate fulfilment of SLAs.

• Implement mitigation actions when an SLA is violated.

• Path computation: calculation of domains and per-domain SLAs based on E2E SLA

requirements.

Research

Actions

To be demonstrated in Scenario 2

TFS

Architecture

Update

Policy, Slice, Monitoring, PathComp

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 49 of 120

3. Business Model and Ecosystem Analysis
In the context of TFS, D2.1 [6] suggests it is necessary to understand how the evolution of two different
markets are intertwined in a new regime with disaggregated and programmable 5G and 6G networks.
On the one hand, there is the ambition for a growing market for transport networks provided by
network operators. On the other hand, there is the market for the different actor roles in the supply
chain/ecosystem which deliver necessary components to create transport network services. The
growth in the first is a prerequisite for growth in the second. However, the growth of the transport
network market is dependent on operators' ability to mobilise and motivate the actor roles in the
ecosystem to join a journey characterised using open source, eventually consensus-based standards,
and new business models.

In the following, we assume that that the actor roles have accepted the above market conditions:
technologies are disaggregated, transport network programmable, and markets are coordinated with
fully standardised controllers, e.g., TFS. The future market and ecosystem for the transport network
will be constituted by many business actor roles, such as the hardware provider and system integrator.
It will have developed into one dominant configuration. I.e., the actor role business models will have
stabilised, as will the relationships between them, as we illustrate in Figure 15. We consider that we
are now in the beginning of an ecosystem evolution, with the ambition to: 1) understand the
alternative paths of its evolution; and 2) imagine potential alternative future stable ecosystems.

Figure 15 Illustration of Start and Endpoint of the Evolution of a Transport Network Ecosystem

To address this ambition, we list and illustrate existing and probable actor roles and suggest potential
alternative business models. This includes an identification of underlying factors that could affect
which business models are realised and how the ecosystem may evolve. How an ecosystem may take
different paths will be further elaborated in the later TeraFlow deliverable D6.4.

The analyses in this section are based on secondary sources, and data from interviews with TeraFlow
partners. Some data were already collected in D2.1 [6] and D6.2 [20]. New data were collected in
plenary meeting workshop in Castelldefels on 25th May 2022, and partner interviews in the autumn
of 2022.

3.1. The Ecosystem and Actor Roles
Figure 16 is an updated depiction of the TFS ecosystem. A thorough description of most actor roles
can be found in D2.1 [6]. Our data suggest additional actor roles, e.g., we have indicated that there

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 50 of 120

will be system integrator in this market, and a testing regime which invites to new actor roles. In the
following, we elaborate on the business models for the actor roles listed below. We will start by
elaborating on the operator’s role as customer, introduce system integrator as an important actor
role, and comment on the changed testing regime. This will be the backdrop for discussing changes in
other actor roles. Finally, we will comment on the emerging roles in a test environment, discussed
further in D6.3 [7].

• System integrator of all components needed in transport network

• Hardware (HW) provider (often called vendors)

• Software (SW) provider (embedded in the HW)

• NetApp provider

• SDN provider: The provider of products and services based on TFS, in the form of:
o System integration of TFS components (the controller), consulting
o Development of new TFS features

• Test environment
o Certifier for TFS interoperability
o Tester

These actor roles for the transport network are well aligned with those of a disaggregated radio access

network (RAN) [8] and other analyses of future 5G market ecosystems [9], [5], [1]. We do not elaborate

on roles such as cloud providers or providers of semiconductors which are present in the open RAN

ecosystem [8].

Figure 16 Updated TFS Ecosystem

We use a business model canvas [14] to structure different aspects of actor roles business models. To
design business models is an iterative process, thus, the versions suggested in this document may in
future be informed by new insight and changed accordingly.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 51 of 120

Note that the programmable transport network enables operators to sell and manage transport
network slices more efficiently and introduces new business models. This constitutes a second
business flow from the operator point of view, which is aligned with the tasks of e.g., the TFS Slice,
Inter-domain, and Distributed Ledger and Smart Contracts Components. For instance, the ability to
interact with other SDN controllers and rent from or lease resources to other operators for intra-
domain purposes, indicates a new business model for operators. Also, the ability for operators to peer
and offer inter-domain transport slices is a new business model. Currently, we have not analysed in
detail how this business flow and these models in turn affect other actor roles and their business
opportunities. However, we can easily imagine that, e.g., a HW provider could lease HW to many
operators in parallel, instead of selling HW to each.

3.2. The Network Operator – The Customer
All actor roles have in common that the network operator is their main customer. The different

business models we elaborate can be positioned in a future business flow depicted in Figure 17. The

linear flow underscores the initial ordering and installation of HW, and the role SW and NetApp

providers can play in 1) the initial installation, and 2) support and reconfiguration. In addition, it is

indicated how the resulting programmable transport network (i.e., SDN) can be managed with a

controller like TFS, implying that standard interfaces are implemented for HW, SW, and NetApps. For

each of the actor roles discussed, the potential flow depicted in Figure 17 is the basis for the

suggestions on, e.g., key resources, partnerships, and value propositions.

Figure 17 Sequences in Business Transaction between Operator and Providers of HW, SW, NetApps, and SDN Services

Our data suggest that the flow in Figure 17 must be complemented by additional actor roles and their
business models, namely the system integrator and roles that cater to testing and certification. See
Figure 17 and Figure 18. Here, we explain why these actor roles have been suggested as plausible in
the future ecosystem and also suggest their business models.

3.3. System Integrators Serving Operators
As-is: In the current market, system integrators play a minor role in the delivery of a transport network
to operators. Operators purchase HW from HW providers. The testing and implementation carried out
by HW providers, for operators, constitute the "system integration” of the network.

To-be: The future disaggregated transport network introduces the potential for management and the
combination of HW, SW, and NetApps from different providers. Still, it is suggested that, at least in
the short and medium term, operators will use and rely on system integrators. That is, operators will
shape RFQs and expect that the system integrators answer them. Only in the long term, it is plausible

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 52 of 120

that operators do system integration themselves. In general, outsourcing to system integrators is
expected to become a trend if the market is disaggregated and changed [9].

Operators will continue to use system integrators because of complexity, lack of in-house
competence, and risk-minimisation considerations. It is costly to hold this competence, and a huge
effort to carry out the task, which may perhaps only be for limited periods of time. Even though
operators may acquire both power and competence, they will often prefer to transfer responsibility
and risks to a system integrator. The decision to use a system integrator may also be a result of history
and culture.

Here we make a distinction between a system integrator and aggregator. A system integrator
combines components, adds value, and sells directly to customers, i.e., it takes responsibility and risk
that the components will function together. This role addresses one major concern of operators. An
aggregator makes available many components so that they can easily be combined and used by
others, i.e., it does not take responsibility for how the components function together. There may be
room for an aggregator role in the long term, however, we do not see that it will be the one driving
the market in the first instance.

One factor suggested to make operators build in-house competence is the lack of large system
integrators who can carry the risk and be trusted: operators will not choose small firms or start-ups
for such work. The implication from this is that, in a nascent market, an operator can also choose to
build its own system integration competence. I.e., existing competence and market maturity is an
underlying factor affecting the position a system integrator eventually will get.

HW providers could also take on the actor role as system integrator, but we cannot currently
determine how this affects the role or the market evolution. It is also suggested that HW providers
will prefer to use system integrators for their own purposes.

Table 1 suggests a business model canvas for a future transport network system integrator.

Table 1 Business Model Canvas for System Integrator in the Transport Network

Key partnerships
Providers of HW

and SW which are

components of the

solutions.

Providers of

controllers such as

TFS.

Potential neutral

test platform where

compatibility in the

integrated system

can be pre-tested

(provided by e.g.,

operators)

Key activities
Identify and capture customer

key challenges – transfer to

design.

Design systems with sufficient

novelty and reliability.

Risk analyses: technological

and financial.

Implement and run systems.

Efficient failure support.

Value proposition
Combines transport

network components –

design and

implementation.

Has responsibility and

carries the risk for

functioning according

to predefined levels.

One point of failure-

support.

Proven record and

large enough customer

portfolio – trust

position for service

quality and endurance.

Customer

relationships
Request for

Information/Quotation
Long-term

relationships.
Dedicated support
Potential high switching

costs.

Customer

segments
Large contracts:

Network

operators.

Data centre

operators.

Hyperscalers.

Key resources
Network architects,

implementers, and managers.

Purchasing, contract, and

logistics expertise.

Customer and partner/vendor

portfolio management.

Channels
Owned digital

provisioning

Partner channel

Cost structure
Salaries. Management systems.

Revenue streams
Complements: Per hour/project. Fixed yearly price for operation. Reseller

fees (HW and SW).

Factors affecting ecosystem paths and end-state: operators’ use of system integrators, or they are
“doing-it-yourself” (DIY).

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 53 of 120

Figure 18 Illustration of System Integration and Testing Regimes in Business Transaction between Operator and Providers

3.4. Operators and Regimes for Testing of HW
As-is: Currently, the operators’ normal procedure is to test HW before putting it into operation. This
is under the condition that the operator has one or more preferred controllers or interfaces. The
procedure follows steps such as:

• Operators publish Request for Information (RFI).

• HW providers answer to RFI. The answers include roadmap for HW availability and testing.

• Operators short-list HW providers.

• Operators and short-listed HW providers plan testing.

• Testing: HW is either certified, or not.

Testing, or certification of HW are usually paid by the providers, i.e., it is integrated into their pricing.
Operators may carry out some additional local on-boarding and testing of HW before implementation.

To-be: With the deployment of one standard controller across all HW and operators, e.g., TFS, the
current testing procedure could change. A situation with one standardised controller creates a
predictability which opens for shifting the steps in the procedure. For instance, providers could carry
out early pre-testing of HW, acquiring compatibility certificates which can be used across many
operators and other HW providers. In this way, the previous shortlisting and operator managed testing
would become redundant, saving time and costs for both operators and HW providers.

The introduction of a standardised controller and subsequent shift in procedure also introduces
opportunities for new actor roles, such as a neutral lab and testing consultants. The potential changes
in testing regimes could happen even in a market where operators use system integrators. Then, the
system integrator would have a driving role in the testing regime.

Factors affecting ecosystem paths and end-state:

• Network operators and system integrators change the current procedure for testing HW, or
they keep the current procedures.

• HW providers pay for testing, or operators (system integrators) pay.

Here, we have explained how testing is carried out traditionally by operators in the market, and briefly
suggested why and how a standardised controller can change the procedures. The actor roles and
business models for a new testing regime when TFS is implemented is elaborated in Section 3.9.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 54 of 120

3.5. HW Provider
As-is: One current set of providers to the transport network operator are HW providers who sell HW

with embedded proprietary SW and proprietary interfaces (network management systems). Infinera

and SIAE are examples and partners in the TeraFlow project. Currently, this is the main way of

providing HW and SW to operators, mostly with a price per HW unit. The different provider-specific

HW interfaces constitute the big challenge that TFS addresses and intends to replace by introducing

vendor agnostic programmability.

To-be: The role of established HW providers is shifting towards being providers of SW, with new

market terms and business models. However, there is still a demand for HW. We suggest that there

are two alternatives for a future HW provider: 1) bare metal or white box HW, and 2) HW which retains

some embedded, dedicated SW. Both are aligned with the standard controller. Table 2 Table 3 are

suggested business models for these two potential HW providers.

In both of the alternatives, the HW must still be tested to:

• Be compatible with the controller, e.g., the TFS Controller

• Be compatible (function well) with interfaces towards SW, HW, and embedded SW which is

still running on dedicated HW.

To cater to efficient pre-certified and pre-configured HW, the ability to deliver on time and on location

could be part of a value proposition.

Factors affecting ecosystem paths and end-state: All HW may turn into white boxes, or some HW
might keep dedicated embedded SW (and functions) on the HW.

3.5.1. HW as Bare Metal
To-be: The HW market may become a mass-market (for bare metal) with a cost structure with

economies of scale characteristics. The HW providers will be driven to chase high-volume

manufacturing to be able to deliver cost-efficiently in a competitive market. Thus, the market will be

driven towards fewer providers because of the advantages from large scale production. We suggest

that alternative key competitive advantages can be the ability to deliver HW on premises in a timely

way, with SW installed on the HW as required by the customers. This curbs the traction towards large

scale, and opens opportunities for smaller and more flexible HW providers. Both aspects are catered

to in the business model canvas. Furthermore, to support intra-domain operations between operators

with the same HW, a new HW leasing business model is opened.

Table 2 Business Model Canvas for Providers of Bare Metal HW

Key

partnerships
Providers of

SW (SW to be

installed on

HW).

Providers of

physical

installation of

HW on-

premises.

Key activities
Production/manufacturing.

Logistics (for delivery and

installation on-premises).

Routines for efficient pre-

configuration of HW based on

customer requirements.

Value proposition
Up-to-date HW

which can be used

interchangeably in

network with

alternative HW.

Frictionless

provisioning and

implementation of

HW on network

operators’ premises,

on time (all

geographies).

Customer

relationships
Request for

Information/Quotation.

Framework and call-off

agreements.

Automated.

Customer

segments

Mass market for

HW: Network

operators

Niche market for

timely HW

installation:

Network

operators
Key resources
HW designers.

HW production and supply

chain facilities and

management.

Channels
Owned digitalised call-

offs.

Digital overview of

deliveries.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 55 of 120

HW logistics Physical delivery.

Cost structure
Cost-driven. Manufacturing, raw material.

Costs for certification and testing.

Revenue streams
Alternatives: Price per unit, price per unit installed, leasing

agreements for HW on-premises.

3.5.2. HW Retaining Some Dedicated Embedded SW
To-be: Despite the vision, demand for, and trend towards HW as bare metal, there are factors that

hold back this progression. One argument is the difficult task of replacing specific HW with SW.

Examples given for HW that may remain dedicated are within the optical networks. Interfaces,

however, can be fully standardised enabling full compatibility with the rest of the network. There are

more pragmatic explanations for the continued use of dedicated HW, e.g., for some operators it is

more comfortable to point at one responsible HW provider when there are failures.

This version of a dedicated HW provider will be more labour intensive. Its key activities and resources

are used for research and design, with good ability to capture future transport network requirements

and to manage outsourced production of the HW. Their value proposition to network operators is to

provide dedicated HW which can relieve customers of the risks they might encounter. We suggest that

this type of HW provider will work hard to keep production costs for the advanced devices as low as

possible, as they must carry labour-intensive research and design activities. The revenue streams will

probably be per unit, with or without support contracts included.

Table 3 Business Model Canvas for Providers of Dedicated HW

Key partnerships
Network controller

providers and

consultancies.

Providers in the

HW testing regime.

System integrators

Key activities
HW design.

HW research and development.

Managing outsourced

production.

Testing.

Value

proposition

Premium HW

dedicated to

transport

network tasks.

Relieving

customers of

perceived

risks of

failure.

Customer relationships
Request for

Information/Quotation.

Framework and call-off

agreements.

Customer

segments
Market for

dedicated HW

and risk

reduction:

network

operators
Key resources
HW designers.

Insight into transport network

challenges and customer needs.

Channels
Owned digitalised call-

offs

Digital overview of

deliveries

Physical delivery
Cost structure
Labour intensive research, development, and design.

Scalable production of IPR protected HW.

Costs of certification and testing.

Revenue streams
Price per unit with/without support contracts.

Separate support contracts.

3.6. SW Provider
As-is: In the TeraFlow project there are also solution providers who sell only transport network SW in

combination with HW. However, their current role is marginal compared to established transport

network HW providers.

To-be: It is expected that TFS will open the market for smaller SW providers and drive previous HW

providers into the role of SW providers. The previous embedded SW will move to run on-top of any

HW. Thus, SW providers may deliver to, or be complementary to, the HW providers described above.

Ubitech is a TeraFlow partner which deals with SW and adjusts it to HW and helps other SW providers

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 56 of 120

to deploy their applications on HW or in networks. Table 4 describes the business model for SW

providers.

We suggest that the SW must also be tested in future, to:

• Be compatible with the TFS Controller.

• Be compatible (function well) with interfaces towards HW and embedded SW which is still

running on dedicated HW.

The value proposition will be to deliver SW with operating network functionality, utilizing

complementary capabilities of HW and other network components (physical cabling). The SW must

be provisioned and managed efficiently, i.e., probably in a cloud-native environment.

Factors affecting ecosystem paths and end-state: With HW such as white boxes, SW providers will
move into more prominent positions. With the continuation of dedicated HW, SW providers must find
ways to co-exist.

Table 4 Business Model Canvas for SW Providers

Key

partnerships
Providers of HW,

on which SW

shall be installed.

System

integrators.

Network

controller

providers and

consultancies.

Key activities
SW design and

development.

SW testing.

SW support.

Provisioning

automation.

Cloud-native

environment

Value proposition
SW needed to get

transport networks to

function in specific

ways.

SW can be managed

by a standard SDN

controller and

interfaces, e.g., TFS.

Customer relationships
Request for

Information/Quotation.

Framework and call-off

agreements.

Automated.

Customer

segments

Mass market for

SW: Network

operators

Key resources
SW developers.

SW testing.

SW support.

SW CI/CD platform.

Channels
Owned digital

provisioning/call-offs.

Partner channels.

Cost structure
Salaries, platform costs (servers etc.)

Costs of certification and testing.

Revenue streams
Complements: 1) SW licenses. 2) Per hour/project for development,

installation/provisioning, testing, support.

3.7. NetApp Provider
As-is: A second group of providers are those developing and selling NetApps which can be used in the

operation of the transport network. Currently, providers will have to align their NetApps to the

proprietary interfaces offered by HW providers.

To-be: It is expected that the number of NetApp providers could increase if the TFS ecosystem takes

off. NEC is a partner in TeraFlow and an example of a potential provider of a security NetApp. In Table

5, we have indicated that the NetApps are already implemented on HW in the HW delivery phase, but

also that they can be implemented on HW that is already installed. We assume that the key activities

and resources for NetApps are very much like those for generic, equipment-related SW, however, we

would expect more IPR as a basis for a business model based on licensing. The market may become a

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 57 of 120

niche market with customised SW which in turn enables operators to differentiate. I.e., this is more

of a premium market compared to the generic SW mass market described above.

Table 5 Business Model Canvas for NetApp Providers

Key partnerships
Providers of HW

where NetApps shall

be installed.

Providers of generic

SW to be installed on

HW, which Netapps

must be compatible

with.

Key activities
NetApp development

NetApp testing

NetApp support

Provisioning automation

Value proposition
NetApps customised

for specific

functionality on the

HW and with SW.

Can be managed by

standard SDN

controller and

interfaces, e.g., TFS

Customer

relationships
Requests.

Long-term

relationships.

Customer

segments

Niche market

for

customised

NetApp:

Network

operators
Key resources
NetApp developers

NetApp testing

NetApp support

NetApp CI/CD platform

Channels
Owned digital

provisioning

Cost structure
Salaries, platform costs (servers etc.).

Costs of certification and testing.

Revenue streams: Complements: NetApp licenses.

Per hour/project for development, installation/provisioning, testing,

support.

3.8. Provider of TFS Related Products and Services
As-is: The provider of an SDN controller is also an actor role with commercial opportunities. Currently,

actors in this role provide complete systems which address the same domain as TFS (for definitions

and competitors see D6.2, or e.g., Cisco and Sedona Systems).

To-be: However, in future, as open-source SW, TFS (with APIs for standard networking and service

modelling) will be sourced from a shared repository governed by ETSI’s Open-Source Group

TeraFlowSDN (ETSI OSG TFS). In this context, roles such as system and SW integrators or consultancies

may emerge and extract a significant share of the market for SDN controllers. Examples of similar

commercial exploitation can also be found in the ETSI Open-Source MANO community

(https://osm.etsi.org/wikipub/index.php/OSM_Ecosystem).

We suggest that there are two interesting business model canvases for providers who utilise TFS for

commercial purposes. One is about turning TFS into a service which can be sold. A second role is about

the development of new features (products and services) addressing niche demands or e.g.,

operators. These canvases are complementary, and one firm can use just one or both models.

3.8.1. TFS as a Service
The value proposition for TFS as a service builds on the observation of how an open-source group

works: a feature request or fix is forwarded, and usually addressed by the proposer when time allows.

This contrasts with a professional market, where the controller must be changed into a product

(service). In the first instance, the different features (modules) must be assembled into a package, see

[7] for detailed suggestions for a package. Furthermore, the product must be scalable and provide

new and maintained code. Features must be provided with predictable attributes, attending to faults,

and fixing of bugs. The service provided requires key resources such as IT/cloud environments and

configuration capabilities. It all signals operators’ requirements for reliable delivery of such services.

Thus, it is a business opportunity to build a reliable product on top of TFS features. It is suggested that

https://osm.etsi.org/wikipub/index.php/OSM_Ecosystem

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 58 of 120

this actor role probably should and would be taken by an existing large firm, for instance one that

already is a system integrator.

In a nascent market, operators will have the choice to purchase a controller, or develop competence

internally. This opens the same dilemmas as taking on the role as a system integrator. The risk is that

it may be costly, and that the implementation of the controller will vary across operators and decrease

its effect on compatibility. However, to kick-off the market, operators may have to build this role in-

house.

Factors affecting ecosystem paths and end-state:

• Operators purchases controller, or operators choose to develop the competence internally.

• System integrator and provider of TFS as a service are the same, in an integrated close
relationship, or the relationship is transactional.

Table 6 Business Model Canvas for Provider of TFS Package and Service

Key partnerships
Providers of HW

which shall be

managed by TFS.

Potential neutral

test platform

(provided by, e.g.,

operators)

Standard setting

organisations, ETSI.

Universities,

research institutes,

developer

communities.

Key activities
Assess customer challenges,

with customer.

Alignment with other

orchestration systems.

Alignment with different

HW (bare metal switches).

Testing of resiliency,

scalability.

Bug fixing.

Management of TFS.

Value proposition

Enable use

/deployment of TFS

so that transport

networks can be

programmed agnostic

of HW and SW

providers.

One point of

service/failure:

operator can rely on

service provider.

Framework for

enabling integration

of new features with

minimal downtime.

Tightly aligned with

the purchases of HW

and SW. E.g., system

integrators and other

key partners.

Customer

relationships
Request for

Information/Qu

otation

Requests.

Long-term

relationships.

Dedicated

personnel.

Assistance.

Potential high

switching costs.

Customer

segments

Mass market:
Network operators.
Data centre

operators.
Hyperscalers.

Niche market:

Small enterprises

and data centres.

Key resources
Package of TFS modules

with additional service

components.

Skilled developers

Code maintainers and fixers

Testing/validation

CI/CD platform

Channels
Owned digital

provisioning

Partner channel

Cost structure
Salaries, platform costs (servers etc.).

Revenue streams
Complements: Per hour/project for development,

installation/provisioning, testing, support.

In addition to the actor role as system integrator for TFS, we suggest that there is a role for consultancy

regarding TFS. The value proposition would be to support the decisions about, use of, and

maintenance of TFS, being a neutral highly competent party.

3.8.2. Development of New TFS Features
Furthermore, there is an opening for an actor role which develops new TFS features. Their customers

will be operators or system integrators who want to differentiate how they carry out network

management. These actor roles must develop a deep understanding of customer challenges and be

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 59 of 120

able to maintain the features developed. Their key resources are developers and the platforms

enabling them to build and test features. Their costs are mainly salaries, while revenues can be per

hour or project, or also for licensed features.

Table 7 Business Model Canvas for TFS Related Provider – Develop New Features

Key partnerships
Providers of HW which

shall be managed by

TFS.

Potential neutral test

platform (provided by

e.g., operators).

Universities, research

institutes, developer

communities.

Key activities
Understand customer

challenges.

Develop new features with

IPR.

Manage and support new

features.

Value proposition
New features provided

as distinct products,

services on top of the

TFS environment.

Address operators’

specific challenges or

ambitions with network

management – enabling

operator differentiation.

Customer

relationships
Requests.

Long-term

relationships.

Customer

segments
Niche market:
Network

operators.

Data centre

operators.
Hyperscalers.

System

integrators.
Key resources
New features R&D

Developers

Testing/validation

CI/CD platform.

Channels
Owned digital

provisioning.

Cost structure
Salaries, platform costs (servers etc.).

Revenue streams
Complements: Per hour/project, and licenses.

3.9. Neutral Lab – Testing and Certifying
As-is: The current testing environment for a standard SDN controller, such as TFS, is briefly described

in Section 3.4, seen from the operator’s perspective. The normal procedure is that device testing is

required by operators and paid for by HW providers as an integral part of pricing and contracts.

To-be: The presence of a standard controller opens the prospect of a changed regime, where actor

roles can emerge, value can be delivered to other actor roles, and revenues can be extracted. One

important identified change is that the testing procedure stops being a bi-lateral concern between the

customer (operator) and HW provider. Instead, both operators and HW providers may rely on third

parties who carry out tests and state fulfilment to compatibility – i.e., certification.

In a TFS environment, all modules can be tested. If new HW is tested for its TFS compatibility, as a

minimum the TFS module for the device is needed, i.e., the South-Bound-Interface module. In [7], a

package of several modules is suggested for a provider of a test-lab: Context management,

Monitoring, Southbound Interface, Service, Northbound Interface, WebUI, and Path computation. The

HW to be tested, i.e., devices, must be handled as physical objects. TFS modules may also be used for

testing against SW, and thus, handled logistically as SW.

The value proposition for all roles in a new testing regime rests on the benefits the operator and HW

providers can extract. Operators always require that HW is tested and is compatible with their

preferred controllers. In a situation where only one standard controller is used, the expectation is that

HW is fully compatible – anything else is a waste of cost and time. Thus, HW providers would probably

benefit from being pre-certified to answer one operator, but also to save costs and time because they

carry out certification only once for multiple operators. This also opens opportunities for smaller

providers, because the costs of testing against many controllers are removed. However, the

emergence of a market where testing happens at a high scale might be delayed if different parties

wait to see who picks up the bill. This is already suggested as a factor that will affect the evolution of

the market.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 60 of 120

One recent example of a testing regime is the Connectivity and Standard Alliance2 (CSA) which

manages certification of Things (e.g., Internet of Things) which needs to be compatible with the

standard Matter. A HW provider sends products to a certified test provider which does the test and

states fulfilment to standards (or otherwise!). The HW provider applies for a certificate for its product

to the CSA. The HW provider pays for tests, and a fee for certification.

We find three emerging actor roles in a new TFS testing regime:

• Testers:

o Neutral test labs

o Consultancies

• Certifier – entity authorised to issue certification

We suggest that the testers can be smaller firms, labs, and consultancies. They can also do tests for

other HW interfaces, e.g., OpenConfig or P4.

For the tester, a discussion is raised whether HW should be sent to a tester, or if SW should be sent to

the HW provider. Pros and cons in this discussion are provided in Table 8, and this may affect the value

propositions of the actor roles.

Table 8 Advantages and Disadvantages Regarding Handling of Devices to be Tested
Alternative testing

arrangements

Advantage Disadvantage

Lab: HW providers send

devices to lab

Normal procedure – contracts protect

against any issues.

HW is tested in a neutral environment, can

be approved as tested. Do not need e.g., an

additional layer of approval when vendors

do the testing themselves.

HW-providers: save work and cost – can re-

use the test with other operators.

HW providers do not trust lab, will not

reveal highly sensitive devices.

Physically sending of devices seems very

inefficient.

Lab: Lab sends testing

SW to HW providers

Efficient – logistics efficient.

Easier to send SW and the vendor do the

testing themselves. HW providers sends a

report for certification.

It is hard/complex to learn the skills for

deploying and using the Test SW.

Needs an additional iteration with

acceptance of the testing done by the vendor

itself.

Harder to protect against cheating.

Ecosystem of certified SW

consultants who can do

the testing remotely or on-

premises

Consultants with expertise/know-how

install SW and test it on devices.

Flexible – can handle the whole “testing

journey”. Testing as a service.

Consultants’ neutrality – they must not mix

their roles with e.g., driver development.

If not pre-certified – still need to get another

acceptance of the testing from a “central

certifying unit”.

Controllers come to

devices

For devices: must be compatible with many

controllers - are open – controllers should

come to them.

Controller: must handle high volume of

devices – devices should come to them.

Based on the Table 8, some key issues emerge that potentially affect the evolution of a testing regime.

To function, all parties in a testing regime need to trust that their own interests are not violated by

2 Certification Process | Why Certify | - CSA-IOT

https://csa-iot.org/certification/why-certify/

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 61 of 120

others or by the system. E.g., the neutrality of testers is key. It is also a returning discussion who should

pay for testing. Eventually, testing is integrated into the price and operators are paying.

Factors affecting ecosystem paths and end-state: The institutions established for testing are quickly
acknowledged as trustworthy, or issues with and violations of neutrality delay the necessary trust

In Table 10, we suggest business model canvases for the neutral test lab and certifier. Also refer to [7]
for elaboration of TFS packages for these roles. We do not elaborate on how a consultancy firm can
take on a role as a tester.

The neutral test lab creates value by saving time and costs for both operators and providers and
enables more efficient market expansion by providing a generic compatibility. The lab should also be
quick, transparent, and trusted to handle competitive sensitive HW. It will mainly be providers of HW
and SW which purchases its services, and these customers should be handled in digital channels with
dedicated accounts aligned with the logistics of customers physical equipment sent for testing. Key
activities of the tester will be customer management, the testing, and reliable documentation of test
results. The key resources supporting this is the lab itself, and predefined and transparent procedures
for testing and handling of test results. Relevant TFS modules will compose a package for the neutral
test lab. The neutral test lab must collaborate with a certifier and shipping companies. Also, the ETSI
OSG TFS community may be a key partnership when new testing challenges must be handled. The cost
structure is mainly salaries for testing experts, and testing platform CAPEX and OPEX. Revenues will
probably be a fee for running a test, which may vary with HW and SW size and other characteristics.

Table 9 Business Model Canvas for a Provider Which is a Neutral Test Lab

Key partnerships

Provider of

compatibility

certificate.

Network operators

who are pushing full

compatibility and pre-

testing.

Shipping/logistics

companies.

ETSI OSG TFS –

developers who can

help with new

challenges.

Key activities

Customer management: digital

process for handling test requests,

and logistics for physical HW.

Technical testing, documentation,

and reporting.

Value

proposition

Save time and

costs for providers

and operators with

compatibility tests

which are

generally valid.

Efficient logistics.

Enable expansion

of markets.

Mitigate lock-in

to providers.

Can be trusted

with competition

sensitive HW.

Customer

relationships

Transactional.

Lab serves many

providers-

Account-based,

with log-in

functions.

Customer

segments

Providers of

HW and

SW.

Large and

small

providers..

Key resources

Laboratory, with testing equipment

and expertise.

Interface with certifier.

Predefined procedure for testing.

Framework for handling testing

requests, results, and inquires.

Relevant TeraFlowSDN

components.

Channels

Digital channels

for ordering and

following tests.

Alignment of

digital process

and physical

products.

Cost structure

Salaries, testing platform costs (servers etc.).

Revenue streams

Fee for carrying out tests on request.

A neutral test lab may or may not hold the position as a certifier. Thus, in Table 10, we have carved

out the role of a certifier. A certifier will get a request from a HW or SW provider which has proven

compatible via a neutral test lab. The certifier delivers value by being trusted and neutral, quick, and

efficient. Trust is also being built by being transparent with easily accessible frameworks and testing

results. HW and SW providers purchase issuing of certificates via a digital channel. The key activity is

an efficient process for handling requests for certification, and the certification database which will

form over time. The neutral test lab will be a key partnership, as well as operators who demand and

are dependent on general compatibility and systems to achieve this. The costs will be the CAPEX and

OPEX of a platform for certification issuing. Probably, the revenues will be a fee to get a certificate

issued and registered in an available database.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 62 of 120

Key partnerships

Network operators,

dependent on

compatibility.

Labs which provide

testing.

Key activities

Process for receiving and

handling certification

requests.

Database with certified

HW.

Value proposition

Neutral part – trusted by

those who want to be

tested, and those who

need HW to be

compatible.

Quick and efficient

administration.

Transparency.

A database with issued

certificates which is

easily accessible.

Customer

relationships

Appointed

role as

certifier.

Customer

segments

HW and SW

providers which

need to be

compatible.

Key resources

Management of predefined

requirements for being

certified.

Framework for handling

certification requests, and

inquiries.

Channels

Digital

channel.

Cost structure

Certification platform costs (servers etc.).

Revenue streams

Fee for providing certification on request.

Table 10 Business Model Canvas for the Actor Role Which Issues Certificates for Compatibility

Figure 19 summarizes the factors affecting ecosystem paths and end-state. The actor roles, and their

alternative business models will enter a process where the ecosystem evolves and eventually one

dominant path may emerge. In retrospect, path-dependency is commonly seen as an effect of

reinforcing effects in systemic markets. In forethought, actors, and actor roles, can prepare for and

act to steer and shape the emerging paths to their benefits. Thus, they also need to consider which

are the most attractive options. Alternative business models serve as one means which actors can use

to assess future opportunities.

We have suggested a set of factors which could affect actor roles’ business models and the ecosystem

evolution. These are described in Figure 19 as dimensions with two extremes; a future reality can be

anywhere between the extremes. Thus, the alternative combinations from which a stable ecosystem

may emerge are vast. In our analyses, we commented on yet other underlying circumstances which

affect business models and evolution, e.g., competence.

In the next phase of our analyses, we will apply the suggested business models and relevant factors

to explore, discuss, and justify potential paths for an emerging ecosystem.

Figure 19 Factors Affecting Business Models and Ecosystem Paths and-State – dots for illustration only

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 63 of 120

3.10. Summary
We have suggested nine preliminary business model canvases for eight actor roles and indicated the

existence of even more. They are all potential ways to extract revenues from customers in a regime

with full compatibility, enabled by TFS.

One key observation is the difference between a future HW (bare metal) provider and the other SW

providers. The HW provider will be in a classic manufacturing market where economies of scale drive

competition, however, timely on-premises installation and SW configuration may significantly affect

the market. Following a life-cycle management of HW, a leasing approach may be an interesting

revenue model for HW providers.

The providers of SW, NetApps, and TFS-related services have two main business models. One is labour

intensive, addressing a market for consulting and integration. The other relies on IPR where it may be

possible to use a license revenue model. We anticipate that the market for system integration will be

a large market in the sense that most operators are potential customers. For NetApps and specific TFS

features we assume that the potential customers are fewer and smaller, and that this will be a niche

market, potentially with a premium price.

The future of the fully compatible market we sketch seems to be dependent on the existence of actor

roles which can provide compatibility testing and certification in a neutral manner. Thus, operators

and providers must together mobilise, motivate, and push yet other stakeholders to take the roles as

testers and certifiers. Current financial streams for testing – costs and revenues – must be re-directed

into neutral labs. The willingness to invest in laboratories, expertise, testing procedures, and customer

handling may emerge only when the potential revenues are identified. We have provided one first

iteration of how this could be carried out.

How the mix of to-be actor roles, their business model canvases, and factors affecting their different

potential paths in an evolving ecosystem will develop is not discussed here. It will be subject to further

analyses in the next phase of the TeraFlow project and reported in a later deliverable.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 64 of 120

4. Feedback from Release 1.0
In this section, we summarise the feedback received from release 1.0.

4.1. Feedback from Advisory Board
• “From the requirements perspective, which kind of interfaces shall TeraFlow support?”

o [Noboru] For the southbound interfaces in your controller, specially to control optical

transport networks, Netconf is necessary.

• “Automation: Are there network automation trends we are missing? What policy types would

you like to see being supported by a controller?”

o [Georgios] Do you think there are very important policy types to be considered in year

2 as potential policies to be supported by TeraFlow?

o [Noboru] For automation, one missing part is how to manage, for example, automatic

restoration. Do you considered to implement a restoration function in this automated

SDN controller?

o [Georgios] Reported in milestones in WP2, we foresee for year 2 to exploit existing

Kubernetes features such as rollback recovery (e.g., in case of mistakenly applying a

software upgrade, enable rollback mechanism to recover a stable version of the

affected component). This can be seen as a way to mitigate errors coming from links

and broken device configurations.

o [Ricard] Maybe we can prioritise that for year 2. I think it makes a lot of sense.

• “Which use cases would it be interesting to demonstrate on this scenario?”

o [Noboru] I’m interested in provisioning time. How long will it take to complete end-

to-end provisioning in this demo including the optical layer?

o [Noboru] I’m also interested in how to validate the scalability of the SDN controller in

this demo.

4.2. Feedback from Users
Some users reported the need for clarifying and simplifying the deployment procedure. Comments:

• Facilitate/clarify the deployment of a development environment.

• Avoid defining environment variables in each script; instead, create scripts containing the

environment variables that can be sourced and loaded in the development environment.

• Use a simplified environment instead of a complete Kubernetes environment. For instance,

use a MiniKube-based environments (based or MicroK8s) for development.

• The tutorials and Wiki pages are confusing or not clear in some sections.

• Some Python requirements have the wrong version specified, and some scripts try to install

conflicting versions of the requirements.

Some new features have also been proposed:

• Use a BGP Speaker to discover the devices in a network topology.

• Implement a Zero-Touch-Automation mechanism able to first connect to a whitebox through

SSH, enable management protocols (e.g., Netconf, REST-API), configure the management IP

address, port, and admin user credentials, and reconnect to the devices after being rebooted.

• Some users notified their interest in the P4 Device Driver and the supported features.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 65 of 120

4.3. Feedback for TFS Questionnaire
In collaboration with the ETSI OSG TFS Marketing and Communications (MARCOM) Task Force,

TeraFlow partners agreed to send a global scale questionnaire to recognise current trends, use cases

and needs that probable TFS users might encounter. To this end, several questions were asked. In this

section, we provide details for the questionnaire, as well as an analysis of the preliminary results (to

be concluded by end of the year and reported in D6.4, M30).

Section 4.3.1 contains the text of the questionnaire as issued.

4.3.1. TFS Questionnaire
This is an open survey to the community in order to better know possible requirements, features,

usages and research topics to be covered within ETSI TeraFlowSDN. Estimated response time is of 5-

10 minutes. This survey will also help us to let you know the possibilities of joining our community.

More info at: http://tfs.etsi.org

• We are in the process of finalizing TFS release 2. You can read more info in our blog post.

Which are the features you would like to see implemented in upcoming releases?

• As NBI, release 2 will support IETF L2/L3VPN and IETF slice YANG data models. Which other

NBI are of your interest? Why?

• As SBI, release 2 will support OpenConfig router data models, ONF Transport API, P4 and IETF

TE for microwave. Which other SBI are of your interest? Why?

• We have demonstrated TFS in operator R&D labs. Are you interested in test and validation

opportunities? Please detail interest.

• Which are your main interests for TeraFlowSDN?

o Deploying TFS on my network

o Develop TFS applications or extend TFS services

o Provide support of TFS deployments

• We will be demonstrating several uses cases: transport network L2/L3 integration with

beyond 5G networks, inter-domain connections between multiple operators, cybersecurity.

Where do you foresee TFS deployed and to which use?

• Are you planning to download and use TFS?

o I have already done it

o I tried to, but it was too difficult (please comment on difficulties)

o I will do in the next 6 months

o No, I do not plan to do it

• Have you encountered any difficulty for using TeraFlowSDN?

• We will be happy to come back to you with more information. Please provide your e-mail, in

case you wish to be contacted.

4.3.2. Preliminary Feedback Analysis
The questionnaire has been announced in Twitter and LinkedIn accounts, and sent to the following

mailing lists:

• tb@5g-ppp.eu; sb@5g-ppp.eu; comms@5g-ppp.eu

• osg_tfs@list.etsi.org

• netsoft-list@ee.ucl.ac.uk

• ontc@comsoc.org

• tccc-announce@comsoc.org

http://tfs.etsi.org/
mailto:tb@5g-ppp.eu
mailto:sb@5g-ppp.eu
mailto:comms@5g-ppp.eu
mailto:osg_tfs@list.etsi.org
mailto:netsoft-list@ee.ucl.ac.uk
mailto:ontc@comsoc.org
mailto:tccc-announce@comsoc.org

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 66 of 120

Due to the need to close this section of the deliverable before the end of the questionnaire response

period, we provide a preliminary analysis of the results received up to 15/12/2022. The final results

of this questionnaire will be discussed in TFS Leadership Group in order to find synergies and

possible new requirements for TFS release 3.0.

Figure 20 Stakeholders Involved in the Answers

• We are in the process of finalizing TFS release 2.0. You can read more info in our blog post.

Which are the features you would like to see implemented in upcoming releases?

• Improved support for smart traffic engineering,

• Support for lightweight implementations for small ISPs (e.g., consider the deployment in

small scenarios),

• SDN-QKD including ETSI QKD-004 and QKD-015 components to manage integrated Quantum

and optical resources,

• Ability to balance path computation objective functions according to user's intent

• As NBI, release 2.0 will support IETF L2/L3VPN and IETF slice YANG data models. Which other NBI

are of your interest? Why?

• Inclusion of SBI support DiffServ/MPLS enabled routers. It should have a plug and play, drag

and drop type of interface for easy deployment of NB services.

• Intent based policies such as IETF i2NSF and IETF ALTO exposure.

• IETF L0 Connectivity as a Service.

• As SBI, release 2.0 will support OpenConfig router data models, ONF Transport API, P4 and IETF

TE for microwave. Which other SBI are of your interest? Why?

• Telemetry from different sources: Prometheus exporters for IT resources, IPFIX,

• All IETF SBIs

• OpenFlow, gRPC, OVSDB

• We have demonstrated TFS in operator R&D labs. Are you interested in test and validation

opportunities? Please detail interest.

• Yes, we are interested to understand the effort that is needed for a SME and a small telecom

operator to implement it in ONIE hardware based or P4 routers. We could also think to

implement it in a live testbed.

• Interested to know about, but not unable to assist. Would the TIP be interested in hosting

this work?

• Yes, for research

• Which are your main interests for TeraFlowSDN?

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 67 of 120

Figure 21 Main Interest in TeraFlowSDN

• We will be demonstrating several uses cases: transport network L2/L3 integration with beyond

5G networks, inter-domain connections between multiple operators, cybersecurity. Where do

you foresee TFS deployed and to which use?

• Operators / carriers transport network automation/programmability & seamless integration

optical/IP devices (a single programmability endpoint).

• We are interested in L2/L3, beyond 5G (i.e., 6G) and cybersecurity

• Cybersecurity for research projects

• Initial deployments for integrated, top-to-bottom EVPN and L3VPN services achieved over a

multi-layer and multi-technology network

• Transport access networks, enterprise networks connecting to multiple operators

• Are you planning to download and use TFS?

• Have you encountered any difficulty for using TeraFlowSDN?

• Not yet tested

• I have heard that the documentation/guidance is still immature.

• I don't own an operational network

Figure 22 Expected Usage of TFS

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 68 of 120

5. Updated Requirements for the TFS Controller
This section provides the updated and new requirements for the TFS Controller. New requirements

are in Green. Removed requirements in red and strikethrough.

5.1. Functional Requirements
In this section, the different requirements for the TFS Controller are introduced. They have been

classified as:

• Functional Requirements: describe what the system must or must not do and can be thought

of in terms of how the system responds to inputs.

• Non-functional Requirements: are requirements that specify criteria that can be used to judge

the operation of a system rather than specific behaviours. They are contrasted with functional

requirements that define specific behaviour or Functional Requirements.

In order to have them ordered, the same use case topics as described in Section 2 are used.

5.1.1. Context
• [REQ-INV-01] The SDN controller shall be able to recover information and state about

hardware components of network elements and the logical configuration of the devices,

including logical interfaces configuration from one node and all the parameters related to

interface configuration (description, IP addressing, VLAN, etc.) of a node.

• [REQ-INV-02] The SDN Controller shall offer the retrieved inventory to a client.

• [REQ-INV-03] The Context Component needs to be able to replicate. This means that the

internal database needs to be distributed.

• [REQ-INV-04] Add support for constraints in Service Component and SBI.

• [REQ-INV-05] Add service constraints to path computation.

5.1.2. SouthBound Interface (SBI)
The SouthBound Interface (SBI) was formerly named as the Device Component.

• [Updated-REQ-TOP-01] The SDN Controller shall provide a set of abstractions to represent

several views of the network topology. This shall include representing the different

relationships between IP and Optical network elements (physical or logical) to be consumed

for different applications.

• [REQ-TOP-02] The SDN controller shall be able to collect the required information for
providing network topology from the Network Devices or configuration files.

• [REQ-TOP-03] Validation and verification of proper OpenConfig implementation of L3VPN
services.

• [REQ-TOP-04] L3VPN life cycle management, including use cases of Service SLA violation
detection and recovery.

• [REQ-TOP-05] Integrate MW link into L3VPN workflow.

5.1.3. Service
• [REQ-SERV-01] The SDN Controller shall be able to manage the life cycle of L2VPN and L3VPN

services [13]. These are widely used to deploy 5G fixed and enterprise services mostly because
several traffic discrimination policies can be applied in the network to transport and guarantee
the right SLAs to the mobile customers.

• [REQ-SERV-02] An L3VPN service shall create a virtual routing and forwarding network
instance (VRF) in each of the nodes involved in service deployment. This routing instance
allows routing information to be propagated between the sites involved in the service.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 69 of 120

5.1.4. Forecaster
• [REQ-FORE-01] A component shall be able to obtain the history of requested and serviced

connectivity services with duration and capacity constraints.

• [REQ-FORE-02] The Forecaster shall include ML algorithms (prophet or AutoML) for making

traffic forecasts.

• [REQ-FORE-03] Traffic forecasts shall be analysed before determining whether to accept a new

service request.

5.1.5. Monitoring
General purpose monitoring requirements

• [REQ-MON-01] TFS shall allow monitoring of KPIs (metrics) of different kind and at different

levels (network, compute, service, slice, etc).

• [REQ-MON-02] TFS shall be able to group/aggregate monitoring KPIs into KPI bundles in order

to create different monitoring levels of abstraction.

• [REQ-MON-03] TFS shall provide data visualisation capabilities of the monitoring data.

Notification subscription requirements:

• [REQ-MON-04] TeraFlowSDN shall allow external subscriptions to the notification service to
enable visualisation of relevant data at a higher level of abstraction, thus assisting the
TeraFlowSDN in identifying potential problems and gaining dynamicity. Moreover, external
agents (subscribers) shall be notified of events related to network/slice data (e.g., topology or
connectivity) depending on the nature of the subscription, see below.

• [REQ-MON-05] TFS shall allow the inclusion of an alarm system that enables the definition of

monitoring alarms based on configured thresholds or value ranges of the monitoring data.

This alarm system will notify the creator of a monitoring alarm when the monitored KPI

exceeds the configured value range.

Topology monitoring requirements: It is expected that the SDN controller shall gather data on

topology events and be able to use the notification system to inform subscribers. The basic preliminary

actions to be monitored/notified in this regard are:

• [REQ-MON-06] Addition of a new topology element (e.g., topology, link, node, node edge
point).

• [REQ-MON-07] Modification of parameters of existing elements in the topology (e.g.,
scaling/migration of resources).

• [REQ-MON-08] Status of operational changes of existing elements (e.g., up/down status),
assuming both control plane level (network element-SDN controller) and data plane level
(inter network components).

• [REQ-MON-09] Deletion of elements in the topology.
Connectivity monitoring requirements: The SDN controller will be able to collect data related to the

connectivity of the elements in two different views: network or slice. In this regard, the main features

to be monitored (or notified to subscribers) are:

• [REQ-MON-10] New connectivity-service element inserted/removed in/from the
network/slice.

• [REQ-MON-11] Status change of existing connectivity-service element in the network/slice.

• [REQ-MON-12] Status change of the switching conditions of an existing connection element
in the network/slice.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 70 of 120

Microservice life-cycle monitoring requirements: The SDN controller will report on metrics that

inform on the lifecycle operations of the microservices within the TeraFlowSDN deployment.

Functionalities that shall be monitored/notified according to the typical phases of a microservices life

cycle are:

• [REQ-MON-13] Downshifting monitoring/notification, cloud-to-edge operations shall be
notified to subscribers to guarantee cloud-to-edge migrations.

• [REQ-MON-14] Runtime monitoring/notification will be targeted to enable external
monitoring of microservice’s runtime metrics usage, e.g., power, CPU, storage, memory, or
bandwidth.

• [REQ-MON-15] Edge-to-cloud load balancing monitoring/notification, subscribers shall be
notified of edge-to-cloud migration operations when required.

5.1.6. Traffic Engineering
• [REQ-TE-01] The SDN controller should configure the compatible devices through the device

management component so they can connect to the PCE.

• [REQ-TE-02] The SDN controller should build a traffic engineering database (TED).

• [REQ-TE-03] The SDN controller should expose an API to create, modify and delete segment

routing LSPs.

5.1.7. Path Computation
Path computation request/response

• [REQ-PathComp-01] TFS shall support the exchange of request and response messages

between the Service and PathComp Components. The request message contains the list of

the endpoints (e.g., source and destination PEs), the objective function to be tackled by the

targeted algorithm (i.e., algorithm Identifier), and the selected constraints/requirements to

be met (e.g., bandwidth, latency, disjointed paths, switching capability, etc.).

• [REQ-PathComp-02] The response message should specify whether the path computation

succeeds. If it does not succeed, it is recommended that the response message carry the

reason/cause why the algorithm failed to find a feasible path where that information is

available, if possible. If the path computation succeeds, the response message explicitly lists

the set of devices and links forming the path satisfying the connectivity service. Additionally,

other relevant path computation attributes are to be notified such as the resulting latency,

number of hops, incurred consumed energy, etc.

Collecting context information:

• [REQ-PathComp-03] The PathComp Component should interact with the Context Component

to retrieve an updated view of the involved topologies for a specific Context Id. Each topology

is expected to grant an (abstracted) view of the underlying transport infrastructure

encompassing the set of nodes, set of links, the node connectivity, node capabilities (e.g., edge

points), attributes such as total and available capacity, link latency, link types (e.g., inter-

domain, etc.), energy consumption on standby status, etc.

Path computation algorithms

• [REQ-PathComp-04] The PathComp Component can support a pool of distinct algorithms that,

besides fulfilling the networking requirements of the connectivity service, may target specific

networking objectives. These objectives can prioritise path and resource selection favouring

overall resource utilisation or attaining reduced energy consumption. Thus, the selector of the

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 71 of 120

algorithm (or selected optimization objective) should be specified as a requirement to the

PathComp Component in the request arriving from the Service Component.

• [REQ-PathComp-05] The PathComp Component within a TFS instance should be able to trigger

an inter-domain path computation. This means that the PathComp Component is aware of

selected and abstracted information from other domains controlled by peer TFS Controller

instances. This abstracted domain information is used by the ingress TFS PathComp

Component to select the domain sequence that eventually is traversed by the inter-domain

network connectivity service.

• [REQ-PathComp-06] PathComp Component shall select transport resources that fulfil the

network connectivity requests (bound to the Network Services) and accomplishes an effective

energy reduction. This entails deploying within the PathComp Component specific energy-

aware algorithms and strategies.

• [REQ-PathComp-07] Support is needed in the PathComp Component for the calculation of a

pair of primary and backup paths meeting the service demands.

5.1.8. Automation
Network management requirements:

• [REQ-AUTO-01] Automatic topology discovery and inventory tracking of both physical and

virtual network elements.

• [Updated-REQ-AUTO-02] Automated device-level configuration and management through

NBI (i.e., gRPC) and SBI (i.e., all the SB protocols supported by the SBI) interfaces based on

open standards.

Service provisioning requirements:

• [REQ-AUTO-03] Automatic creation and management of network services specified via an

open standard NBI, as well as communicating, through its SBI, with all the network elements

needed to implement the service.

• [REQ-AUTO-04] Automated association of a network service to one or more flows.

Network operations requirements:

• [Updated-REQ-AUTO-05] Automatically deploy a base configuration when a new network

element is added to the network, such that the network element enters into production

without human configuration.

• [REQ-AUTO-06] Remotely upgrade the entire NOS or some of its components when a vendor

releases a new version.

• [REQ-AUTO-08] Run-time and secure rollback version recovery when a NOS needs to be

upgraded/downgraded in response to a detected problem.

• [REQ-AUTO-09] Run-time NOS migration from one vendor to another.

• [Updated-REQ-AUTO-10] Automatic provisioning of basic white box configuration, common

across multiple white box vendors (e.g., P4 vs. OpenConfig).

• [New-REQ-AUTO-11] Automatic provisioning of device configuration at runtime, including

both device configuration updates and removed device configuration.

System stability requirements:

• [REQ-AUTO-11] Automatically perform rollback flow state recovery operations in case of a

misconfiguration or race condition

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 72 of 120

• [REQ-AUTO-12] Automatically translate data stemming from detected attacks to specific

remedy actions.

• [REQ-AUTO-13] Automatically detect network elements with anomalous behavior.

5.1.9. Policy
• [REQ-POL-01] The SDN controller shall allow network operators to easily create policy rules.

Each policy rule will be comprised of high-level policy conditions (i.e., traffic selectors) and

actions (i.e., traffic treatments) and will be triggered upon a network event.

• [Updated-REQ-POL-02] A policy rule shall be associated with a service ID. When a service ID is

provided, the Policy Component will query the Context database to automatically fetch the

set of devices that this service is traversing. When a service ID is not provided, the Policy

Component will iterate a list of devices in the policy rule object, to identify which devices

should comply to the input policy.

• [Updated-REQ-POL-03] A policy rule shall be associated with a policy state, which indicates

whether this policy is (i) inserted, (ii) validated, (iii) provisioned, (iv) actively enforced, or (v)

failed. Moreover, the policy state machine will also capture states that classify an applied

policy as effective or ineffective, so as to inform the network operator accordingly.

• [Updated-REQ-POL-04] A policy rule shall be associated with a policy type, indicating whether

this policy applies to a single device (i.e., device-level policy) or a network segment (i.e.,

network-wide policy). Policies applied to an entire Service are likely to be network-wide

policies as a service typically traverses more than one device.

5.1.10. Transport Network Slicing
• [REQ-SLI-01] The TeraFlowSDN Controller shall provide transport network slice life-cycle

management. Users may formulate transport network slices based on the demand for services
and time to schedule the resources from the entire network's perspective flexibly. Several
underlying services might be offered for a transport network slice, including L3VPN, MPLSVPN,
or VLAN constraints.

• [REQ-SLI-02] The TeraFlowSDN Controller shall provide vertical industry slicing, which is a
category of network slicing that is emerging due to the high demand for private high-speed
network interconnects for industrial applications. In this scenario, the biggest challenge is to
implement differentiated optical network slices based on the requirements from different
industries.

• [REQ-SLI-03] Isolation shall be provided through resource partitioning and/or robustness
techniques, e.g., dedicated resources, shared resources with safeguards, or reserved backup
paths. Examples include traffic separation via VPNs (L2/L3VPN, EVPN), interference avoidance
via network capacity planning, traffic policing or shaping, and prioritisation in resource
utilisation.

• [REQ-SLI-04] Hard isolation can be achieved by provisioning dedicated fibres, which is feasible,
but very expensive. Therefore, physical splitting (e.g., in time or frequency) can be used. For
instance, in optical networks, where full lambdas can be isolated (WDM), or TDM techniques
by assigning specific time slots to specific slices.

• [REQ-SLI-05] Soft isolation solutions shall rely on the simple separation of traffic delivery such
as MPLS or VLAN tagging. These mechanisms offer separation, but not isolation performance
guarantees. The SDN controller should be able to create soft network slices, via creation of
multiple VRFs and VSIs on a network element (physical or virtual), as described in Section 4 of
the TIP MUST SBI Spec. [REQ-SERV-01], and [REQ-SERV-02] should be supported within these
soft network slices.

• [REQ-SLI-06] The design of intermediate isolation solutions between hard and soft isolation
may be classified into two classes: I.) Link layer (Layer 1.5 / Layer 2) technologies such as Flex

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 73 of 120

Ethernet (FlexE), dedicated queuing, and TSN. II.) Network layer technologies such as MPLS-
TE, Deterministic Networking (DetNet), Segment Routing (SR).

• [REQ-SLI-07] Slice SLA shall be mapped as a technology abstract intent, regardless of the

underlying implementation (e.g., L2VPN, L3VPN). Slices once deployed shall be monitored and

enforced, in terms of SLA constraints.

• [REQ-SLI-08] Slice grouping introduces a clustering algorithm for finding service optimisation

while preserving slice SLA.

5.1.11. Centralized Attack Detector
• [REQ-CAD-01] The Centralized Attack Detector (CAD) shall subscribe to events related to

services and setup the appropriate information related to the security assessment (e.g.,
monitoring KPIs) upon the creation/update/deletion of services.

• [REQ-CAD-02] The CAD shall orchestrate the security assessment loop at the optical layer by
retrieving monitoring data, invoking the Attack Inference Component, and triggering attack
mitigation upon the detection of attacks.

• [REQ-CAD-03] The periodicity of the CAD security assessment loop at the optical layer shall be
set considering the periodicity of the monitoring cycle.

• [REQ-CAD-04] The CAD Component shall orchestrate the processing of the flow statistics data
received from the DAD, invoking the ML model, and triggering the AM Component upon the
detection of attacks.

• [REQ-CAD-05] The CAD Component shall detect attack flows with an accuracy equal or greater
than 99% for known attacks.

5.1.12. Distributed Attack Detector
• [REQ-DAD-01] The Distributed Attack Detector (DAD) shall aggregate packets per flow,

producing statistics that are later send to the Centralised Attack Detector (CAD) Component.

5.1.13. Attack Inference
• [REQ-AInf-01] The Attack Inference Component shall provide an interface that allows external

components to provide samples and receive their status as normal or abnormal. Alternatively,
when attack identification is possible, the attack class will be provided.

• [REQ-AInf-02] The Attack Inference Component shall use AI/ML techniques that allow for
accurate and reliable detection and identification of attacks.

• [REQ-AInf-03] The Attack Inference Component shall use AI/ML model implementations that
are efficient both in terms of computational complexity and response time.

5.1.14. Attack Mitigator
• [REQ-AM-01] The Attack Mitigator shall provide an interface that allows other components

(such as the CAD Component) to notify it of the presence of an attack in the network. The
notification shall contain details such as which layer (e.g., optical or Layer 3), the service under
attack and the attack connection.

• [REQ-AM-02] The Attack Mitigator shall compute efficient mitigation strategies based on the
characteristics of the detected attack.

• [REQ-AM-03] The Attack Mitigator shall coordinate with other components (i.e., Service and
Context Components) the actions to be taken to mitigate the attack.

5.1.15. Distributed Ledger and Smart Contracts
• [REQ-DLT-01] The TFS Controller shall be able to interact with other SDN Controllers using DLT

to provide inter-domain slices.

• [REQ-DLT-02] A network service is configured in a timely way to meet traffic matrix
requirements requested by its tenants.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 74 of 120

• [REQ-DLT-03] The distributed ledger will record device information such as software status
(e.g., software/firmware version) and runtime information (e.g., remote attestation, tamper
detection).

• [REQ-DLT-04] The distributed ledger will enable tamper detection and ensure the
independent verification of device status, history, and details (remote attestation).

5.1.16. NorthBound Interface (NBI)
From a macroscopic perspective, the NBI (previously the Compute Component) behaves as the front-

end to take over the interactions of the TFS instance, for example with an external NFV orchestrator

(e.g., OSM implementation). The aim is to automatically receive and process network connectivity

service requests, for example from the NFV Orchestrator (e.g., creation, deletion, and removal) and

then interact with other TFS components to meet such requested connectivity service operations. To

this end, the following requirements need to be fulfilled. Note that unchanged requirements still refer

to the Compute Component: those requirements must now be met by the functionality of the NBI.

• [REQ-COM-01] The Compute Component should support a well-defined API (including a data
model and protocol) to enable the interaction with an external NFV orchestrator
implementation.

• [REQ-COM-02] The connectivity services requested from the NFV Orchestrator should support
both L2VPN and L3VPN flows.

• [REQ-COM-03] The API between the NFV Orchestrator and the Compute Component should
support the complete lifecycle management of the connectivity services. This encompasses
the creation of point-to-point connectivity services specifying the service identifier,
connection endpoints, transport layer and associated attributes (e.g., VLAN), traffic
engineering details (e.g., guaranteed bandwidth, maximum tolerated latency, etc.), etc.

• [REQ-COM-04] The Compute Component should keep track of the active connectivity services
(e.g., in a dedicated repository) to handle the operations arriving from the NFV orchestrator
such as removing or updating a specific connectivity service.

• [REQ-COM-05] The Compute Component should offer a mapping function to “translate” the
incoming connectivity service operation based on the defined API (i.e., protocol and encoding)
to the commands and messages based on gRPC to interact with other TeraFlowSDN
components (e.g., Service).

• [REQ-COM-06] The NFV Orchestrator-Compute Component API (based on REST) needs to be
extended to support specific network connectivity service characteristics such as required
protection level (e.g., disjoint paths), maximum tolerated latency, etc. These extensions are
included in the request message and processed by the Compute Component.

• [REQ-COM-07] The Compute Component should map the new network connectivity service
arriving from the NFV Orchestrator into the contents of the gRPC API connecting to the Service
Component.

• [REQ-COM-08] Utilisation of the available OSM Placement Component to select PoP and PiLs

for incoming Network Service requests targeting overall energy reduction.

• [REQ-COM-09] Support in the OSM NBI API for new connectivity service attributes and

requirements such as disjoint paths for a single network connectivity service request. These

new features and requirements need to also be mapped into the gRPC API between the NBI

and Service Component.

5.1.17. Inter-Domain
The Inter-Domain use case describes the interaction of a TFS instance with peer TFS instances which
manage different network domains. The requirements include:

• [REQ-INT-01] Before exchanging any requests, two peering SDN Controller shall authenticate
each other.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 75 of 120

• [REQ-INT-02] After receiving an inter-domain subslice request from a peering SDN Controller,
the SDN Controller analyses the order and – if the order can be fulfilled – uses the
corresponding internal interfaces to (partially) satisfy the request.

• [REQ-INT-03] Similarly, when a modification of an inter-domain E2E service is requested, the
SDN Controller shall use the corresponding internal interfaces to propagate the modification
request.

• [REQ-INT-04] In the context of workflows related to the preparation and activation of an inter-
domain service as well as the modification of services, interactions with the service catalogue
(available service templates) and the service inventory (existing service instances) are
necessary.

• [REQ-INT-05] Inter-domain Component shall trigger monitoring of inter-domain KPIs to

validate fulfilment of SLAs.

• [REQ-INT-06] Inter-domain Component shall trigger the mitigation actions when an SLA is

violated.

• [REQ-INT-07] Inter-domain Component shall interact with Path computation to select

domains and per-domain SLAs based on E2E SLA requirements.

5.1.18. Web User Interface
The WebUI enables a network operator to manually interact with the TFS Controller to perform

configuration operations and inspect the state of the network.

• [REQ-UI-01] The WebUI needs to be implemented as another TFS micro-service.

• [REQ-UI-02] The WebUI needs different sections: Home, Device, Link, Service, Slice, Grafana,

and About. Each section shall provide information about internal TFS context state.

5.1.19. TFS Controller Security
Historically, SDN controllers have been implemented as monoliths and provide authentication and

authorisation interfaces for external users and components (GUIs and APIs). Since those controllers

are monoliths, securing the external interfaces is mostly sufficient for securing the controller. Internal

communication between components is performed through programming-language-level calls and

there are (mostly) no security concerns regarding those calls. But these might include programming

languages errors, security of the hosts running the system, or even memory errors.

TFS, on the other hand, adopts a cloud-native architecture. This means that different TFS components

will communicate through standardised network protocols, and different components might be

running in different machines in the network. Therefore, besides the usual authentication and

authorisation procedures commonly found in SDN controllers, TFS shall ensure the security of

message exchange among components.

• [REQ-SEC-01] The TeraFlowSDN controller shall provide means for external user/entity

authentication. These users/entities can be people accessing the TeraFlow GUI, or external

clients (automated code) using TeraFlow APIs.

• [REQ-SEC-02] The TeraFlowSDN controller authentication procedure shall maintain a record

of the action permissions that are available for each one of the users/entities registered.

• [REQ-SEC-03] The TeraFlowSDN controller shall provide means for user authorisation. This

means that any component shall be able to obtain a handle for the currently authenticated

user, including its permissions, to determine whether the current user has enough permissions

to execute a given operation.

• [REQ-SEC-04] The TeraFlowSDN controller shall have mechanisms that allow the components

to authenticate among themselves, therefore ensuring that the internal communication

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 76 of 120

among components cannot be intercepted, modified, or falsely generated by a third-party

malicious entity.

5.2. Non-Functional Requirements
We have analysed the following non-functional requirements: performance, usability, scalability,

security, and portability. Note that there are no modified or additional non-functional requirements

presented in this document.

5.2.1. Performance
• [REQ-PERF-01] The TeraFlowSDN controller shall provide an increase by an order of magnitude

(x10) of the flow processing capabilities of current SDN controllers. This results in the ability

to handle a Tera of connectivity services.

• [REQ-PERF-02] The SDN controller shall provide sufficient processing and sample rates of

metrics that does not limit: i) the achievement of the objectives in the use cases; and ii) the

timely identification and notification of potential problems, maximising the possibilities for

mitigation. The expected rates shall be determined based on three criteria: i) objectives of the

use case; ii) nature of the metric; and iii) priority of the metric.

• [REQ-PERF-03] Cloud-native flow management shall be provided with a control plane latency

below 10 milliseconds. The SDN controller shall increase multi-layer resource allocation

efficiency by 30% due to seamless deployment of VPN services.

• [REQ-PERF-04] Proactive SDN traffic optimisation by means of ML algorithms (e.g., collection

of real-time KPI data and use of ML to forecast where and when a problem is likely to occur,

to reroute traffic before it happens). The SDN Controller shall provide a reduction of 25%

resource usage due to ML-based traffic optimisation.

• [REQ-PERF-05] The introduction of follow-me and context-aware network connectivity

services shall generate at least a 10% reduction in network flow requests, which are generated

due to network mobility.

• [REQ-PERF-06] Novel algorithms for latency budgets as a function of application requirements.

These algorithms shall improve network consumption by 30% by providing joint strategies for

allocation of compute and network resources.

• [REQ-PERF-07] Reduction of energy consumption by 30% thanks to algorithms that combine

centralised computing elements and low-energy networks, as well as low-cost edge

computational resources.

• [REQ-PERF-08] Improve network resource usage by 30% by adopting multi-tenancy resource

allocation algorithms.

5.2.2. Usability
• [REQ-USA-01] The TeraFlowSDN controller shall provide a user interface that allows triggering

a default service within seconds.

• [REQ-USA-02] The SDN controller shall provide a system to enable subscribers to visualise the

metrics in a friendly and customisable manner according to their needs.

5.2.3. Scalability
• [REQ-SCA-01] The SDN controller shall provide autonomous replication of micro-services to

support high numbers of incoming requests.

• [REQ-SCA-02] Optimised consensus algorithms for permissioned ledgers that scale above 100

nodes. Privacy-aware smart contracts for network management tasks, and in particular, the

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 77 of 120

ones related to network resources and services, thus providing forensic evidence in multi-

tenant scenarios.

5.2.4. Security
• [REQ-SEC-01] Experimentally verified identification of known physical-layer attacks with

99.9% or higher accuracy and of previously unseen attacks with 90% or higher accuracy with

the inaccuracy fully compensated through window-based attack detection. Protection

mechanisms will be able to interact with Flow Management, in the order of milliseconds, to

create, modify, or remove potential flow threats. ML-based attack detectors shall be resilient

to advanced threats, especially to adversarial attacks. 90% of attacks detected in less than 0.5

seconds.

• [REQ-SEC-02] Edge and central ML-based detectors operating in optical, network, and

transport layers to promptly detect and mitigate attacks. Increase of protection reaction

agility by reducing centralised response latency by 30%. ML-based threat detectors will use

AutoML techniques to reduce model complexity, thus decreasing resource usage by 25% in

comparison with current techniques.

5.2.5. Reliability
• [REQ-REL-01] The SDN controller shall monitor micro-services and per-flow status to apply

healing mechanisms (e.g., component restart, flow redirection) both from a control and a data

plane perspective.

5.2.6. Portability
Portability non-functional requirements refer to the usability of the same software in different

environments.

• [REQ-PORT-01] The SDN Controller shall run on top of a Kubernetes cluster deployed over an

UBUNTU 20.04 LTS server. The minimal required hardware shall be 4vCPU, 32Gb RAM and 1Tb

HD.

• [REQ-PORT-02] User Interface shall be accessible for Firefox web browser and compliant with

W3C standards.

• [REQ-PORT-03] Integration of the TeraFlowSDN to support network visibility and management

in compute infrastructure (e.g., Kubernetes, OpenNess, and Akraino). Moreover, TeraFlow will

develop a specific plugin for NFV and MEC orchestrators to support integration with the

TeraFlowSDN controller.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 78 of 120

6. Updated Architecture
6.1. Overall Architecture Update
For release 2.0, novel features have been proposed, and facilities have been consolidated and

updated. Significant architectural work has been performed in the scope of WP2 in order to better

provide a framework for the integration of the multiple micro-services that compose TFS. Figure 23

shows the updated TFS architecture for release 2.0.

Figure 23 TFS Release 2.0 Architecture

In this release, focus has been provided on scalability and resilience of the controller, with a complete

re-design of the Context Component to include a scalable database (i.e., CockroachDB) to support the

stringent non-functional requirements.

Moreover, dedicated attention to network automation has been provided in this new release, with

the inclusion and update of network automation workflows, including L3VPN establishment with SLA,

multi-layer topology discovery, service Access Control Lists (ACLs), service restoration, service

location-awareness, traffic engineering, slice SLA enforcement, slice grouping, forecasting, inter-

domain slice SLA enforcement, inter-domain connectivity provisioning and SLA enforcement using

DLT, and energy-aware network service placement.

Release 2.0 provides extended support for OpenConfig-based routers and interaction with optical SDN

controllers through the ONF Transport API. Moreover, release 2.0 includes complete integration of

microwave network elements (through the IETF network topology YANG model), and Point-to-

Multipoint integration of XR optical transceivers and P4 routers. New features for P4 routers include:

load a P4 pipeline on a given P4 switch; get runtime information (i.e., flow tables) from the switch;

and push runtime entries into the switch pipeline.

SLA validation has been re-engineered through all the workflows, from device monitoring, up to

service and slice life cycle management. Thus, the Slice, Service, Policy, and Monitoring Components

and the SBI have been updated in order to support the necessary network automation workflows.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 79 of 120

Moreover, slice grouping has also been introduced, as well as the PathComp Component. This

component allows new use cases, such as energy-aware service placement.

Cybersecurity mechanisms have been updated, including novel components for attack detection,

(either distributed or centralised), attack inference, and attack mitigation. Several novel use cases are

supported. DLT has also been extended to interact with the Inter-Domain Component and make use

of deployed Hyperledger Fabric.

An updated description of each component is provided below.

• The Context Component is responsible for the stateful record of the necessary information. It

provides an internal API to obtain and manipulate TFS status. It is responsible for interactions with

a cloud-scale database.

• The SouthBound Interface (SBI) (previously the Device Component) provides inventory

information and allows configuration and management of specific devices though multiple SBI

plugins including OpenConfig routers, ONF Transport API, XR constellation Driver, IETF Network

Topology, and P4.

• The Service Component manages the lifecycle of multiple TFS services (including L3VPN and L2VPN

network models).

• The Forecaster is a component able to perform proactive SDN traffic optimisation by means of ML

algorithms, through the collection of real-time KPI data, and use of ML to forecast where and

when a problem is likely to occur so as to reroute traffic before the problem happens.

• The Monitoring Component provides a subscription manager, which is in charge of offering

subscription capabilities to the rest of the TFS Controller components. It also provides an alarm

manager in order to provide an alarm system to the TFS Controller.

• The Traffic Engineering Component manages Segment Routing paths.

• The PathComp Component handles route and network resource selection, fulfilling network

connectivity services and targeting a specific network objective (e.g., energy-efficiency, resource-

efficiency).

• The Automation Component can automatically add/update/delete a physical or virtual device

to/in/from the network with zero manual intervention, while ensuring that the correct device

configuration parameters and device processing logic are installed, updated, or deleted.

• The Policy Component automatically translates high-level network policy rules to actual

configuration applied to devices and services. A policy rule may generate configuration across an

entire network domain, thus may need to configure multiple devices.

• The Slice Manager handles transport network slices with an SLA lifecycle, including slice

monitoring and SLA violation recovery mechanisms. Moreover, a slice grouping algorithm is also

included to increase resource utilisation efficiency.

• The Centralized Attack Detector coordinates the cybersecurity loop of the TFS Controller at both

the L3 and optical layers.

• The Distributed Attack Detector is used for the security monitoring of layer 3 traffic. It detects and

classifies attacks at remote sites (network edge) in a distributed fashion.

• The Attack Inference Component performs anomaly detection inference based on a set of

samples. The implementation currently uses an unsupervised learning algorithm for anomaly

detection.

• The Attack Mitigator Component is responsible for computing viable attack remediation solutions,

depending on the attacks detected by other components.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 80 of 120

• The Distributed Ledger Technology Component provides a distributed ledger gateway to record,

query, and process relevant data for network management and detection of compromised edge-

devices.

• The NBI (formerly the Compute Component) exposes a REST-based API for the export of

information such as L2/L3VPN services or topology. It includes the function of the previous

Compute Component, which allows the component to act as an ETSI OpenSource MANO (OSM)

SDN/WIM connector.

• The Inter-Domain Component enables interaction between a TFS instance and peer TFS instances

which manage different network domains to create E2E TN slicing services.

• The Web User Interface (WebUI) provides a graphical interface to easily navigate through internal

TFS information, as well allowing manual service configuration.

6.2. Detailed Architecture
In this section we describe the components, organised as CoreApps and NetApps.

Reference to protocol buffers available at the controller directory of the TFS GitLab repository

(https://labs.etsi.org/rep/tfs/controller).

6.2.1. Context
Name: Context

Objective: Stateful record of the necessary information.
Provide the internal API to obtain and manipulate TFS status.

Requirements: Shall include a cloud-scale database (e.g., CocroachDB).
Internal interface shall be provided in gRPC.

References:

Responsible
(and
collaborators):

CTTC, TID

Provided
Operations:

 rpc ListContextIds (Empty) returns (ContextIdList) {}
 rpc ListContexts (Empty) returns (ContextList) {}
 rpc GetContext (ContextId) returns (Context) {}
 rpc SetContext (Context) returns (ContextId) {}
 rpc RemoveContext (ContextId) returns (Empty) {}
 rpc GetContextEvents (Empty) returns (stream ContextEvent) {}

 rpc ListTopologyIds (ContextId) returns (TopologyIdList) {}
 rpc ListTopologies (ContextId) returns (TopologyList) {}
 rpc GetTopology (TopologyId) returns (Topology) {}
 rpc SetTopology (Topology) returns (TopologyId) {}
 rpc RemoveTopology (TopologyId) returns (Empty) {}
 rpc GetTopologyEvents (Empty) returns (stream TopologyEvent) {}

 rpc ListDeviceIds (Empty) returns (DeviceIdList) {}
 rpc ListDevices (Empty) returns (DeviceList) {}
 rpc GetDevice (DeviceId) returns (Device) {}
 rpc SetDevice (Device) returns (DeviceId) {}
 rpc RemoveDevice (DeviceId) returns (Empty) {}
 rpc GetDeviceEvents (Empty) returns (stream DeviceEvent) {}

 rpc ListLinkIds (Empty) returns (LinkIdList) {}
 rpc ListLinks (Empty) returns (LinkList) {}

https://labs.etsi.org/rep/tfs/controller

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 81 of 120

 rpc GetLink (LinkId) returns (Link) {}
 rpc SetLink (Link) returns (LinkId) {}
 rpc RemoveLink (LinkId) returns (Empty) {}
 rpc GetLinkEvents (Empty) returns (stream LinkEvent) {}

 rpc ListServiceIds (ContextId) returns (ServiceIdList) {}
 rpc ListServices (ContextId) returns (ServiceList) {}
 rpc GetService (ServiceId) returns (Service) {}
 rpc SetService (Service) returns (ServiceId) {}
 rpc RemoveService (ServiceId) returns (Empty) {}
 rpc GetServiceEvents (Empty) returns (stream ServiceEvent) {}

 rpc ListSliceIds (ContextId) returns (SliceIdList) {}
 rpc ListSlices (ContextId) returns (SliceList) {}
 rpc GetSlice (SliceId) returns (Slice) {}
 rpc SetSlice (Slice) returns (SliceId) {}
 rpc RemoveSlice (SliceId) returns (Empty) {}
 rpc GetSliceEvents (Empty) returns (stream SliceEvent) {}

 rpc ListConnectionIds (ServiceId) returns (ConnectionIdList) {}
 rpc ListConnections (ServiceId) returns (ConnectionList) {}
 rpc GetConnection (ConnectionId) returns (Connection) {}
 rpc SetConnection (Connection) returns (ConnectionId) {}
 rpc RemoveConnection (ConnectionId) returns (Empty) {}
 rpc GetConnectionEvents(Empty) returns (stream ConnectionEvent) {}

Internal
Models:

Context
Slice
Service
Connection
Device
Link
Topology

Figure 24 shows the Context Data Model and relationship between its objects. The figure is difficult

to read in this document. It is made available at in the TFS GitLab repository at

https://labs.etsi.org/rep/tfs/controller/-/blob/master/proto/uml/context.png for more detailed

inspection.https://labs.etsi.org/rep/tfs/controller/-/blob/master/proto/uml/context.png

Figure 24 Context Data Model

https://labs.etsi.org/rep/tfs/controller/-/blob/master/proto/uml/context.png
https://labs.etsi.org/rep/tfs/controller/-/blob/master/proto/uml/context.png
https://labs.etsi.org/rep/tfs/controller/-/blob/master/proto/uml/context.png

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 82 of 120

6.2.2. SBI (Formerly Device Manager)
Name: SBI

Objective: Provide inventory information and allow configuration and management of
specific devices though multiple SBI plugins including OpenConfig routers, ONF
Transport API, IETF Network Topology, and P4.

Requirements: Shall be able to handle multiple types of devices.
Shall be able to perform configuration and management

References: OpenConfig, ONF Transport API, IETF Network Topology, P4

Responsible
(and
collaborators):

TID, SIAE, INF, VOL, UBI

Provided
Operations:

 rpc AddDevice (context.Device) returns (context.DeviceId) {}
 rpc ConfigureDevice (context.Device) returns (context.DeviceId) {}
 rpc DeleteDevice (context.DeviceId) returns (context.Empty) {}
 rpc GetInitialConfig(context.DeviceId) returns (context.DeviceConfig) {}
 rpc MonitorDeviceKpi(MonitoringSettings) returns (context.Empty) {}

Internal
Models:

Only provides operations. Data models belong to context

Figure 25 Device Internal Data Model

6.2.3. Service
Name: Service

Objective: Lifecycle management of multiple TeraFlow services (including L3 and L2 VPN
network models).

Requirements: Provide L3NM, L2NM lifecycle management support.

References: L3NM, L2NM. [3], [4]

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 83 of 120

Responsible
(and
collaborators):

CTTC, INF, TID, UBI

Provided
Operations:

 rpc CreateService(context.Service) returns (context.ServiceId) {}
 rpc UpdateService(context.Service) returns (context.ServiceId) {}
 rpc DeleteService(context.ServiceId) returns (context.Empty) {}

Internal
Models:

No internal models, as defined in Context

6.2.4. Forecaster
Name: Forecaster

Objective: Perform proactive SDN traffic optimisation by means of ML algorithms (e.g.,
collection of real-time KPI data and use of ML to forecast where and when a
problem is likely to occur, so as to reroute traffic before the problem happens).

Requirements: [REQ-FORE-01] [REQ-FORE-02][REQ-FORE-03]

References: -

Responsible
(and
collaborators):

CTTC, TID

Provided
Operations:

 rpc GetForecastOfTopology (context.TopologyId) returns (Forecast) {}
 rpc GetForecastOfLink(context.LinkId) returns (Forecast) {}
 rpc CheckService (context.ServiceId) returns (ForecastPrediction) {}

Internal
Models:

Forecast
ForecastPrediction

Figure 26 Forecaster Internal Data Models

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 84 of 120

6.2.5. Monitoring
The updated architecture of the TFS Monitoring Component is depicted in Figure 27. The new

architecture shows the new Subscription Manager and Alarm Manager Components as well as the

updated metrics database.

The Subscription Manager is in charge of offering subscription capabilities to the rest of the

components of the TFS Controller, these subscriptions can be created, updated, and deleted through

a set of RPCs. The subscriptions can be configured with multiple parameters such as the start date,

end date, the sampling interval, and the sampling duration.

The updated architecture also incorporates an Alarm Manager in order to provide an alarm system to

the TFS Controller. The alarm system allows configuration of alarm timeouts, alarm frequency, and

KPI value ranges. When the value of a monitored KPI exceeds the configured value range during the

alarm frequency time period the Alarm Manager will notify the component that originally created the

alarm.

The updated architecture also externalises the MngmtDB to the Context Component and updates

from MetricsDB to QuestDB [17], a much more powerful and scalable database in order to achieve the

high-performance capabilities required by the TFS Controller.

Figure 27 TeraFlow Monitoring Component Updated Architecture

Name: Monitoring

Objective: Provide sufficient information about network metrics (KPIs) and other relevant
metrics to assist the life-cycle automation and high performance of the
components.

Requirements: Shall be able to monitor multiple KPIs.
Shall be able to group monitoring KPIs into KPI bundles.
Shall be able to create, read, update, and delete KPIs and KPI bundles.
Shall be able to allow external subscriptions to the notification service.
Shall be able to configure alarms with KPI thresholds (value range).
Shall be able to modify external subscriptions and alarms.
Shall be able to add, modify, and visualise topology, connectivity, and
microservice life-cycle metrics.

References: QuestDB

Responsible
(and
collaborators):

ATOS

Provided
Operations:

SetKpi (KpiDescriptor) returns (KpiId)
DeleteKpi (KpiId) returns (context.Empty)
GetKpiDescriptor (KpiId) returns (KpiDescriptor)

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 85 of 120

GetKpiDescriptorList (context.Empty) returns (KpiDescriptorList)
IncludeKpi (Kpi) returns (context.Empty)
MonitorKpi (MonitorKpiRequest) returns (context.Empty)
QueryKpiData (KpiQuery) returns (RawKpiTable)
SetKpiSubscription (SubsDescriptor) returns (stream SubsResponse)
GetSubsDescriptor (SubscriptionID) returns (SubsDescriptor)
GetSubscriptions (context.Empty) returns (SubsList)
DeleteSubscription (SubscriptionID) returns (context.Empty)
SetKpiAlarm (AlarmDescriptor) returns (AlarmID)
GetAlarms (context.Empty) returns (AlarmList)
GetAlarmDescriptor (AlarmID) returns (AlarmDescriptor)
GetAlarmResponseStream (AlarmSubscription) returns (stream AlarmResponse)
DeleteAlarm (AlarmID) returns (context.Empty)
GetStreamKpi (KpiId) returns (stream Kpi)
GetInstantKpi (KpiId) returns (Kpi)

Internal
Models:
(see for
reference
Figure 28)

KpiDescriptor
KpiQuery
RawKpi
RawKpiList
RawKpiTable
KpiId
Kpi
KpiValueRange
KpiValue
KpiList
KpiDescriptorList
SubsDescriptor
SubscriptionID
SubsResponse
SubsList
AlarmDescriptor
AlarmID
AlarmSubscription
AlarmResponse
AlarmList

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 86 of 120

Figure 28 Monitoring Data Model

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 87 of 120

6.2.6. Traffic Engineering
Name: Traffic Engineering

Objective: Manage Segment Routing paths

Requirements: Create, modify, and delete Segment Routing paths
Should interact with the TFS Context Component to retrieve device and topology
information.
Should interact with the SBI to configure compatible hardware to join the PCE.

References: IETF PCEP [26]

Responsible
(and
collaborators):

STR

Provided
Operations:

 rpc RequestLSP (context.Service) returns (context.ServiceStatus) {}
 rpc UpdateLSP (context.ServiceId) returns (context.ServiceStatus) {}
 rpc DeleteLSP (context.ServiceId) returns (context.Empty) {}

Internal
Models:

N/A

This component implements the creation, modification, and deletion of Segment Routing paths on the

available hardware, considering the given constraints and the available resources. The constraints

given to the PCE for the calculation of the path could be required or desired latency, bandwidth

consumption, hop count, and whether the result should be a strict explicit path or a loose path.

6.2.7. Path Computation
Name: PathComp

Objective: To handle route and network resource selection fulfilling network connectivity
services and targeting a specific network objective (e.g., energy-efficiency,
resource-efficiency, etc.)

Requirements: • Receive the requests for computing one or more connectivity services
specifying diverse network requirements

• Host a pool of heterogenous algorithms targeting diverse network objectives

• Compute feasible end-to-end paths (meeting demanded requirements and
constraints) within either a single or multiple domains and technologies

• Retrieve the Context

References: -

Responsible
(and
collaborators):

CTTC

Provided
Operations:

Compute(PathCompRequest) returns (PathCompReply)

Internal
Models:

N/A

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 88 of 120

Figure 29 Path Computation Internal Models

6.2.8. Automation (ZTP)
Name: Automation

Objective: Automatically add/update/delete a physical or virtual device to/in/from the
network with zero manual intervention, while ensuring that the correct device
configuration parameters and device processing logic are installed, updated, or
deleted. This component produces role-based device configuration, which is sent
to the SBI via gRPC, and then communicated to the underlying devices via a
southbound configuration protocol (e.g., gNMI, Netconf, P4) implemented by the
respective device driver plugin. The Automation Component architecture is
depicted in Figure 30.

Requirements: • Shall be able to handle multiple types of devices.
o Requires interactions with the SBI.

• Shall be able to receive and validate a DeviceRole from its northbound
interface
o Such role-based configuration may be received by another TFS component

and/or an external entity either automatically or manually.
o A gRPC protocol buffer model describes this API.

• Shall be able to associate a valid DeviceRole with a physical or virtual device in
the network.
o This is an internal process once a northbound API call is received and before

it is communicated to the SBI.

• Shall be able to send a DeviceRole to the SBI through a gRPC call.
o Requires interactions with theSBI.

• Shall be able to perform device management.
o Requires interactions with the SBI.

References: -

Responsible
(and
collaborators):

UBI, UPM, TID, TNOR

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 89 of 120

Provided
Operations:

 rpc ZtpGetDeviceRole(DeviceRoleId) returns (DeviceRole) {}
 rpc ZtpGetDeviceRolesByDeviceId(context.DeviceId) returns (DeviceRoleList) {}
 rpc ZtpAdd(DeviceRole) returns (DeviceRoleState) {}
 rpc ZtpUpdate(DeviceRole) returns (DeviceRoleState) {}
 rpc ZtpDelete(DeviceRole) returns (DeviceRoleState) {}
 rpc ZtpDeleteAll(Empty) returns (DeviceDeletionResult) {}

Internal
Models:

The main model of this component is the DeviceRole, which contains additional
internal models, while exploiting models are provided by other components (see
Figure 31).

Figure 30 Automation Component Architecture.

Figure 31 Automation Internal Data Models

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 90 of 120

6.2.9. Policy Manager
Name: Policy

Objective: Automatically translates high-level network policy rules to actual configuration
applied to devices and services. A policy rule may generate configuration across
an entire network domain, thus may need to configure multiple devices. The Policy
Component architecture is depicted in Figure 32.

Requirements: • Shall be able to handle multiple types of devices.
o Requires interactions with the SBI.

• Shall be able to handle multiple types of services.

o Requires interactions with the TeraFlow Service Component.

• Shall be able to receive and validate a PolicyRule from its northbound
interface.
o Such a policy rule may be received by an external entity, either

automatically or manually by a network operator.
o A gRPC protocol buffer model describes this API.

• Shall be able to model service-level agreements (SLAs)

• A policy rule associates services with their key performance indicators
(KPIs) and conditionally prescribes remedy actions when these KPIs fall
outside a desired range of values.

• Shall be able to assess service-level agreement adherence in real time

• The Policy Components uses Monitoring Services to create alarms on
conditional KPI queries. Once a KPI reaches certain value or falls within a
range of values, an alarm triggers the policy enforcement.

• Shall be able to enforce a policy action in real time
o Upon the reception of an alarm, the Policy Component applies a remedy

action to maintain a target SLA.

References: -

Responsible
(and
collaborators):

UBI, ODC, UPM, TID, TNOR

Provided
Operations:

 rpc PolicyAddService (PolicyRuleService) returns (PolicyRuleState) {}
 rpc PolicyAddDevice (PolicyRuleDevice) returns (PolicyRuleState) {}
 rpc PolicyUpdateService (PolicyRuleService) returns (PolicyRuleState) {}
 rpc PolicyUpdateDevice (PolicyRuleDevice) returns (PolicyRuleState) {}
 rpc PolicyDelete (PolicyRuleId) returns (PolicyRuleState) {}
 rpc GetPolicyService (PolicyRuleId) returns (PolicyRuleService) {}
 rpc GetPolicyDevice (PolicyRuleId) returns (PolicyRuleDevice) {}
 rpc GetPolicyByServiceId (context.ServiceId) returns (PolicyRuleServiceList) {}

Internal
Models:

The main model of this component is the PolicyRule, which contains additional
internal models, while exploiting models provided by other components.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 91 of 120

Figure 32 Policy Component Architecture.

Figure 33 Policy Internal Data Models

6.2.10. Slice Manager
Name: Slice

Objective: Handle Transport Network Slice lifecycle

Requirements: [REQ-SLI-01] - [REQ-SLI-06]

References: IETF Network Slices [21]A YANG model for IETF Network Slices [12]

Responsible
(and
collaborators):

ADVA, CTTC, TNOR, NTNU, UBI

Provided
Operations:

 rpc CreateSlice(context.Slice) returns (context.SliceId) {}
 rpc UpdateSlice(context.Slice) returns (context.SliceId) {}
 rpc DeleteSlice(context.SliceId) returns (context.Empty) {}
 rpc OrderSliceWithSLA(context.Slice) returns (context.SliceId) {} // If slice with
SLA already exists, returns slice. If not, creates it.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 92 of 120

 rpc RunSliceGrouping (context.Empty) returns (context.Empty) {} // Optimises
the underlying services and re-maps them to the requested slices.

Internal
Models:

None. Located in Context

6.2.11. Centralized Attack Detector
Name: CAD

Objective: This component coordinates the cybersecurity loop of the TFS Controller. Within
the project, we tackle the security assessment at two layers: optical and Layer 3
(L3).
At L3, this component provides attack detection capabilities and a consolidated
attack detection mechanism based on the input provided by the DAD. The CAD
utilises ML algorithms to classify the input data received from the DAD and sends
information regarding the address and port of the source and destination of the
connection as well as the confidence level of the decision to the Attack Mitigator
(AM). Only the connections that are detected as being part of an attack with a
confidence level greater than a certain threshold are sent to the AM. In addition,
the CAD collects the data sent by the DAD that will be processed periodically at a
given time interval to produce relevant security-related KPIs that will be sent to
the Monitoring Component.
At the optical layer, this component implements the security assessment loop that
retrieves OPM data from the Monitoring Component, and leverages on the Attack
Inference to obtain attack detection. Upon a detection, it relies on the AM to
compute and perform the mitigation strategy.

Requirements: For the optical layer:

• Shall consume/subscribe to service creation/update/deletion events
triggered by the Context Component.

• Shall consume/subscribe to security-related data from the Monitoring
Component.

• Shall process the summarised flow KPIs from the Monitoring Component
and generate a consolidated data plane security status.

• Shall report detected attacks to the Attack Mitigator.

• Shall report security status to the Monitoring Component.
For L3:

• Shall consume network connection-related data from the DAD.

• Shall report detected attacks to the Attack Mitigator.

• Shall detect the summarised network flows that were detected as being

part of a known attack with an accuracy equal or greater of 99%.

• Shall collect real-time data from the DAD and process it periodically every

5-second time interval to produce relevant security-related KPIs.

• Shall report security-related KPIs to the Monitoring Component.

References: -

Responsible
(and
collaborators):

UPM, TID (L3), CHAL (Optical)

Provided
Operations:

For the optical layer:
rpc DetectAttack (Empty) returns (Empty) {}

For L3:

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 93 of 120

rpc SendInput (L3CentralizedattackdetectorMetrics) returns (Empty) {}

Internal
Models:

L3AttackmitigatorOutput is sent to the AM and
L3CentralizedAttackDetectorMetrics is received from the DAD. See for reference
Figure 34 and Figure 35, respectively.

The L3 CAD uses the l3_centralizedattackdetector.proto file for the protobuf messages which

correspond to the following models.

Figure 34 L3 Attack Mitigator Output

Figure 35 L3 Centralized Attack Detector Internal Data Model

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 94 of 120

6.2.12. Distributed Attack Detector
Name: DAD

Objective: The DAD monitors the network data plane for the presence of malicious network

flows. For this purpose, this component integrates a feature extractor that is

deployed at the network edge to collect and generate statistical summaries of

network flows. To that end, packets are aggregated into flow-level statistics, where

each flow is an aggregate of packets belonging to the same packet flow (same

source IP address, source port, destination IP address, and destination port). This

aggregation is performed each time new packets arrive. In this way, flow statistics

at each instant in time are sent to the CAD to detect malicious traffic.

For aggregation into flows, the DAD uses the tstat (TCP STatistic and Analysis

Tool: http://tstat.polito.it/) tool, which allows recollection of transmitted packets

and the production of statistical summaries. These summaries are encoded and

stored in a compact text format that is sent to the CAD for the purpose of attack

detection at the flow-level.
Requirements: • Shall receive monitored network packets from the packet processor devices.

• Shall generate summarised flow statistics and send them to the CAD.

References: -

Responsible
(and
collaborators):

UPM, TID

Provided
Operations:

This component does not deploy a gRPC server.

Internal
Models:

L3CentralizedAttackDetectorModelMetrics is sent to the CAD. See for references
Figure 35.

6.2.13. Attack Inference
Name: Attack Inference

Objective: Performs anomaly detection inference based on a set of samples. The
implementation currently uses an unsupervised learning algorithm for anomaly
detection (i.e., DBSCAN) that is used to detect attacks based on OPM data. The
design of this component is inspired by the design of the TensorFlow open source
project’s Serving Component.

Requirements: • Shall receive a set of samples (composed of a set of feature values)
representing a monitoring window (defined by the CAD) over which the
anomaly detection algorithm is run.

• Shall return the cluster indices for each one of the samples, where the index -
1 represents an anomaly, and cluster indices greater or equal to zero are
considered normal samples.

References: • DBSCAN Serving

• TensorFlow Serving

Responsible
(and
collaborators):

CHAL

Provided
Operations:

rpc Detect (DetectionRequest) returns (DetectionResponse) {}

Internal
Models:

This component contains four models: Metric, Sample, DetectionRequest, and
DetectionResponse (see for reference Figure 36).

http://tstat.polito.it/
https://github.com/carlosnatalino/dbscan-serving-python
https://github.com/tensorflow/serving

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 95 of 120

Figure 36 Attack Inference Data Model

6.2.14. Attack Mitigator
Name: AM

Objective: This component is responsible for computing viable attack remediation solutions,
depending on the attack detected by other components.
When dealing with Layer 3 attacks, it receives the attack detection information
(see Figure 34) from the CAD. Then, it communicates with other service-related
TFS components (i.e., Service, Context) to perform attack mitigation.
When dealing with attacks at the optical layer, it receives information about the
service on which the attack was detected, obtains relevant information from the
Context Component, and coordinates with service-related TFS components (i.e.,
Service, Context) to perform attack mitigation.

Requirements: • Shall receive attack detection notifications from the CAD.

• Shall compute relevant attack mitigation strategies corresponding to the
service where it was detected (i.e., Layer 3 or optical).

• Shall communicate with other components integrated in the core layer of
the TFS (i.e., Service, Context) to perform attack countermeasures.

References: -

Responsible
(and
collaborators):

UPM, TID (L3), CHAL (Optical)

Provided
Operations:

L3:
rpc SendOutput (L3AttackmitigatorOutput) returns (context.Empty) {}
rpc GetMitigation (context.Empty) returns (context.Empty) {}
Optical:
rpc NotifyAttack (AttackDescription) returns (AttackResponse) {}

Internal
Models:

L3AttackMitigatorOutput (see for reference Figure 37 and AttackDescription and
AttackResponse used by the AM’s Optical sub-component (see for reference
Figure 38).

The L3 Attack Mitigator uses the l3_attackmitigator.proto file for the protobuf messages which

correspond to the following model.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 96 of 120

Figure 37 L3 Attack Mitigator Output Data Model

Figure 38 Optical Attack Mitigator Data Model

6.2.15. Distributed Ledger
Name: DLT

Objective: Provide a distributed ledger to record, query, and process relevant data for
network management and detection of compromised edge-devices.

Requirements: [REQ-DLT-01]--[REQ-DLT-04]

References: -

Responsible

(and

collaborators):

NEC, CTTC

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 97 of 120

Provided

Operations:

RecordToDlt (DltRecord) returns (RecordStatus) {}
GetFromDlt (DltRecordId) returns (DltRecord) {}

Internal Models: DltRecord, DltStatus (see for reference Figure 39).

Figure 39 DLT Component Data Model

6.2.16. NBI (Previously Compute)
Name: NBI

Objective: It supports the ETSI OpenSource MANO (OSM) SDN/WIM connector. It
implements the standard IETF RFC 8466 "A YANG Data Model for Layer 2 Virtual
Private Network (L2VPN) Service Delivery" [23]. It provides the endpoints and
the necessary details to request the Layer 2 service. It supports L2VPN lifecycle
management.

Requirements: Allow OSM to perform the necessary WIM operations.

References: RFC 8466 (ietf-l2vpn-svc.yang) [23]

Responsible
(and
collaborators):

CTTC

Provided
Operations:

rpc CheckCredentials (context.TeraFlowController) returns
(context.AuthenticationResult) {}
rpc GetConnectivityServiceStatus (context.ServiceId) returns
(context.ServiceStatus) {}
rpc CreateConnectivityService (context.Service) returns (context.ServiceId) {}
rpc EditConnectivityService (context.Service) returns (context.ServiceId) {}
rpc DeleteConnectivityService (context.Service) returns (context.Empty) {}
rpc GetAllActiveConnectivityServices (context.Empty) returns
(context.ServiceIdList) {}
rpc ClearAllConnectivityServices (context.Empty) returns (context.Empty) {}

Internal
Models:

Only provides operations. Data models belong to the Context and Service
Components.

https://datatracker.ietf.org/doc/rfc8466

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 98 of 120

6.2.17. Inter-Domain
Name: Inter-domain

Objective: Enable interaction of a TeraFlowSDN instance with peer TeraFlowSDN
instances which manage different network domains to create E2E TN slicing
services.

Requirements: [REQ-INT-01] - [REQ-INT-09]

References: RFC 8299 [27]
RFC 8453 [28]
IETF Network Slices [21]

Responsible (and
collaborators):

TNOR, NTNU, CTTC

Provided
Operations:

rpc Authenticate (context.TeraFlowController) returns
(context.AuthenticationResult) {} // Deprecated
rpc RequestSlice (context.Slice) returns (context.SliceId) {}
 rpc LookUpSlice (context.Slice) returns (context.SliceId) {}
 rpc OrderSliceFromCatalog (context.Slice) returns (context.Slice) {}
 rpc CreateSliceAndAddToCatalog(context.Slice) returns (context.Slice)
{}
 rpc OrderSliceWithSLA (context.Slice) returns (context.SliceId) {} // If slice
with SLA already exists, returns slice. If not, create it.
 rpc UpdateSlice (context.Slice) returns (context.Slice) {}

Internal Models: Only provides operations. Data models belong to Context and Service
Components.

6.2.18. Web User Interface (WebUI)
Name: Web User Interface (WebUI)

Objective: The WebUI enables a network operator to manually interact with the SDN
controller to perform configuration operations and inspect the state of the
network.

Requirements: [REQ-UI-01] The WebUI needs to be implemented as another TFS micro-service.
[REQ-UI-02] The WebUI needs different sections: Home, Device, Link, Service,
Slice, Grafana and About. Each section shall provide information about internal
TFS context state.

References:

Responsible
(and
collaborators):

CTTC, Chalmers University

Provided
Operations:

Internal
Models:

Only provides web-based HTTP interface. Data models belong to the NBI and
Context Components.

6.2.19. Cloud Orchestrator Features
In this section, we present several features that are not provided by any component, but are delivered

by the selected technology (Kubernetes). These features are auto-scaling, self-healing, and load

balancing.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 99 of 120

6.2.19.1. Auto-Scaling
Auto-Scaling focuses on the autonomous replication of micro-services to support high amounts of load

in terms of incoming requests.

The Kubernetes Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods in a Pod

deployment based on observed metrics (e.g., CPU utilisation). Through integration with external

mechanisms, it can also support autoscaling using custom metrics, such as application-provided

metrics.

6.2.19.2. Self-Healing
Self-Healing monitors micro-services and per-flow status to apply healing mechanisms (e.g.,

component restart, flow redirection) both from a control and a data plane perspective.

We will use two features from Kubernetes for providing self-healing mechanisms: liveness and

readiness probes. The kubelet uses liveness probes to know when to restart a container. The kubelet

uses readiness probes to know when a container is ready to start accepting traffic. Both features will

be included in each Pod by usage of the Google Health gRPC [11].

6.2.19.3. Load Balancing
Load-balancing allows the distribution of flow and slice requests among the Micro-Services

Component replicas.

Kubernetes implements load balancing as a load distribution mechanism. It uses two methods of load

distribution, which are easy to operate through the kube-proxy feature.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 100 of 120

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 101 of 120

7. Prospective Topics and Future Work
7.1. Regional Extensions to IETF Slicing
Section 2.5 presents use cases for services and introduces service information models applicable to

TFS. Future work may extend these concepts in a way that we describe as producing regional network

slices. We recognise two levels of service concepts and their abstractions: i) the Managed Quality Path

(MQP) level deals with semi-static, but still dynamic, infrastructure-oriented topologies; and ii) the

Specialised Connectivity Service (SCS) level deals with highly dynamic sessions (end-user flows or

tunnels), given the pre-established MQP level.

The complex, multi-dimensional problem of delivering connectivity services that meet SLAs for

multiple QoS requirements is made more complicated when we seek to deliver those services for open

public access at Internet scale. Providing an SCS for on-demand connectivity with support for multiple

modes of traffic (beyond best effort) is a problem that cannot be addressed with today’s tools and

techniques, and the current operational approaches tend to predicate against providing these

services. This topic is discussed further in [https://doi.org/10.36227/techrxiv.19690570.v1] which

leads to proposals to develop network slicing based on Abstraction and Control of Traffic Engineered

Networks (ACTN) [24] to provide regional network slices that can assist in delivery of MQP and SCS.

This section introduces the further work that could be performed, building on TeraFlow, to address

these requirements. To set the scene, we first consider various service levels in different sectors or

markets, as well as traffic modes in the context of delay performance, complemented by resilience

levels. The figures below are examples and for illustration and do not provide a final answer on

required traffic types and modes.

Figure 57 Exposing the Urgency of Different Service Levels According to User Type

Figure 57 shows how there is already a requirement for all or most service levels in all sectors (or

markets). Even in the consumer market (considering consumer end-points) we foresee the need for a

“consumer critical” service level, e.g., in relation to eHealth. Moreover, the illustration suggest that

some traffic modes can be shared or be common across sectors or markets. For instance, the non-

https://doi.org/10.36227/techrxiv.19690570.v1

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 102 of 120

urgent service level (e.g., traffic with elastic delay requirements in a context of non-critical / non-

urgent setting) can be realised by a traffic mode common to the Office, Industry, and Societal sectors

(markets). Indeed, the societal sector (considering, e.g., public protection and disaster relief – PPDR)

can operate just fine through a shared “non-urgent” traffic mode with Industry and Office. Thus, the

problem is already upon us: all network users have demands across all service levels and meeting

those demands may require network operators to differentiate traffic in order to guarantee the

different quality requirements. We anticipate that a limited number of traffic modes are sufficient in

a metro or backbone transport network. However, a more fine-grained set of traffic modes may be

needed when considering the (radio) access network.

Next, we consider latency performance and resilience.

Figure 58 MultiSservice Latency and Resilience in the Internet Backbone

Figure 58 shows anticipated, inter-related requirements for latency and resilience in the context of

transport network backbone and inter-AS traffic exchange. Only services that can accept elastic

latency can tolerate the absence of extra-high resilience levels. Conversely, it is only with the

availability of resilience that high guarantees of basic or bounded latency can be made.

In order to address these requirements in an operational manner, deployments may utilise slicing

techniques. Using IETF network slices as an underlying approach and utilising ACTN as a control and

management platform may offer an operational technique that is both scalable and realistic.

The subsections below identify the potential future research topics. They also present a possible

roadmap for introducing this work through standards bodies (in particular, the IETF) and to the ETSI

OSG TFS project. Where relevant, we also address how these topics relate to the 3GPP service

concepts that can be linked to the IETF network slice, such as Access Point Name (4G) and Data

Network Name (5G).

7.1.1. Interconnected Sliced Networks and Services
Initial work on network slices within the IETF has focused on delivering slices within a single domain.

That has been sufficient for the consideration of simple 5G deployments, but more complex scenarios

will require delivering end-to-end network slices across multiple networks and of different network

technologies. This is a need both in the 3GPP architecture where the IETF technology network slice is

used as a transport slice, and in the more general case where a network slice is delivered as a service

to a customer.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 103 of 120

Network slices may be interconnected and inter-related in several ways:

• A single operator’s network may consist of several domains (ASes or areas) of the same technology

that are separately sliced and that are combined to form a single end-to-end network slice service.

• An end-to-end network slice service may be delivered to a customer using resources belonging to

multiple network operators. This situation is a little like the way that VPNs are achieved using

cooperating networks.

• The “carrier’s carrier” scenario sees one service provider deliver a network slice service to another

service provider which, in turn, uses the resources of that network slice to deliver another network

slice service to a customer.

• Just as different technology networks are used to build connectivity within other technology

networks (for example, IP over optical), so network slices of one type of network may provide the

connectivity necessary to build a network slice service in another technology network.

In fact, all four of these options may be combined arbitrarily and in complex arrangements so that

network slices may be composed hierarchically and in series to construct the services delivered to

customers.

This will form a rich area for research, but is also an important factor in how the TFS system can be

developed and made more strategic.

7.1.2. Mechanisms for Filtering and Classifying Traffic onto Slices and Regions
An important aspect of how network slices can be useful is determining how traffic is forwarded

onto each slice, considering even (destination) regions of a slice. The notion of an (IP packet

destination) region is a concept to be explored and further defined. At a generic level it is a set or

range of end-point addresses, e.g. a set of IP prefixes. Traffic filtering and classification forms a

central element to many Internet systems from BGP (where Flowspecs are used to describe what

traffic should be filtered onto which route) through PCE, Segment Routing, and MPLS-TE (where

Flowspecs are used to describe the traffic that should be forwarded onto tunnels, paths, and LSPs).

Even the IETF’s service function chaining architecture includes a conceptual component called a

Classifier that has the job of determining what traffic is sent onto which service chain.

The topic of traffic filtering and classification has been largely undiscussed in the development of

network slices and network slice services, but it will be crucial to the value of the technology. TFS will

need a way to identify this in far more detail than the simple “attachment circuit” approach used in

the early specifications.

7.2. TFS as a Dedicated Technology SDN Controller
During the analysis of preliminary results, as well as with informal conversations with multiple

potential ETSI TFS members and participants, the need for using TFS as an SDN controller for a specific

technology has appeared. To this end, Scenario 1 (more details in D5.2) includes the decoupling of TFS

as End-to-End SDN orchestrator and TFS as IP SDN controller. The modularity and flexibility of the TFS

architecture allows someone to quickly implement technology-specific plugins and thus instantiate

TFS as a dedicated technology SDN controller. Some of the proposed technologies follow:

• Optical SDN Controller. Shall be able to directly interact with optical equipment, such as

ROADMs and OXCs, and offer ONF Transport API or IETF L0 Connectivity as a Service.

• MPLS SDN Controller, by including SBI support for DiffServ/MPLS enabled routers.

• L2 SDN controller to support OpenFlow and OVSDB.

• RAN controller.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 104 of 120

7.3. TFS as a Toolbox for Intent-Based Networking
Several protocols have been suggested as an evolutionary path towards Intent-Based Networking

(IBN). In this section we present ALTO and I2NSF as possible TFS extensions.

The Application-Layer Traffic Optimization (ALTO) protocol focuses on improving traffic management.

Moreover it was designed for distributed (i.e., Peer-to-Peer (P2P)) applications scenarios such as file

sharing, live media streaming, etc. The ALTO protocol aims to assist in the management of today’s

networks from the application-layer point of view, especially on tasks such as routing policies, link

availability, network topologies, and so on. Application-layer elements may benefit from the

information coming from lower layers, for example by adapting themselves and becoming more

network-efficient and improving their performance.

The architecture of how the different elements in a network region interact with this protocol is

illustrated in Figure 59. The different elements and their relationships are shown. Applications receive

network resource information via the ALTO protocol, making it feasible that users may check how

their requested service is performing and so, react by requesting an improvement from the service

provider.

Figure 59 ALTO Architecture

The Interface to Network Security Function (I2NSF) is a framework that aims to describe and propose

a group of interfaces and data models to control and monitor physical and virtual Network Security

Functions (NSFs), allowing clients to define rules. Due to the wide range of security vendors and open-

source technologies, I2NSF works on flow-based NSFs that manage and control packets/flows like flow

filtering, deep packet inspection, etc.

The IETF’s I2NSF working group has defined a reference model (Figure 40) with the following set of

interfaces for the interaction between the users, network operators, developers, and the deployed

NSFs:

• I2NSF Consumer-Facing Interface: This allows the users to define, manage, and monitor

security policies for specific flows inside an administrative domain. The users do not need to

know about the location and implementation of the NSFs, thus the request conveys only the

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 105 of 120

intent. Examples include blocking flows that match a set of specifications, and enforcing

specific I2NSF policies for a particular flow.

• I2NSF Registration Interface: Due to the existence of multiple vendors, it is necessary for them

to register the capabilities of their NSFs so that they can be used properly by the system.

• I2NSF-Facing Interface: Its main objective is to define and constantly check the enforced flow-

based security policies by one or more NFSs.

Figure 40 I2NSF Architecture

7.4. TFS as a QKD SDN Controller and SDN Orchestrator
One of the many technologies that can also be included is the capability to control and manage a

dedicated Quantum Key Distribution (QKD) network, using an SDN agent in each QKD node, and the

capability to control and manage end-to-end connectivity through a multi-layer network with QKD

and Optical Transport Network (OTN) SDN controllers, through SDN orchestration.

7.4.1. QKD SDN Controller
Figure 41 depicts the high-level architecture of a software-defined QKD (SD-QKD) network as a set of

connected nodes under the control of the SDN controller. One of the nodes is shown in more detail

with the fundamental components which are required to build an SD-QKD node in order to illustrate

the typical flow of information between components. The interface between the SD-QKD nodes and

TFS Controller is described in [15].

Figure 41 Depiction of an SD-QKD Network Showing a Set of SD-QKD Nodes

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 106 of 120

7.4.2. QKD SDN Orchestrator
An SDN orchestrator can provide end-to-end connectivity through multiple QKD network domains

from multiple vendors via the SDN controllers of each QKD network. It can also provide E2E

connectivity to QKD and classical network domains, as shown in Figure 42.

In order to deliver QKD-derived keys to secure application entities through an OTN, E2E connectivity

can be orchestrated. To this end, network operators could choose to deploy a QKD network that is

separate from a classical OTN and to operate and manage each network separately. Using TFS as an

SDN orchestrator, both network domains would be aware of nodes that belong to each other for QKD-

derived keys to be delivered to secure application entities in the OTN. To this end, TFS would need to

be extended with an SBI plugin that implements the orchestration interface described in [16].

Figure 42 Use Case of SDN Orchestrator for QKD Network and OTN

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 107 of 120

8. Conclusion and Next Steps
This milestone includes all the necessary design descriptions to start providing the initial set of ETSI

TeraFlowSDN features for release 2.0. TFS follows an agile methodology to produce three main

software releases: v1.0 was released at M12, v2.0 will be released at M24, and v2.1 will be released

at M30. These releases will cover the length of the technical work packages (WP3 and WP4).

To support the development of software and the ability to make releases with minimal impact on the

running services, TFS has adopted a CI/CD strategy, which is described in D5.1. The major software

releases will deliver the main functionalities, while the minor releases will provide bug fixes and

possibly additional features required by the currently operating experiments based on the three

scenarios in D5.1. MS3.3 and MS4.2 will document the code freeze of the new programmed features,

before integration tests.

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 108 of 120

9. References
[1] D. Abecassis, M. Kende, S. Osman, I. Kriegler, C. Gabriel, R. Kompany. May 2021. “The economic

impact of open and disaggregated technologies and the role of TIP”. Analysys Mason report, for

the Telecom Infra Project (TIP).

https://cdn.brandfolder.io/D8DI15S7/at/cjwpw3jp9qvnwmsz9w297jrx/Analysys_Mason_-

_The_economic_impact_of_open_and_disaggregated_technologies_and_the_role_of_TIP_full_

report_-_2021-05-19.pdf. Accessed: 2022-12-23.

[2] S. Barguil, O. González-de-Dios, V. López, K. Pardini, R. Vilalta, “Automation of Network Services

for the Future Internet”, Chapter in “Design Innovation and Network Architecture for the Future

Internet”, published by IGI Global, April 2021. ISB: 9781799876465.

[3] S. Barguil, et al., “A YANG Network Data Model for Layer 3 VPNs”, IETF RFC 9182, February 2022.

https://www.rfc-editor.org/rfc/rfc9182.html. Accessed: 2022-12-23.

[4] M. Boucadair, et al., “A YANG Network Data Model for Layer 2 VPNs”, IETF RFC 9291, September

2022. https://www.rfc-editor.org/rfc/rfc9291.html. Accessed: 2022-12-23.

[5] Blind, K., Böhm, M., “The Relationship Between Open Source Software and Standard Setting”,

Thumm, N. (Ed.), EUR 29867 EN, Publications Office of the European Union, Luxembourg, 2019,

ISBN 978-92-76-11593-9, doi:10.2760/163594, JRC117836

[6] TeraFlow Project Deliverable D2.1 “Preliminary requirements, architecture design, techno-

economic studies and data models”

[7] TeraFlow Project Deliverable D6.3 “Exploitation Plan and Roadmap”

[8] “Building an open RAN ecosystem for Europe for Europe to lead in this essential innovation”.

Deutshe Telekom, Orange, Telecom Italia (TIM), Telefónica, Vodafone. November 2021. Self-

published paper. https://cdn.brandfolder.io/D8DI15S7/at/jqrzjsgs267m6vxq55qp7/Building-

open-ran-ecosystem-europe.pdf. Accessed: 2022-12-23

[9] European Commission, “5G supply market trends – Final Report,” European Commission,

Brussels, 2021.

[10] Wu, Q., et al., “A YANG Data model for ECA Policy Management”, IETF Internet-Draft , February

2021, work in progress. https://datatracker.ietf.org/doc/draft-ietf-netmod-eca-policy/.

Accessed: 2022-12-23.

[11] “Health checking your gRPC servers on GKE”, https://cloud.google.com/blog/topics/developers-

practitioners/health-checking-your-grpc-servers-gke, Accessed: 2022-12-23

[12] Liu, X., et al., “IETF Network Slice YANG Data Model”, IETF Internet-Draft, March 2022, work in

progress. https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/.

Accessed: 2022-12-23

[13] “MUST IP SDN Controller SBI Technical Requirements”, Telcom Infra Project (TIP),

https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-

SBI-Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf, Accessed: 2022-12-23.

[14] Osterwalder, A., & Pigneur, Y., “Business Model Generation”, 2009. Self-published.

[15] ETSI, Quantum Key Distribution (QKD); Control Interface for Software Defined Networks, ETSI GS

QKD 015 V2.1.1, April 2022.

[16] ETSI, Quantum Key Distribution (QKD); Orchestration Interface for Software Defined Networks;

ETSI GS QKD 018 V1.1.1, April 2022.

[17] “Fast SQL for time series”. https://questdb.io/. Accessed:2022-12-23.

[18] “TR-547 – TAPI v2.1.3 Reference Implementation Agreement v1.1”, Open Networking

foundation (ONF), https://wiki.opennetworking.org/download/attachments/259719184/TR-

547-

https://cdn.brandfolder.io/D8DI15S7/at/cjwpw3jp9qvnwmsz9w297jrx/Analysys_Mason_-_The_economic_impact_of_open_and_disaggregated_technologies_and_the_role_of_TIP_full_report_-_2021-05-19.pdf
https://cdn.brandfolder.io/D8DI15S7/at/cjwpw3jp9qvnwmsz9w297jrx/Analysys_Mason_-_The_economic_impact_of_open_and_disaggregated_technologies_and_the_role_of_TIP_full_report_-_2021-05-19.pdf
https://cdn.brandfolder.io/D8DI15S7/at/cjwpw3jp9qvnwmsz9w297jrx/Analysys_Mason_-_The_economic_impact_of_open_and_disaggregated_technologies_and_the_role_of_TIP_full_report_-_2021-05-19.pdf
https://www.rfc-editor.org/rfc/rfc9182.html
https://www.rfc-editor.org/rfc/rfc9291.html
https://cdn.brandfolder.io/D8DI15S7/at/jqrzjsgs267m6vxq55qp7/Building-open-ran-ecosystem-europe.pdf
https://cdn.brandfolder.io/D8DI15S7/at/jqrzjsgs267m6vxq55qp7/Building-open-ran-ecosystem-europe.pdf
https://datatracker.ietf.org/doc/draft-ietf-netmod-eca-policy/
https://cloud.google.com/blog/topics/developers-practitioners/health-checking-your-grpc-servers-gke
https://cloud.google.com/blog/topics/developers-practitioners/health-checking-your-grpc-servers-gke
https://datatracker.ietf.org/doc/draft-liu-teas-transport-network-slice-yang/
https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-SBI-Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf
https://cdn.brandfolder.io/D8DI15S7/as/mfbj6nm7w38xnbvrmcnbp9t6/MUST-IP-Controller-SBI-Requirements-Document-v10_FINAL_VERSION_WEBSITE.pdf
https://questdb.io/
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 109 of 120

TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=163967

1964711&api=v2, Accessed: 2022-12-23.

[19] Wu, Q., et al., “A Framework for Automating Service and Network Management with YANG”,

IETF RFC 8969, January 2021. https://www.rfc-editor.org/rfc/rfc8969.html. Accessed: 2022-12-

23.

[20] TeraFlow Project Deliverable D6.2 “Exploitation Plan and Roadmap”

[21] Farrel, A., et al., "A Framework for IETF Network Slices", IETF Internet-Draft, December 2022,

work in progress. https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices. Accessed:

2022-12-23

[22] Wen, B., et al., “A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service

Delivery”, IETF RFC 8466, October 2018. https://www.rfc-editor.org/rfc/rfc8466.html. Accessed:

2022-12-23.

[23] D. King, J. Drake, H. Zheng, and A. Farrel, “Applicability of Abstraction and Control of Traffic

Engineered Networks (ACTN) to Network Slicing”, IETF Internet-Draft, September 2022, work in

progress. https://datatracker.ietf.org/doc/draft-ietf-teas-applicability-actn-slicing. Accessed

2022-12-23.

[24] Liu, X., et al., “YANG Data Model for Traffic Engineering (TE) Topologies”, IETF RFS 8795, August

2020. https://datatracker.ietf.org/doc/rfc8795/. Accessed: 2022-12-23.

[25] Vasseur, J.P., and Le Roux, JL., “Path Computation Element (PCE) Communication Protocol

(PCEP)”, IETF RFC 5440, March 2009, https://datatracker.ietf.org/doc/rfc5440/. Accessed: 2022-

12-23.

[26] Wu, Q., et al., “YANG Data Model for L3VPN Service Delivery”, IETF RFC 8299, January 2018,

https://datatracker.ietf.org/doc/rfc8299/. Accessed: 2022-12-23.

[27] Ceccarelli, D., and Lee, Y., “Framework for Abstraction and Control of TE Networks (ACTN)”, IETF

RFC 8453, August 2018, https://datatracker.ietf.org/doc/rfc8453/. Accessed: 2022-12-23.

[28] Wu, B., et al., “IETF Network Slice Service YANG Model”, IETF Internet-Draft, October 2022, work

in progress. https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slice-nbi-yang.

Accessed: 2022-12-23.

[29] Clemm, A., et al., “A YANG Data Model for Network Topologies”, IETF RFC 8345, March 2018,

https://datatracker.ietf.org/doc/rfc8345/. Accessed: 2022-12-23.

[30] Rekhter, Y., and Kompella, K., “Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery

and Signaling”, IETF RFC 4761, January 2007, https://datatracker.ietf.org/doc/rfc4761/.

Accessed: 2022-12-23.

[31] Lasserre, M., and Kompella, V., “Virtual Private LAN Service (VPLS) Using Label Distribution

Protocol (LDP) Signaling”, IETF RFC 4762, January 2007,

https://datatracker.ietf.org/doc/rfc4762/. Accessed: 2022-12-23.

[32] Rosen E., and Andersson, L., “Framework for Layer 2 Virtual Private Networks (L2VPNs)”, IETF

RFC 4664, September 2006, https://datatracker.ietf.org/doc/rfc4664/. Accessed: 2022-12-23.

[33] Boutros, S., et al., “Virtual Private Wire Service Support in Ethernet VPN”, IETF RFC 8214, August

2017, https://datatracker.ietf.org/doc/rfc8214/. Accessed: 2022-12-23.

[34] Sajassi, A., et al., “BGP MPLS-Based Ethernet VPN”, IETF RFC 7432, February 2015,

https://datatracker.ietf.org/doc/rfc7432/. Accessed: 2022-12-23.

https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2
https://wiki.opennetworking.org/download/attachments/259719184/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.zip?version=2&modificationDate=1639671964711&api=v2
https://www.rfc-editor.org/rfc/rfc8969.html
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices
https://www.rfc-editor.org/rfc/rfc8466.html
https://datatracker.ietf.org/doc/draft-ietf-teas-applicability-actn-slicing
https://datatracker.ietf.org/doc/rfc8795/
https://datatracker.ietf.org/doc/rfc5440/
https://datatracker.ietf.org/doc/rfc8299
https://datatracker.ietf.org/doc/rfc8453/
https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slice-nbi-yang
https://datatracker.ietf.org/doc/rfc8345/
https://datatracker.ietf.org/doc/rfc4761/
https://datatracker.ietf.org/doc/rfc4762/
https://datatracker.ietf.org/doc/rfc4664/
https://datatracker.ietf.org/doc/rfc8214/
https://datatracker.ietf.org/doc/rfc7432/

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 110 of 120

Annex I: Workflows
This section depicts the sequence diagrams between internal and external TFS components and

related elements.

L3VPN Establishment with SLA

Figure 43 L3VPN Provisioning with SLA

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 111 of 120

L3VPN Establishment

Figure 44 L3VPN Provisioning

L2VPN Establishment

Figure 45 L2VPN Provisioning

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 112 of 120

Inventory

Figure 46 Inventory

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 113 of 120

Multi-Layer Topology Discovery

Figure 47 Multi-Layer Topology Discovery

Service ACL

Figure 48 ACL Service Deployment

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 114 of 120

Service Location-Awareness

Figure 49 Service Location-Awareness Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 115 of 120

Traffic Engineering

Figure 50 Traffic Engineering Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 116 of 120

Slice SLA Enforcement

Figure 51 Slice SLA Enforcement Sequence Diagram

Slice Grouping

Figure 52 Slice Grouping Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 117 of 120

Forecaster

Figure 53 Forecaster Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 118 of 120

Inter-Domain Slice SLA Enforcement

Figure 54 Inter-Domain Slice SLA Enforcement Sequence Diagram

Figure 55 Inter-Domain SLA Violation Reaction Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 119 of 120

DLT Record Exchange Between DLT Connector and DLT Gateway

Figure 56 DLT Record Exchange Between DLT Connector and DLT Gateway Sequence Diagram

Inter-Domain DLT

Figure 57 Inter-Domain Service Preparation and Activation with DLT Sequence Diagram

D2.2 Final Requirements, Architecture Design, Business Models, and Data Models

© 2021 - 2023 TeraFlow Consortium Parties Page 120 of 120

Figure 58 Inter-Domain SLA Violation Reaction with DLT

Energy-Aware Network Service Placement

Figure 59 Energy-Aware Network Service Placement Sequence Diagram

